Description
Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and

Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and intuitive. Robust control methods are needed for wearable robots that assist periodic motion.

This dissertation studies a phase based oscillator constructed with a second order dynamic system and a forcing function based on the phase angle of the system. This produces a bounded control signal that can alter the damping and stiffens properties of the dynamic system. It is shown analytically and experimentally that it is stable and robust. It can handle perturbations remarkably well. The forcing function uses the states of the system to produces stable oscillations. Also, this work shows the use of the phase based oscillator in wearable robots to assist periodic human motion focusing on assisting the hip motion. One of the main problems to assist periodic motion properly is to determine the frequency of the signal. The phase oscillator eliminates this problem because the signal always has the correct frequency. The input requires the position and velocity of the system. Additionally, the simplicity of the controller allows for simple implementation.
Reuse Permissions
  • Downloads
    pdf (18.9 MB)

    Details

    Title
    • Nonlinear phase based control to generate and assist oscillatory motion with wearable robotics
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (pages 2015-219)
      Note type
      bibliography
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by Juan Oziel De la Fuente Valadez

    Machine-readable links