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ABSTRACT 

   

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, 

non-invasive and has low power consumption. Doppler processing is an important part of 

many ultrasound imaging systems. It is used to provide blood velocity information and is 

built on top of B-mode systems. We investigate the performance of two velocity 

estimation schemes used in Doppler processing systems, namely, directional velocity 

estimation (DVE) and conventional velocity estimation (CVE). We find that DVE 

provides better estimation performance and is the only functioning method when the 

beam to flow angle is large. Unfortunately, DVE is computationally expensive and also 

requires divisions and square root operations that are hard to implement. We propose two 

approximation techniques to replace these computations. The simulation results on cyst 

images show that the proposed approximations do not affect the estimation performance.  

We also study backend processing which includes envelope detection, log 

compression and scan conversion. Three different envelope detection methods are 

compared. Among them, FIR based Hilbert Transform is considered the best choice when 

phase information is not needed, while quadrature demodulation is a better choice if 

phase information is necessary. Bilinear and Gaussian interpolation are considered for 

scan conversion. Through simulations of a cyst image, we show that bilinear interpolation 

provides comparable contrast-to-noise ratio (CNR) performance with Gaussian 

interpolation and has lower computational complexity. Thus, bilinear interpolation is 

chosen for our system. 
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CHAPTER 1  

INTRODUCTION 

Medical ultrasound imaging has been used in clinical diagnosis for many years. 

Compared to computed tomography (CT) and magnetic resonance imaging (MRI), 

ultrasound imaging has a longer history, and yet it is widely used because it is non-

invasive, safe and cheap [1]. It also provides high-resolution images that are sufficient for 

many clinical applications, such as general abdominal imaging and color flow imaging 

[2]. 

Almost all the ultrasound imaging systems today are based on pulse-echo 

imaging. A sound wave is transmitted by a handheld transducer into the body. The wave 

is echoed by the tissue and blood, with part of the transmitted energy returning back to 

the transducer [2]. The echoes are detected and then processed to obtain information of 

the scatterers (tissue or blood). Given the sound speed in the tissue being investigated, the 

round trip delay of the sound wave can be calculated and the echo signals can be 

distinguished by their arrival time.  

1.1 Background 

The block diagram of a typical ultrasound imaging system is shown in Figure 1.1. 

A transducer array typically consists of hundreds of transducer elements. The 

piezoelectric transducer elements convert electrical energy into sound energy or vice 

versa. The T/R switch controls the flow between the transducer and analog front end 

blocks. The analog front end amplifies and filters the analog data obtained by the 

transducer. The ADC/DAC translates the analog signal into digital or vice versa. The 
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digital front end does the beamforming for both transmit and receive. There are several 

imaging modalities, such as A-mode, B-mode, M-mode and Color Doppler [3]. Our 

system is based on B-mode imaging which represents the brightness of the backscattered 

signals. Additionally we support Doppler processing for estimating the velocity of blood 

in vessels. At the end of the chain is backend processing which includes scan conversion 

and post processing modules to help display a clean ultrasound image on the screen.  

 

Figure 1.1 Ultrasound imaging system block diagram (adapted from [3]) 

There are generally two different kinds of ultrasound imaging systems: 

Conventional ultrasound imaging system based on linear array or phased array and 

synthetic aperture (SA) imaging system. Linear array system generates parallel image 

lines which are perpendicular to the transducer plane, while phased array system 

generates image lines starting from the center of the transducer, steered at different 

angles. Both systems utilize a linear array scanner; for a linear array system, only part of 

the transducer elements are active during transmit and receive, while for phased array 

system, all the transducer elements are active. Conventional systems acquire one image 

line at a time in sequence. Thus, the frame rate is limited by the speed of sound, c. If 

there are N image lines and the transmission depth is D, the maximum frames per second 
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(fps) is: ὪὴίὧςὈὔϳ . For instance, if we have 200 image lines and the transmission 

depth is 15cm, then for sound speed given by 1540m/s, the maximum fps is 51. The 

frame rate is significantly lower if 3D imaging is considered. Another disadvantage of 

conventional systems is that there is only one transmit focus, which means that the 

samples that are not close to the transmit focus are not properly focused. 

Synthetic aperture (SA) imaging system creates low resolution images using less 

transducer elements for each transmission and then reconstructs the high resolution image 

by adding the low resolution images [1]. Typically one element transmits at a time and all 

elements receive. Unlike conventional imaging system, SA system creates a complete 

image in every transmission and thus decouples the number of scanlines and the frame 

rate [4]. Another advantage of SA system is that dynamic focusing is achieved in both 

transmission and receive compared to conventional system which has a single transmit 

focus. One of the weaknesses of SA system is the loss in SNR, because less elements are 

active during transmission, resulting in less signal power. This limits the penetration 

depth, since we cannot increase the transmit power too much, considering patientsô 

safety. One solution is to combine several elements in one transmission. Certain 

apodization windows can help defocus the transmission to emulate a spherical wave [4]. 

In 3D imaging, subaperture processing method with sparse virtual sources has been 

proposed to achieve better trade-offs between image quality and hardware cost [5]. 

Another solution is to use coded excitation, such as orthogonal Golay code and 

orthogonal chirp [6]. Both can improve the SNR and penetration depth significantly. 

However, coded excitation method makes the system more sensitive to motion of patients 
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or examiners. In general, SA system overcomes the frame rate limitations and single 

transmit focus problem at the cost of higher hardware complexity.  

1.2 Problem description 

The overarching goal of our research is to build a 3D portable medical ultrasound 

imaging system that produces high quality images. The benefit of portable imaging 

devices is not only about convenience; the improvement of diagnosis outcomes has been 

proved in clinical applications [8]. 3D ultrasound imaging, compared to its 2D 

counterpart, provides images that are easier to interpret with multiple view angles so that 

technicians can locate relevant anatomy with less effort. 3D images of cysts and tumors 

have accurate and complete information which 2D images cannot provide. However, 3D 

imaging is very challenging in terms of hardware implementation. To create a 3D image, 

we need to use a 2D transducer array. This means the incoming raw data of a 3D system 

is about 100 larger than 2D. The number of focal points in a image is also increased 

significantly, resulting in much larger power needed for signal processing. The problem 

is particularly challenging since we have a rather low power budget (about 5W) for 

portability requirements. 

In our earlier work with University of Michigan researchers, a 3D medical 

ultrasound imaging front end named ñSonic Millip3Deò has been designed and 

implemented [9]. We were able to generate full 3-D images (50 X 50 scanlines, 4096 

samples on each scanline) with 1 frame per second while staying below a system power 

of 20W in 45nm technology. The Sonic Millip3De architecture combines a massively 

pipelined hardware design with 3D die stacking techniques to achieve low power 
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consumption [9]. Sonic Millip3De is essentially an accelerator for the beamsum operation 

in the digital front end. In this thesis we studied two additional units to make the 3D 

imaging system more complete. These include a Doppler processing unit to estimate 

blood velocity and a backend processing unit to display the ultrasound image on the 

screen. 

1.3 Contributions 

In this work, we studied the performance and computational complexity of two 

schemes for Doppler processing, namely Conventional Velocity Estimation (CVE) [1] 

and Directional Velocity Estimation (DVE) [10]. CVE is based on computing beamsum 

along the scanline and estimating the velocity component based on the phase change of 

the signals. DVE is based on computing the beamsum along the flow line and estimating 

the velocity directly from the displacement of the scatterers. Our results show that DVE 

has better performance compared to CVE and can handle large beam to flow angles. 

However, it has higher computational complexity and includes square root and division 

operations which have a large hardware cost. To address this problem, we introduced 

approximation techniques, including Taylor expansion and Lagrange interpolation filter 

which replaced these operations with multiplications and additions. We showed that use 

of these approximations did not affect the velocity estimation performance. 

Next we studied different blocks in backend processing, namely, envelope 

detection, log compression and scan conversion. We compared different envelope 

detection methods in terms of performance and computational complexity, and came to 

the conclusion that quadrature demodulation is desirable when phase information is 
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important and FIR based Hilbert transform method works better for a B-mode imaging 

system. Finally, we studied two interpolation methods for scan conversion, including 

bilinear interpolation and Gaussian interpolation. The results show that they are almost 

identical in terms of contrast-to-noise ratio performance, but bilinear interpolation has 

lower computational complexity.  

1.4 Thesis report organization 

The report is organized as follows: Doppler processing is described and the two 

competing schemes (CVE and DVE) are presented and their performance compared in 

Chapter 2. In Chapter 3, the different backend processing blocks are described. Chapter 4 

concludes the report.  
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CHAPTER 2  

DOPPLER PROCESSING 

In clinical diagnosis, color flow imaging (CFI) based on Doppler Processing is quite 

popular. This imaging modality is effective in locating stenosis and occlusion and helps 

in the prevention of medical conditions such as stroke. In CFI, the velocity estimates in a 

region of interest are color coded and displayed. Sometimes, the CFI image is imposed on 

a B-mode image for display.  

Current Doppler processing systems make use of pulsed waves. Multiple pulses 

are periodically transmitted in the same direction, and the blood velocity is estimated by 

measuring the phase shift between the received signals [1] or the movement of the 

scatterers over time [10].  

A Doppler processing system can be built using both a linear array system [10] 

and a synthetic aperture system [11]. A linear array system is considered here since it has 

lower power requirement. In this system, the transducer elements are steered and focused 

during both transmit and receive. For each transmit and receive, delay-sum based 

beamforming is done as in B-mode imaging. The beamformed data is then used to 

estimate the velocity information.  

Although similar to B-mode imaging in many ways, Doppler processing is more 

technically demanding. Doppler processing is typically used to measure blood flow, 

which has several orders smaller magnitude of backscattered signals compared to the 

surrounding tissues, resulting in lower SNR. Theoretically, the velocity can be estimated 

from only two transmissions. However, due to the stochastic nature of the echoes from 
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blood, more transmissions are used to generate good estimates in practice. As a result, 

CFI is usually done for only a part of the B-mode image. 

Although our final goal is to measure more complex blood flow, in this work, 

several assumptions are made to simplify the velocity estimation problem. First, we 

assume the blood flow is laminar with a parabolic profile. Second, we assume that the 

blood flow is steady between transmissions. Last, we assume that the beam to vessel 

angle is known from the B-mode image.  

2.1 Conventional Velocity Estimation (CVE) 

2.1.1 Basic Method 

Conventional Velocity Estimation is based on estimating the phase shifts between 

subsequent transmissions. Its firing scheme is the same as the linear array system in B-

mode imaging. The block diagram for CVE [1] is shown in Figure 2.1.  

 

Figure 2.1 Block Diagram of CVE (adapted from [1]) 
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Figure 2.2 Beamforming along scan line in CVE 

After A/D conversion, beamformation is done along the scan line as shown in 

Figure 2.2. This is the same as B-mode imaging and so no additional effort is required to 

do this stage. Next, demodulation is done to get the in-phase and quadrature phase 

signals. Quadrature demodulation is typically used for Doppler processing. The velocity 

estimation in this method is first done in the beam direction and then projected onto the 

flow direction. In the method in [10], first stationary echo canceling is done to isolate the 

stationary component from the blood flow component. This is done by subtracting the 

stationary signal, calculated using the mean of the signals from 16 firings, from the 

beamformed signal. In contrast, in [12], the stationary echo canceling is done by 

subtracting the beamformed results of successive firings. We tried both methods and 

found that echo canceling based on averaging the signals from all firings do not improve 
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the performance so the simulations presented here are based on echo canceling based on 

the results of consecutive firings. The modified beamformed signal Ὣ ὼ  is then used to 

compute velocity using Kasaiôs auto correlation method.  

For CVE, the velocity estimation is related to the phase change between 

consecutive received signals. If the blood flow velocity is denoted by ὺ, the pulse 

repetition interval is denoted by ὸ , and the angle between the beam and flow is —, then 

the displacement in the beam direction between successive transmissions is Ўᾀ

ὺÃÏÓ—ὸ . Thus, the delay between two successive received signals is given by 

Ў†
Ў

ὸ  and ὺ
Ў

 . If the velocity of the blood flow is assumed 

constant during the pulse repetition interval, the delay can also be expressed in terms of 

phase shift Ў• as: Ў† Ў•Ⱦς“Ὢ and the velocity estimate is given by 

ὺ Ў•                                                             (2.1) 

The phase shift Ў• can be estimated by computing the correlation between the signals of 

two successive transmissions. If more than two transmissions are used for a single scan 

line, the average of the correlation results is taken and then the phase change is obtained 

from the complex signal. If ὔ is the number of transmissions per scan line, the estimated 

velocity is given by 

ὺ ÔÁÎ
В ᶻ

В ᶻ
                              (2.2) 

While this method is fairly simple to implement, its performance is quite poor when the 

beam to flow angle is close to 90 degrees. This can also be seen from equation (2.2) 

which shows that ὺθ ὪρÃÏÓ—ϳ . 
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2.1.2 Computational complexity 

Table 2.1 describes the parameters to characterize our system. These include ὔ, the 

number of transmissions per estimation; ὔ , the number of active elements; ὔ , the 

number of points for estimation on one scan line; ὔ , the number of focal points on one 

scan line. Additional parameters Ὑ  and ὒ  are related to computing the cross 

correlation function in DVE and will be explained in section 2.2. 

Name Description CVE DVE 

ὔ Number of transmissions per estimation 16 8 

ὔ  Number of active elements 64 64 

ὔ  Number of points for estimation on one scan line 50 50 

ὔ  Number of focal points on one scan line 1000 _ 

Ὑ  
Range of searching the maximum in cross correlation 

function 
_ 10 

ὒ  Number of samples for cross correlation _ 200 

Table 2.1 System parameters 

Table 2.2 describes the computational complexity in terms of number of 

multiplications, additions and divisions. As in B-mode imaging, the beamforming part 

costs the most in terms of the number of computations. Velocity estimation requires 

divisions which are also costly in terms of hardware implementation. 
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 Multiplication Addition Division 

Beamforming 
ὔ ὔz ὔz ὨὩὰὥώίόά 

ςȟπτψȟπππὨὩὰὥώίόά 

Stationary echo canceling  
ὔ ρ ὔz  

χυπ 
 

Demodulation 
ςz ὔ ὔz 

σςπππ 
_ _ 

Velocity estimation 
τz ὔ ὔz 

σςππ 

σz ὔ ὔz 

ςτππ 

ὔ  

υπ 

Table 2.2 Computational complexity of CVE 

2.2 Directional Velocity Estimation (DVE) 

2.2.1 Basic method 

DVE was proposed by Jensen in [10], to enable velocity estimation when the beam to 

flow angle is around 90 degrees. Unlike CVE, beamformation in DVE is done along the 

flow direction for a given depth within the vessel, as shown in Figure 2.4. The 

beamformed data is then used to estimate the velocity from the displacement of scatterers 

divided by the time between transmissions. Similar to CVE, the angle between beam and 

flow direction is assumed to be known from the B-mode image. The block diagram of the 

method in [10] is shown in Figure 2.3. 
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Figure 2.3 Block Diagram of DVE (adapted from [10]) 

To describe beamformation along a flow line, we introduce a coordinate system 

which is aligned along the flow direction as shown in Figure 2.5. The coordinate axes 

marked as xô and zô are placed at the center of the vessel; here the xô axis is parallel to the 

flow direction. The relation between the two coordinate systems is  

      ὼ ὼÓÉÎ—Ƞ ώ ώȠ ᾀ ᾀÃÏÓ— ᾀ                                  (2.3) 

where ᾀ is the offset between the origins of the two coordinate systems.  

While the beamformation is done along the flow line, the focusing scheme is the 

same as in CVE. Assuming ὼ is the coordinate of the receive element, the delay for each 

focal point can be calculated by the round trip propagation distance of the wave divided 

by the speed of the sound, given as 

† Ὑ Ὑ Ⱦὧ                                                          (2.4) 
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Figure 2.4 Beamforming along flow line in DVE 

where Ὑ and Ὑ are the receive and transmit distance for each point to be beamformed. 

Ὑ and Ὑ can be expressed as 

Ὑ ᾀ ὼÃÏÓ— ὼ ὼÓÉÎ—                                (2.5) 

Ὑ ᾀ ὼ ςᾀ ὼzÃÏÓ—                                         (2.6) 

Unlike CVE, demodulation is not needed for DVE, the RF data is directly used 

for the velocity estimation. As in CVE, we found that echo canceling based on averaging 

the signals from all firings do not improve the performance so the simulations presented 

here are based on echo canceling based on the results of the subtraction of two 

consecutive firings. Assuming that the first signal along the flow direction is Ὣ ὼ , and 
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the second signal obtained after a pulse repetition interval Ὕ is Ὣ ὼ , the relation 

between the two signals is given by: 

Ὣ ὼ Ὣ ὼ ὺ Ὕ                                                      (2.7) 

where ὺ  is the velocity in flow direction. Since the signals are discrete, the cross 

correlation signal is given by 

Ὑ Ὧ В Ὣ ὼὫ ὼ Ὧ                                       (2.8) 

where ὒ  denotes the number of signal samples used for cross correlation. Since Ὣ ὼ  

and Ὣ ὼ  are related (see equation 2.9), the cross correlation function in equation (2.10) 

becomes an autocorrelation function, expressed as Ὑ Ὧ ὺ Ὕ . The autocorrelation 

function has a global maximum at zero. Therefore, the position Ὧ, corresponding to the 

maximum value of the cross correlation function, is an estimate of the displacement. The 

velocity of the scatterers is then given by ὺ .  
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Figure 2.5 Illustration of delay calculations in DVE 

Estimating the displacement based on cross correlation function is done for each 

pair of signals from two successive transmissions and the average of the results is 

reported. The searching range for the global maximum depends on the estimated 

maximum velocity. A smaller range not only reduces the computational complexity but 

also avoids false peaks [10].  

The estimation of Ὧ is not accurate due to low spatial sampling rate. Figure 2.6 

shows a scenario where the sampling is not dense enough and so the real peak is not 

identified. Again, increasing the spatial sampling rate leads to higher computational 

complexity for beamforming part and is not desirable.  
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Figure 2.6 Need for correction in DVE 

A correction method has been proposed in [10], based on quadrature interpolation 

method:  

Ὧ Ὧ                                      (2.9) 

where Ὑ  is the cross correlation function defined in equation (2.8). Ὧ  is then used to 

find the displacement of scatterers which is then used to find the estimated velocity. If the 

displacement in terms of samples is denoted by S, and the spatial distance between two 

sampling points along the flow line is denoted as Ὠὼ, the estimated velocity is then given 

by ὺ
ᶻ

. 

2.2.2 Computational complexity 

The parameters to characterize our DVE system were given in Table 2.1. Table 2.3 

describes the computational complexity of this method. Compared to the computational 

complexity of CVE system (Table 2.2), DVE system is more expensive in terms of 

hardware cost. For instance, for the most computationally complex blockðbeamforming, 
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DVE requires 5 times more delay-sum operations than CVE. DVE also requires more 

divisions than CVE. In the next section, we describe approximation techniques to remove 

the square root operation in delay calculations [3], using Taylor expansion. Techniques to 

remove divisions in the correction block will also be described. 

 Multiplication Addition Division 

Beamforming 
ὒ ὔz ὔz ὔz ὨὩὰὥώίόά  

ρπȟςτπȟπππὨὩὰὥώίόά 

Stationary echo 

canceling 
 

ὔ ρ ὔz  

συπ 
 

Cross correlation 
Ὑ ὒz ὔz ὔz 

ψππȟπππ 

Ὑ ὒz ὔz ὔz 

=ψππȟπππ 
_ 

Correction _ 
τz ὔ ὔz 

ρφππ 

ὔ ὔz 

τππ 

Table 2.3 Computational complexity of DVE 

2.2.3 Techniques to reduce complexity 

Delay calculations involve square root operations which are very expensive so we 

approximate the square root calculation by Taylor expansion around ὼ ὼÓÉÎ—: 

Ὑ ὪὼÓÉÎ— Ὢ ὼᴂÓÉÎ— ὼ ὼÓÉÎ—
Ὢ ὼ ὼ ὼÓÉÎ—

ς
Ễ 

If only the first three terms are taken for simplification, we have: 

Ὑ ᾀ ὼÃÏÓ—
ρ

ςᾀ ὼÃÏÓ—
ὼ ὼÓÉÎ—  

Since ᾀḻὼÃÏÓ—, we can further simplify this as: 

Ὑ ᾀ ὼÃÏÓ—
Ⱦ

ὼ ὼÓÉÎ—                       (2.10) 
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Similarly, for the transmission delay calculation (equation 2.7), Taylor expansion is done 

around ὼ π: 

Ὑ ᾀ ὼÃÏÓ— ὼÓÉÎ— ςᾀϳ                                      (2.11) 

The performance penalty of both these approximations will be examined in the next 

section. 

Division is another computationally expensive operation that occurs in the 

correction method of [10] as seen in equation (2.9). To remove division without affecting 

the performance too much, FIR interpolation filter is introduced. Specifically, we utilize 

Lagrange interpolation filter which is widely used in digital-to-analog converters and 

image processing. We design the second order Lagrange interpolation filter using 

MATLAB . Zeros are added between the samples based on the interpolation factor, and 

convolution is done between the zero padded signal and the Lagrange interpolation filter.  

Figure 2.7 shows the results using a second order Lagrange interpolation filter with 

interpolation factor of 5. This method helps identify a more accurate peak position. The 

interpolation factor can be selected to meet different requirements of accuracy. For 

instance, a larger interpolation factor is needed when the beam to flow angle is large. 
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Figure 2.7 Lagrange interpolation 

The proposed approximation methods remove the square root and division operations at 

the expense of additional multiplications and additions. Table 2.4 summarizes the 

computations needed with and without approximations. For delay calculations of each 

focal point, including transmit and receive, it costs 3 more multiplications and 1 more 

addition to avoid a square root operation. For the correction module, a division is 

replaced by 24 multiplications and 12 additions if we use a second order Lagrange 

interpolation filter with interpolation factor of 5.  
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 Without approximations With approximations 

 Mult Add Sqrt Div Mult Add Sqrt Div 

Delay calculations 7 5 2 0 10 6 0 0 

Correction 0 4 0 1 24 16 0 0 

Table 2.4 Extra computations to implement the approximation methods (per operation) 

2.3 Simulation results 

The performance of CVE and DVE based methods has been investigated using Field II 

program [22][23][24]. The simulations are done for a single scanline. Since linear array 

system is used for both methods, the estimation results on a single scanline is 

representative of the performance of the two methods.  

Assuming the flow is laminar and parabolic, the velocity profile is expressed as:  

ὺὶ ὺ ρ ,                                                    (2.8) 

where r is the radial distance from the center line of the vessel, ὺis the peak velocity and 

R is the vessel radius. The scatterers are propagated during the pulse repetition interval 

based on the velocity profile. Most of the simulation results are for beam to flow angle of 

45 degrees though we do consider larger beam to flow angles in the end. 

Typical simulation parameters are shown in Table 2.5. For both CVE and DVE, 

the velocity estimates are made on the center scanline; the distance between two estimate 

points is 0.5 mm. The estimated velocity is then compared to the true velocity to measure 

the performance of estimation. We use root mean square error defined as: ὙὓὛὉ

В ὺ Ὥ ὺ Ὥ, where ὺ Ὥ and ὺ Ὥ are the true velocity and the 

estimated velocity of the Ὥth estimate points respectively, and ὔ  is the number of 
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estimate points along a scanline as described in Table 2.1. Smaller RMSE indicate better 

estimation. Maximum error is also reported in order to identify the outliers which could 

result in mis-diagnosis. 

Name Description Value 

Ὢ Transducer center frequency 4 MHz 

ὧ Speed of sound 1540 m/s 

‗ ὧȾὪ Wavelength 0.385 mm 

ὴ ‗ Pitch of transducer element 0.385 mm 

Ὤ Height of transducer element 5 mm 

ύ πȢωυ‗ Width of transducer element 0.368 mm 

ὔ  Number of active elements 64 

ὔ Number of transmissions per estimation 8 

Ὢ Sampling frequency 120 MHz 

Ὢ  Pulse repetition frequency 10 kHz 

Ὑ Radius of vessel 10 mm 

ὺ Peak velocity of flow 1 m/s 

Table 2.5 Common parameters for both CVE and DVE 

2.3.1 Comparison between CVE and DVE 

Figure 2.8 shows the estimation results for both CVE and DVE, for a system with 64 

active transducer elements and beam to flow angle of 45 degrees. No approximation 

techniques are used for DVE here. It is obvious that DVE gives more accurate estimation 
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than CVE. The RMSE and maximum error are shown in Table 2.6. We see that the 

RMSE of DVE is about 20% of that of CVE.  

 CVE 

(64 elements) 

DVE 

(64 elements) 

DVE 

(128 elements) 

Maximum error (m/s) 0.3502 0.0539 0.0556 

RMSE (m/s) 0.1138 0.0257 0.0289 

Table 2.6 Performance of CVE and DVE 

 

                              (a)                                                                (b) 

Figure 2.8 Estimation results and the true velocity for (a) CVE (b) DVE 

 

                                    (a)                                                                   (b)    
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Figure 2.9 Estimation results and the true velocity for (a) DVE with 64 active elements 

(b) DVE with 128 active elements 

2.3.2 Effect of number of active transducer elements in DVE 

Typically, the number of active transducer elements in a linear array is either 64 or 128. 

Since a larger number of transducers increase the power consumption significantly, we 

compared the performance of a 64 element array with a 128 element array. Figure 2.9 

shows that there is no obvious difference between the performance of the two systems. 

The RMSE and maximum error measurements tell the same conclusion. Since 64 element 

system consumes about half the transmission power compared to 128 element system, it 

is clearly a better choice. 

2.3.3 Effect of correction in DVE 

Here we test the performance of Lagrange interpolation filter as a substitute of the 

quadrature correction method proposed in [10]. Four cases are investigated: 

Case 1: DVE with no correction 

Case 2: DVE with quadratic correction 

Case 3: DVE with Lagrange interpolation with interpolation factor of 5 

Case 4: DVE with Lagrange interpolation with interpolation factor of 9  

From Figure 2.10 and Table 2.7, we see that the estimation results are close enough to the 

true velocity except for the one without correction. Lagrange interpolation filter proves to 

be a good substitute for the correction method proposed in [10]. The performance of 

interpolation factor of 5 is almost as good as that of interpolation factor of 9, with smaller 

computational cost.  
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 No correction Quadratic 

correction 

Lagrange with 

factor of 5 

Lagrange with 

factor of 9 

Maximum error 

(m/s) 
0.2800 0.0539 0.0968 0.0502 

RMSE (m/s) 0.1612 0.0257 0.0330 0.0302 

Table 2.7 Performance of correction methods 

 

                              (a)                                                                  (b) 

 

                              (c)                                                                  (d)    

Figure 2.10 Simulation results for different correction methods (a) no correction; (b) 

quadratic correction; (c) Lagrange interpolation with factor of 5; (d) Lagrange 

interpolation with factor of 9.  

 



26 

2.3.4 Effect of approximations in delay calculations for DVE 

Figure 2.11 shows the simulation results using the Taylor expansion approximations for 

delay calculation. Note that interpolation filter with a factor of 5 is used for correction 

here. The RMSE is 0.0385 and the maximum error is 0.0683, which are almost identical 

to the results without approximation.  

 

Figure 2.11 Velocity estimation performance with approximations in delay calculations 

2.3.5 Effect of number of firings 

We observe that the difference between the velocity estimation of successive firings of a 

DVE system is small. Therefore, it is possible to maintain the performance with fewer 

firings in one direction. We investigate two scenarios: 3 firings and 8 firings, with beam-

flow angle of 45 degrees. The interpolation factor for both scenarios is 9. Figure 2.12 and 

Table 2.8 shows the estimation results, which suggest that the performance loss is very 

small with less number of firings. Less firings results in fewer computations and 

improves frame rate. However, a system based on fewer firings could be susceptible to 

noise. Therefore, next we investigate the effect of noise on the performance of our 

system.  
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                                  (a)                                                                  (b) 

Figure 2.12 (a) 3 firings in one direction (b) 8 firings in one direction 

 3 firings 8 firings 

Maximum error (m/s) 0.0902 0.0683 

RMSE (m/s) 0.0393 0.0385 

Table 2.8 Effect of number of firings 

2.3.6 Effect of noise 

We investigate two scenarios, one with 3 firings and one with 8 firings; the other system 

settings are the same. White noise is inserted before the beamformation. Three SNR 

configurations are considered: 23 dB, 13 dB and 3 dB. The results are shown in Figure 

2.13, Figure 2.15 and Table 2.9. In all cases, we see that estimations with 3 firings are 

slightly worse than those with 8 firings. But considering the reduction in computational 

complexity, a system with 3 firings is worth pursuing. Noise did not affect the 

performance very much unless it has almost the same magnitude with the signal (in the 

case when SNR = 3 dB). 
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                                  (a)                                                                  (b) 

Figure 2.13 Velocity estimation with SNR = 23 dB (a) 3 firings (b) 8 firings 

 
                                  (a)                                                                  (b) 

Figure 2.14 Velocity estimation with SNR = 13 dB (a) 3 firings (b) 8 firings 

 

                                  (a)                                                                  (b) 

Figure 2.15 Velocity estimation with SNR = 3 dB (a) 3 firings (b) 8 firings 
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 SNR = 23 dB SNR = 13dB SNR = 3 dB 

 3 firings 8 firings 3 firings 8 firings 3 firings 8 firings 

Maximum error 0.0683 0.0514 0.0865 0.0668 0.3889 0.3987 

RMSE 0.0342 0.0321 0.0396 0.0365 0.1443 0.1114 

Table 2.9 Effect of noise on velocity estimation performance 

2.3.7 Results with different beam to flow angles 

In this section, beam to flow angle of 60 degrees and 75 degrees are investigated. From 

Figure 2.16 and Figure 2.17, it is obvious that with the increase of the beam to flow 

angle, the estimation performance degrades severely for CVE, while DVE still provides 

accurate estimations. In CVE, this is because when the beam to flow angle increases, the 

velocity component on beam axis becomes smaller and thus harder to detect. For large 

beam to flow angles, a larger interpolation factor is necessary. These simulation results 

are based on interpolation factor of 9. In DVE, for beam to flow angle of 60 degrees, 

RMSE is 0.0393 and standard deviation is 0.0669. For beam to flow angle of 75 degrees, 

RMSE is 0.0700 and standard deviation is 0.1222. 

 

                                    (a)                                                                (b) 

Figure 2.16 Results for beam to flow angle 60 degree for (a) CVE (b) DVE 



30 

 

                             (a)                                                                   (b) 

Figure 2.17 Results for beam to flow angle 75 degree for (a) CVE (b) DVE 

 

2.4 Conclusion 

We investigated the performance of CVE and DVE for estimating velocity. CVE 

provides acceptable estimation results when the beam-flow angle is 45 degrees, while 

DVE generally gives accurate estimation results when the beam-flow angle is 45 degrees 

and acceptable results when the beam-flow angle is 60 or 75 degrees, at the cost of higher 

computational complexity. A direct implementation of DVE includes division and square 

root operations, which are very expensive in terms of hardware cost. Therefore, 

techniques to remove those operations are described and implemented with small extra 

cost. We find that the estimation accuracy is hardly affected by the approximation 

techniques. We can even use fewer firings than the typical 8 firings in DVE. The 

performance of 3 firings is comparable to that of 8 firings, with or without inserted noise. 

With larger beam to flow angle, DVE can still provide valid estimation results. However, 

the interpolation factor needs to be larger to ensure reasonable performance.  
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CHAPTER 3  

BACKEND PROCESSING 

Backend processing is done after the acquisition of the beamformed radio frequency data 

(RF-data). For B-mode imaging, backend processing generally consists of envelope 

detection, log compression and scan conversion, as shown in Figure 3.1. In this chapter, 

all three blocks are described and their computational complexity and performance trade-

offs are analyzed.  

 

Figure 3.1 Block diagram of backend processing (adapted from [3]) 

3.1 Envelope Detection 

The RF-data acquired after beamforming are oscillating signals with a limited bandwidth 

and no DC component. The envelope of the RF-data represents the low-frequency 

variation due to the different scattering properties of the tissue structures. The envelope 

can be ideally detected using the Hilbert Transform (HT) followed by computation of the 

magnitude of the complex signals [13]. For a discrete beamformed signal ὶὲ, the HT 

acts as an ideal 90-degree phase shifter, which provides the imaginary term ὶ ὲin the 

analytic representation of the signal, given by ὶὲ ὶὲ Ὦὶ ὲ. The envelope 

Ὁὲ is then obtained by computing the magnitude of ὶὲ:  

Ὁὲ ὶ ὲ ὶ ὲ                                             (3.1) 
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There are several techniques for envelope detection. These include FFT based Hilbert 

Transform [14], FIR based Hilbert Transform and Quadrature demodulation [15].  

3.1.1 Computing the analytic signal using FFT 

The Fourier Transform of a real-valued signal is complex symmetric. By removing the 

negative frequency of the spectrum, we can obtain the analytic representation of the 

signal [14].  For the RF data acquired, we can replace the FFT coefficients corresponding 

to negative frequencies with zeros and then implement inverse FFT, as described in 

Figure 3.2. The envelope of the signal is then found by computing the magnitude of the 

analytic signal. 

 

Figure 3.2 Computing the discrete-time analytic signal using FFT [14] 

3.1.2 FIR based Hilbert Transform 

Hilbert Transform can also be implemented by using a FIR filter or IIR filter [17]. A 

design method of linear phase FIR Hilbert transform using eigen filter was proposed in 

[16]. Least square and minimax fitting based methods were used for FIR and IIR filter 

design in [17]. We designed the FIR based Hilbert filter using MATLAB . The imaginary 

term ὶ ὲ is obtained after filtering. The envelope can be computed using equation 

(3.1). The block diagram of this method is shown in Figure 3.3. 
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Figure 3.3 Block diagram for FIR based Hilbert Transform 

3.1.3 Quadrature Demodulation 

Quadrature demodulation generates the in-phase and quadrature components by 

multiplying with sine and cosine carriers followed by low pass filtering. Let I(n) and Q(n) 

be the in-phase and quadrature components. Assume that the carrier frequency ‫  is 

known and does not vary with time. Then the envelope is obtained by: 

Ὁὲ Ὅὲ ὗ ὲ                                           (3-2) 

The block diagram of this method is shown in Figure 3.4, where Ὕ is the sampling 

period. 

 

Figure 3.4 Block Diagram for Quadrature Demodulation (adapted from [15]) 
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3.1.4 Simulation results  

Simulations are done for a randomly selected scanline of a synthetic aperture system for 

all three methods: FFT based Hilbert Transform, FIR based Hilbert Transform and 

quadrature demodulation. The parameters of the synthetic aperture system are described 

in Table 3.1. The simulation results are shown in Figure 3.5. The dashed line is the 

original signal and the others are the envelopes detected by the three methods. In this 

figure, 100 successive samples of the original signal and the detected envelopes are 

shown to have a clear display. 

 

Figure 3.5 Envelope detection performance comparisons 

The results of these three methods are almost identical, as shown in Figure 3.5. If the FFT 

based Hilbert transform method is considered ideal, we can calculate the RMSE of the 
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other two methods with respect to it. Accordingly, the FIR based Hilbert transform 

method has an RMSE of 0.0097 and the quadrature demodulation based method has an 

RMSE of 0.0076.  

Name Description Value 

N Number of receiving elements 128 

M Number of transmission elements and number of transmission 32 

B 6dB bandwidth of transducer 4 MHz 

fs A/D sampling frequency 40 MHz 

fsô Sampling frequency after interpolation 120 MHz 

c Speed of sound in body tissue 1540 m/s 

R Number of focal points in one scanline 3117 

Q Number of scanline in one image 200 

—  Angle range of the image 45 degrees 

Table 3.1 Parameter definitions and values for synthetic aperture based imaging system 

3.1.5 Computational complexity 

Assume R is the number of samples of the RF data. For the FFT based Hilbert 

Transform method, an FFT and an inverse FFT are needed. The FFT is computed for N 

samples, where N is the next power of 2 of R. Thus, the complexity of this part will be in 

the order of 2*log(N)*N. Since log compression is done after taking the absolute value, 

the square root part can be avoided. Therefore, we only need 2*R multiplications, R 

additions, to obtain the magnitude of the signals.  

For the FIR based Hilbert Transform method, if the order of the FIR filter is ὑ , 

ὑ Ὑz multiplications and additions are needed for filtering. Another ςz Ὑ 

multiplications and Ὑ additions are needed to calculate the magnitude of the signals.  
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For the quadrature demodulation based method, ςz Ὑ multiplications are needed 

to acquire the in-phase and quadrature components. Since the signals are shifted on base 

band, the Nyquist sampling rate is lower and thus we can downsample the signal by a 

factor of 5 to save computations. Assume the lowpass filter has an order of ὑ,              

ςz ὑ ὙzȾυ multiplications and additions are needed for the filtering. Another ςz ὙȾυ 

multiplications and ὙȾυ additions are needed to calculate the magnitude of the signals.  

In this work, simulations are done with R of 3117, ὑ  of 14, and ὑ of 26. ὑ  and 

ὑ are selected according to the performance requirement. For the proposed simulation 

setup, FFT based method requires about 105k multiplications, FIR based method requires 

about 50k multiplications, and quadrature demodulation requires about 40k 

multiplications. We see that FFT based Hilbert transform method is more 

computationally expensive and thus not preferred in our system. FIR based Hilbert 

transform method is close enough to FFT based Hilbert transform method and has 

number of computations comparable with quadrature demodulation. However, the phase 

information is lost if FIR based Hilbert transform method is used for envelope detection. 

Quadrature demodulation also provides accurate results and keeps the phase information 

in the in-phase and quadrature components of the signal. Therefore we choose to use 

quadrature demodulation as the envelope detection method in our system when phase 

information is necessary and we choose to use FIR based Hilbert transform method when 

phase information is not needed. 
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3.2 Log compression 

Considering 256 gray levels, the dynamic range of human eyes is in the order of 30dB 

[3]. To display the B-mode image, a log compression is necessary in order to provide 

more detailed information for lower magnitude data. Log compression is generally done 

by first dividing the magnitude obtained from envelope detection by a fixed number 

(predetermined based on the expected maximum magnitude possible), and then adjusting 

the values with a threshold operator based on the actual dynamic range. Typically, the 

dynamic range used in B-mode ultrasound image is 40dB or 60dB, depending on the 

accuracy requirement [3]. This block is typically implemented by a look-up table. 

3.3 Scan conversion 

The scan lines from a phased array or synthetic aperture system are often in the polar-

coordinate system. In order to display the image on a regular screen, which is under the 

Cartesian-coordinate system, we need scan conversion. To translate the input data under 

polar-coordinate system into the output data under Cartesian-coordinate system, 

interpolation is needed. In this section, two different methods for interpolation are 

described and the trade-offs analyzed. 
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Figure 3.6 Interpolation in scan conversion 

Let ὶȟ— be the coordinates of the pixel whose intensity will be determined by the 

intensities of its four neighboring pixels whose coordinates are ὶȟ— ȟὶȟ— ȟ  

ὶ ȟ— ȟὶ ȟ— . Figure 3.6 describes the above configuration, which 

corresponds to an interpolation window of size 2×2. The intensity of pixel at ὶȟ— is 

given by:  

Ὅὶȟ— ὃ Ὅzὶȟ— ὄ Ὅzὶȟ— ὅ Ὅzὶ ȟ— Ὀ Ὅzὶ ȟ—       (3-3) 

where A, B, C and D are the weighting coefficients of the four neighboring pixels. The 

calculation of the weighting coefficients is related to the normalized geometric distance 

between input and output data. For instance, the normalized distances from point ὶȟ—  

to point ὶȟ— can be computed as: 

                                                        Ὀ
ȿ ȿ

Ў
  

Ὀ
ȿ ȿ

Ў
                                                             (3-4) 

where Ўὶ ȿὶ ὶȿ, and Ў— ȿ— —ȿ. 
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3.3.1 Bilinear Interpolation 

Bilinear interpolation is commonly used as the method for polar-Cartesian coordinate 

conversion because of its relatively low computational complexity. The weighting 

coefficients are calculated based on the product of the normalized distances along 

ὶ ὥὲὨ — [19]. For example, weight A is given by 
ȿ ȿ

Ў
ᶻ
ȿ ȿ

Ў
, weight B is given by 

ȿ ȿ

Ў
ᶻ
ȿ ȿ

Ў
 and so on. 

3.3.2 Gaussian Interpolation 

The weighting coefficients in Gaussian interpolation are chosen according to the 

Gaussian function. For instance, the weighting coefficient A can be expressed as: 

ὃ Ὡὼὴ                                                 (3-6) 

where Ὀ ὥὲὨ Ὀ  are defined by equation (3.4) and „and „are the standard deviations 

of corresponding dimensions [20].  

3.3.3 CNR calculation 

In order to compare the performance of the two interpolation methods, we use Contrast-

to-noise ratio (CNR) as the performance metric. The CNR is calculated after envelope 

detection and log compression. We analyze the performance of the different schemes 

using a cyst image. The CNR is given by 

ὅὔὙ
ȿ ȿ

                                              (3-7) 

where cyst is the black area without scatterers in the center and background is the area 

surrounding it, as shown in Figure 3.7. The mean ‘ and standard deviation „ are 

calculated for the cyst and the background [21]. In this work, the background area is 
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considered as the ring area with three times larger radius than the cyst. However, in order 

to avoid the fuzzy area near the cyst-background boundary, we consider 10%, 20% or 

30% smaller radius of the cyst. The corresponding CNRs are named CNR1, CNR2, 

CNR3, as shown in Figure 3.7. 

3.3.4 Simulation results 

The simulations are done with MATLAB R2012a, and the Field II simulation platform 

[22][23][24]. The cyst is at a depth of 60 mm, and has a radius of 5 mm. The phantoms 

around the cyst consist of 20,000 random scatterers. Synthetic aperture with 32 

transmissions and 128 receive elements is used. The dynamic range is 60 dB. Other 

system parameters were described in Table 3.1 [7]. After the acquisition of the 

beamformed data, multiple scan conversion settings are tested on the same data for 

fairness of comparison. An example of the displayed image is shown in Figure 3.8. 

 

Figure 3.7 CNR calculation 
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Figure 3.8 Resultant image after scan conversion 

3.3.4.1 Analysis on „ 

For Gaussian interpolation, „ needs to be carefully selected in order to produce 

reasonable results. Since the distances from the input data points to the point to be 

interpolated at the center are normalized, „ for both dimensions should be the same. 

Therefore, in this section, only one „ will be discussed. Figure 3.9 shows a parametric 

analysis of „ based on CNR performance. 
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Figure 3.9 Analysis of CNR as a function of standard deviation 

We can see there is a local minimum of „ at 0.44. Even though we can achieve the same 

CNR when „ is larger than 5, we do not consider it. This is because a large „ makes the 

Gaussian interpolation approximately equivalent to taking the average of the neighboring 

pixels and is not effective when the pixels are far apart.  

3.3.4.2 Analysis on window size 

Earlier, the interpolation schemes for window size 2×2 have been described. Larger 

window sizes have the potential of providing better results since more information is 

taken into consideration. First we investigate the scenario with 200 scanlines and 3117 

samples on each scanline. The other system parameters are described in Table 3.1. 

Bilinear interpolation and Gaussian interpolation with different window sizes are used for 

scan conversion in both scenarios. The resultant figures after scan conversion are shown 

in Figure 3.10. The CNR performance results are shown in Table 3.2. 
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  Bilinear interpolation Gaussian interpolation 

Window size 

2×2 

CNR1 2.06 2.06 

CNR2 3.08 3.09 

CNR3 4.68 4.68 

Window size 

4×4 

CNR1 

-- 

2.06 

CNR2 3.08 

CNR3 4.67 

Table 3.2 CNR results for different interpolation methods and different window sizes, 

when there are 200 scanlines and 3117 samples on each scanline. 

 

  Bilinear interpolation Gaussian interpolation 

Window size 

2×2 

CNR1 2.08 2.08 

CNR2 3.14 3.15 

CNR3 4.89 4.90 

Window size 

4×4 

CNR1 

-- 

2.09 

CNR2 3.15 

CNR3 4.92 

Table 3.3 CNR results for different interpolation methods and different window sizes, 

when there are 100 scanlines and 623 samples on each scanline. 
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                                                                      (a)                                      

 

                                     (b)                                                                 (c) 

Figure 3.10 Comparison of the interpolation performance with (a) window size 2×2; 

bilinear interpolation (b) window size 2×2; Gaussian interpolation (c) window size 4×4; 

Gaussian interpolation, when there are 200 scanlines and 3117 samples on each scanline. 

 

We see that both interpolation methods are sufficient in terms of performance. 

Window size 4×4 of Gaussian interpolation provides slightly better CNR values but 

requires about 4 times more computations than window size 2×2.  

Next we repeat this experiment for a scenario with 100 scanlines and 623 samples 

on each scanline. Table 3.3 presents the CNR results for this scenario. We see that in this 

case a 4×4 window results in a minor improvement in the CNR value. Our overall 


















