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ABSTRACT

Ultrasoundimagingis one of the major medical imagimgodalities It is cheap,
norrinvasiveandhas lowpower consumptionDoppler processing is amportantpart of
manyultrasound imaging systenlt is used t@rovide blood velocity informatioand is
built on top of Bmode systemsWe investigate the performance of two velocity
estimation schemesgsed in Doppler processing systemsmely directional velocity
estimation (DVE) and conventional velocity estimation (CVBJe find that DVE
provides better estimation performanaed is the only dnctioning method when the
beam toflow angle is largeUnfortunately, DVE is computationally expensive and also
requires divisions and square root operatitias are hard to implemerwe propose two
approximation techniques teplace theseomputations. The simulation resutis cyst
images showvthat theproposedapproximations do not affect the estimation performance.

We also studybaclend processingvhich includes envelope detection, log
compression andcan conversionThree different envelope detection methods are
compared. Among them, FIR based HitbBransform is considered the best choice when
phase information is not needed, {ghguadrature demodulation ishetter choice if
phase information is necessary. Bilinear and Gaussian interpolation are considered for
scan conversion hroughsimulationsof a cyst imagewe show thabilinear interpolatn
provides comparable contrastnoise ratio (CNR) performance with Gaussian
interpolation and has lower computational complexity. Thus, bilinear interpolation is

chosen for our system.
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CHAPTER 1

INTRODUCTION
Medical ultrasound imaging habeen used in clinical diagnosis for many years.
Compared to computed tomography (CT) and magnetic resonance imaging (MRI),
ultrasoun imaging has a longer historgnd yet it iswidely usedbecause itd non
invasive,safeand cheapl]. It alsoprovides high-resolution image that aresufficient for
many clinical applications, such as general abdominal imaaalgcolor flow inaging
[2].

Almost all the ultrasound imaging systems todaye based on pulsecho
imaging.A sound wave is transmitted by a handheld transducer into the body. The wave
is echoed by the tissue and blood, with part of the transmitted en¢ugyimg back to
the transducej2]. The echoes are detected and then processed to obtain information of
the scatterers (tissue or bloo@jiven the sound speed in the tissue being investigated, the
round trip déay of the sound wavean be calculateénd the echo signalsan be

distinguishedy their arrival time.

1.1 Background

The block diagram of a typical ultrasound imaging system is showigure1.1.
A transducer aay typically consists of hundred®f transducer elements. The
piezoelectric transducer elements convert electrical energy into sound energy or vice
versa.The T/R switch controls thow between the transducer and analog front end
blocks The analog frontend amplifies and filters the analog data obtained by the

transducer.The ADC/DAC translateshe analog signal into digital or vice versahe

1



digital front end does the beamforming for both transmit and recéhere are several
imaging modalities, suclas Amode, Bmode, Mmode and Color Dopplef3]. Our
system is based onBode imaging which represents the brightness of the backscattered
signals. Additionally we support Doppler processing for estimatingeteity of blood

in vesselsAt the end of the chain isaclkend processing/hich includes scan conversion

and post processing modules to help display a cl#esound image on the screen.

/ |
Tx Analog 4 | Tx
Transducer FrontEnd |[€ Dﬂ'_f Beamformer
— 3 r

|
! |
| Display
w |
Y : ! X
| | I=====""="""7
— 1 | |
N  T/R | |Beamforming | B-mode : i
N1/ Switch 1‘ control Unit | | Processing | | | |
1 | |
1‘ ! || Scan Conversion j
. : V : 1| Post Processing | !
| RxAnalog N Rx '| | Doppler || | |
" Front End ADC/ | | Beamformer | | “| Processing | | ;
S T ! b :
Digital Front End Backend Processing

Figurel.1 Ultrasound imaging system block diagréadapted fronj3])

There are generally two different kinds of ultrasound imaging systems:
Conventional ultrasound imaging systdmsed on linear arragr phased arrayand
synthetic aperture (SA) imaging systeirinear array system generatparallel image
lines which are perpendicular to the transducer gylamhile phased array system
generatesmage lines starting from the centef the transducer, steered different
angles. Both systematilize a linear array scanndar alinear array system, only part of
the transduaeelements are active duririgpnsmit and receive, while for phased array
system, all the transducer elements are ac@esventional systems acquire oineage
line at a time in sequenc&hus, the frame rate is limited by the speed of spandf

there are N image lineand the transmission depth is D, the maximum frames per second
2



(fps) is:"Qn i @) ¢OU. For instance, if we have 200 image lines &mel transmission
depth is15cm, then for soundspeedgiven by 1540m/s,the maximum fpgs 51. The
frame rate is significantlyower if 3D imaging is considered. Another disadvantage of
conventional systems is that there is only one transmit focus, whieimstieat the
samples that are not close to the transmit facasotproperlyfocused

Synthetic apertur¢SA) imaging system creas low resolution images using less
transducer elementsr each transmission and then reconstructsitye resolution imag
by addingthe low resolution imagd4]. Typically one element transmitt a time and all
elements receiveUnlike conventional imaging system, SA system creates a complete
image in everytransmission and tlsudecoupleshe number of scanlines and the frame
rate [4]. Another advantage of SA system is that dynamic focusiraghievedn both
transmission and receivampared taconventional systerwhich has a singléransmit
focus.One of the weaknesses of SA system is the loss in Bélfause less elements are
active during transmission, resulting in less signal povirs limits the penetration
depth, since wecannot increase the transngbwer too muchconsidem g pati ent s o
safety. Onesolution is to combine several elements in one transmission. Certain
apodization windowcan help defocus the transmission to emulagplreerical wavé4].
In 3D imaging subaperture poessingmethod with sparse virtual sources has been
proposed to achieve better traofés between image quality and hardware ciagt
Another solution is to use coded excitation, such as orthogonal Golay caode a
orthogonal chirp[6]. Both can improve the SNR and penetration depth significantly.

However, coded excitation method makes the system more sensitive to motion of patients



or examinersin general, SA systerovercomes the frame rate limitatioasid single

transmit focus problem at the cost of higher hardware complexity.

1.2 Problem description

The overarching goal of our research is to buiRDgportable medical ultrasound
imaging systemthat produceshigh qualiy images.The benefit of portableimaging
devices is nobnly about conveniencéhe improvement of diagnosis outcomes hegn
proved in clinical applicationd8]. 3D ultrasound imaging, compared to its 2D
courterpart, provides images that are easier to intewgthtmultiple view angles so that
technicians can locate relevant anatomy with less effortin&iges of cysts and tumors
have accurate and complete information which 2D images cannot provide. Ho@2ver,
imaging is very challenging in terms of hardware implementation. To create a 3D image,
we need to use a 2lbansducearray This means the incoming raw dataad8D system
is about 100 larger than 2D. Tmeimber offocal points in a image is also inesed
significantly, resulting in much larger power needed for signal procesHEiegproblem
is particularly challengingince we have a rather low power budget (about TW)
portability requirements

In our earlier work with University of Michigan reseahers a 3D medical
ultrasound i magi n §onicf MilbpBRed emals nlaenerd diesi gne
implemented9]. We were able to generate fullB images(50 X 50 scanlines, 4096
samples on each scanlingith 1 frame per second while staying below a system power
of 20W in 45nm technologyThe Sonic Millip3Dearchitecturecombines a massively

pipelined lardware design with 3D die stacking techniques to achiewe power



consumptior{9]. Sonic Millip3De is essentially an accelerator for the beamsum operation
in the digital front end. In this thesis we studied two additionalsuimitmake the 3D
imaging systemmore complete. These include a Doppler processing unit to astim
blood velocity and a backend processing unit to display the ultrasound image on the

screen.

1.3 Contributions

In this work, we studied the performance and computational complexityo
schemes for Doppler processintamely Conventional Velocity Estimain (CVE) [1]
and Directional Velocity Estimation (DVH)L0]. CVE is based on computing beamsum
along thescanline and estimatinfpe velocity component based on theape change of
the signals. DVEs based on computing the beamsalong the flow line and estimating
the velocity directly from the displacement of the scattef@us.results show that DVE
has better performanasompared to CVEand can handle large beam flow angles.
However, it hasigher computational complexitynd includes square root and division
operations which have a large hardware .cbst address this problemve introduced
approximation techniques, including Taylor expansion and Lagrang@atdgon filter
which replaced these operations with multiplications and additidesshowed that use
of these approximations did not affect the velocity estimation performance.

Next we studieddifferent blocks in baaknd processing, namely, envelope
detection, log compression and scan conversion. We cordpéiféerent envelope
detectionmethodsin terms ofperformance and computational complexapd came to

the conclusion that quadrature demodulation is desirable when phase information is



important andFIR based Hilbert trafgrm method works better for B-mode imaging
system Finally, we studied two interpolation methods for scan conversion, including
bilinear interpolation and Gaussian interpolation. The results show that they are almost
identical interms ofcontrastto-noise ratioperformance, but bilinear interpolation has

lower computational complexity.

1.4 Thesis report organization

The report is organized as follows: Doppiegpcessing is described atite two
competingschemeqCVE and DVE)are preentedand their performance comparad
Chapter 2. In Chapter &e differentbackend processinglocks are describe@€hapterd

concludes the report.



CHAPTER 2

DOPPLER PROCESSING
In clinical diagnosis, color flow imaging (CFl) based on Doppler Processing tis qui
popular. This imaging modality is effective in locating stenosis and occlasidhelps
in the prevention oimedical conditions such asroke. In CFl, the velocity estimates in a
regionof interestare color coded and displayed. Sometimes, the CRjaensimposed on
a B-mode image for display.

Current Doppler processingystems make use of pulsed wavdslltiple pulses
are periodically transmitteh the same directiorandthe blood velocity is estimated by
measuring the phase shift between the ivece signals[1] or the movement of the
scatterers over tim@o].

A Doppler processing system can be built uddoth a linear array systenil0]
andasynthetic aperture systefhl]. A linear array system is considered here since it has
lower power requiremenin this system,he transducer elements are steered and focused
during both transmit and receive. For each transmit and receive,-sigtaybased
beamforming is done as in-fBode imaging. The beamformed data is then used to
estimate the velocity information.

Although similar to Bmode imaging in many ways, Doppler procegsis more
technically demanding. Doppler processingtypically used to measure blood flpw
which has several orders smaller magnitediéboackscattered signatsompared tahe
surrounding tissues, resulting in lower SNR. Theoretically, the velocity e@stimated

from only two transmissions. However, due to the stochastic nature of the echoes from



blood, more transmissions ansedto generate good estimates in practiss.a result,
CFl is usuallydone for onlya part of the Bnode image.

Although ourfinal goal is to measure more complex blood flow, in this work,
several assumptions are made to simplify the velocity estimation problem. First, we
assume the blood flow isminar with a parabolic profileéSecond, we assume that the
blood flow is steady étween transmissions. Last, we assume that the beam to vessel

angle is known from the#hode image.

2.1 Conventional Velocity Estimation (CVE)

2.1.1 Basic Method
Conventional Velocity Estimation is based on estimating the phase shifts between
subsequent transmiss® Its firing scheme is the same as the linear array system in B

mode imaging. The block diagram for CYH is shown inFigure2.1.

Beamforming ; Velocity Back End
: » Demodulation | S > .
along scan line Estimation Processing
A <
A i N
K- N
i N
A/D N i
Converter | |
|
A : :
| Stationary _|Kasai’s auto |
| |Echo Canceling "| correlation |
' |
Analog | |
Front End | |

Figure2.1 Block Diagram of CVHadapted fronjl])
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| { / | |
| | v I I
W% v I I
b7 | / I [
,_\ /

Figure2.2 Beamforming along scan line CVE

After A/D conversion, beamformation is done gotne scan line as shown in
Figure2.2. This is the same &-mode imagingand so no additional effort is required to
do this stageNext, demodulation islone to get the wphase and quadrature phase
signals. Quarhture demodulation is typically used for Doppler processihg. velocity
estimation in this method is first done in the beam direction and then projected onto the
flow direction.In the method if10], first ationary echo canceling is done to isolate the
stationary component from the blood flow component. This is done by subtracting the
stationary signal, calculated usinige mean of the signals frod6 firings, from the
beamformed signalln contrast,in [12], the stationary echo canceling is done by
subtractingthe beamformed results auccessive firingsWe tried both methods and

found that echo canceling based on averaging the signals frdmrajé do not inprove
9



the performance so the simulations presented here are based on echiogchased on

the results of consecutive firingbhe modified beamformedignal’Q @ is thenused to

compute velocity using&s ai 6 s auto correlation method.
For CVE, the velocity estimation is related to the phase change between

consecutive received signals. If the blood flow velocity is denoted,bthe pulse

repetition interval is denoted iy , and the angle between the beam and flow-then

the dsplacement in the beam direction between successive transmissiofis is

VAT-& . Thus, the delay between two successive received signals is given by

2 y

yt 0 andvu . If the velocity of the blood flow is assumed
constant during the pulse repetition interval, the delay can also be expressed in terms of

phase shifye as:¥Yt ¥ I¢“ "Qand the velocity estimate is given by

9

b —— 2.1

The phase shiffe can be estimated by computing the correlation between the signals of
two successive transmissions. If more than two transmissions are used for a single scan
line, the average of the correlation results is taken and then the phase change is obtained
from the complex signal. b is the number of transmissions per scan lineggignated
velocity is given by

B

b ——— OAT— : 2.2

While this meéhod is fairly simple to implement, its performance is quite poor when the
beam toflow angle is close to 90 degreehi§ canalso be seen from equation (2.2

which shows thab © "Qpj A T-Q
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2.1.2 Computational complexity
Table 2.1 describes the parameters to characterize our syShaese inclde U , the
number of transmissions per estimation; , the number of active elements; , the
number of points for estimation on one scan line; , the number of focal points on one
scan line. Additional parametersY and 0 are related to computing the oss

correlation function in DVE and will be explained in sectiba

Name Description CVE | DVE
0 Number of transmissions per estimation 16 8
0 Number of active elements 64 64
0 Number of points for estimation on one scan line 50 50
0 Number of focal points on one scan line 1000 _
v Range of searching the maximum in cross correlatio 10

function -
0 Number of senplesfor cross correlation _ 200

Table2.1 System parameters

Table 2.2 describes the computational complexity terms of number of
multiplications, additions and wsions. As in B-mode imaging, the beamforming part
costs the mosin terms of the number afomputations.Velocity estimationrequires

divisions which are also costly tarms of hardware implementation

11



Multiplication

Addition

Division

Beamforming

5

z) z0 QQawwi 0 d

cmtn®Qd Gwi 6 a

. . 6 p20
Staionary echo cancelin
X U T
_ C?z 0 z )
Demodulation _ _
OCTTT
_ o TZ0 20 oz 20 0
Velocity estimation
OCTT CU I T VTt

Table2.2 Computational complexity of CVE

2.2 Directional Velocity Estimation (DVE)

2.2.1 Basic method

DVE was proposed by Jensan[10], to enable velaty estimation when the beam to

flow angle is around 90 degrees. Unlike CVE, beamformation in DVE is done along the
flow direction for a given depth within the vessel, as shownFigure 2.4. The
beamformed dataithen used to estimate the velocity from the displaceofestatterers
divided by the time between transmissions. Similar to CVE, the angle between beam and

flow direction is assumed to be known from thenBdeimage. The block diagram of the

methodin [10] is shown inFigure2.3.

12
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Figure2.3 Block Diagram of DVHadapted fronjl0])

To describe beamformation along a flow line, we introduce a coordinate system

which is aligned along the flow direction akown inFigure 2.5. The coordinate axes

mar ked

as

x6 and zoof

atrree pM eascsedal ;ath @rhee

flow direction. The relation between the two coordinate systems is

® 0OENG ong aAi-O 4

whered is the offset betweethe origins of the two coordinate systems.

2.3

tcheen t xe

While the beamformation idone along the flow line, the focusing scheme is the

same as in CVE. Assuminyg is the coordinate of the receive element, the delay for each

focal point can be calculated by thaund trip propagation distance of the wave divided

by the speed of the sound, given as

Y Y IO

13
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Figure2.4 Beamforming along @iw linein DVE

where’Y and’Y are the receive and transmit distance for each point to be beamformed.

'Y and’Y can be expressed as

Y G OAT-0 & wOEF (2.5

Y Q © CcazZoAT-O (2.6)
Unlike CVE, cemodulation is not neededrfDVE, the RF data is directly used
for the velocity estimatiomAs in CVE, we found thatcho canceling basexh averaging
the signals from alfirings do not improve the performance so the simulations presented
here are based on echo cdmge based on the results @he subtraction of two

consecutive firingsAssumingthatthe first signal along the flow direoti is"Q ® , and

14



the second signal obtained after a pulse repetition intéials "Q w , the relation
between the two signals is given by:

Mw Qw LY (2.7
where 0 is the velocity in flow directionSince the signals are discrete, ttr@ss
correlation signal igiven by

Y Q B Mw Qo 0 (2.9
whered denotes th@umber of signal samplessed for cross correlationinge™Q w
and’Q w are related (see equation 2.8 cross correlation function equation (2.10)
becomes an autogetation functionexpressed 8¢ Q 0 “Y . The autocorrelation
function has a globahaximum at zero. Therefore, thesition’Q, corresponding to the

maximum valueof the cross correlation functipis an estimatef the displacemenihe

velocity of the scatterers thengiven byo —_

15
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Figure2.5 lllustration of delay calculations in DVE

Estimating the displacement based on cross correlation funstwone foreach
pair of signals from two successive transmissions and the average of the results is
reported The searching range for the global maximul®pends on the estimated
maximum velocity A smaller range not only reductse computational complexityut
alsoavoidsfalse peak$10].

The estimation ofQ is not accurate due low spatial sampling ratekigure 2.6
shows a scenario where the sampling is not dense enough anel smaltipeak is not
identified. Again, increasing the spatial sampling rate leaolshigher computational

complexity for beamforming paand is not desirable
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Figure2.6 Need for correction in DVE

A correction method has been proposed[if], based on quadrature interpolation

method:

(o NN} (2.9

where'Y s the cross correlation fiction defined in equation (2.8Q is then sed to
find the displacement of scatterevkich isthenused to findhe estimated velocity. If the
displacement iierms of samples is denoted by&dd the spatial distance between two

sampling points along the flow line is denotedas, the estinated velocity is then given

z

by 0

2.2.2 Computational complexity
The parameters to characterize @VE systemwere given in Table 2.1. Table 2.3
describes the computational complexity of this mett@ainpared to the computational
complexity of CVE systemTable 2.2), DVE system is more expensive iarms of

hardware cost-or instancefor the most corputationaly complex block beamforming,
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DVE requires 5 times more delaym operations than CVE. DVE also requires more
divisions than CVEIn the next section, we describgpaoximation technique® remove
the square root operation in delay calculatig@#susing Taylor expansioffechniques to

remove dvisions in the correctioblock will also be described.

Multiplication Addition Division

0 20 2020 QQa 0ioa

Beamforming .. < wrrs s
plR TIMTRQA iwd a

Stationary echo 0 pzo0

canceling o o

_ Y z0 z0 z0 | 'Y zD z(0 20
Cross correlation _

g Tt 7T T = T 7T TT
, 120 20 0 20
Correction _
POTT TTT

Table2.3 Computational complexity of DVE

2.2.3 Techniques to reduce complexity
Delay calculations involvesquare root operationghich arevery expensiveso we

approximatethe square root tzulationby Taylor expansioaroundw & O B+

NI O B 6 ® wOE+ |
Y "QoOE+ QeErd OB+ . E

If only the first three terms are taken for simplification, wedhav

. , omow 2 p . PR
Y Al ; —— B+
a -0 Co GATD w woO
Sinced | & A T -Owe can further simplify this as:
Y 4 whi-6 ——T o wOE: (2.10
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Similarly, for the transmission delay calculation (equation 2.7), Taylor expansion is done
aroundw T
Y a wAT-O oOE+| ca (2.11

The performaoe penalty of both theseapproximatios will be examined in the next
section.

Division is another computational expensive operation that occurs in the
correction methoaf [10] as seen in equation (2.9). Tormeve division without affeatg
the performance too muchkJR interpolation filter is introducedspecifically, we utilize
Lagrange interpolation filter which is widely used in digi@aanalog conveers and
image processing. We desighe second order dgrange iterpolation filter using
MATLAB . Zeros areaddedbetween the samples based on the interpolation factor, and
convolution is done between the z@addedsignal and the Lagrange interpolation filter.
Figure 2.7 shows the results using a second ordagrange interpolation filter with
interpolation factor of 5This method helps identifg more accurate peak position. The
interpolation factor can be selected to meet different requirenténaccuracy.For

instance, a larger interpolatiéactor is needed when the beaniltov angle is large.
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Figure2.7 Lagrange interpolation

The propose@pproximation methods remove the square root and division operations
the expense of additionahultiplications and adtions. Table 2.4 summarizes the
computations neededith and without approximationd-or delay calculations of each
focal point, including transmit and receivecitsts 3 more multiplications and 1 more
addition to avoida square root operation. For tlemrrection module a division is
replaced by24 multiplications and 1Zadditions if we use a second order Lagrange

interpolation filte with interpolation factor o5.
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Without approximations With approximations

Mult | Add | Sqgrt | Div Mult Add Sqart Div

Delay calculationy 7 5 2 0 10 6 0 0

Correction 0 4 0 1 24 16 0 0

Table2.4 Extra computations to implement the appnaation methods (per operation)

2.3 Simulationresults

The performance o€VE and DVE basethethods has been investigatesing Field Il
program[22][23][24]. The simulatios aredonefor a single scanlineSince linear array
system isused for both methods, the estimation results aorsingle scanlineis
representative dhe performance of thigvo method.

Assuming the flows laminar and parabolic, the velocity profile is expressed as:
O i o p - (2.8)

where r is the radial distance from the center line of the vasselthe peak velocity and
R isthe vessel radiusihe scatterers angropagated during the pulse repetition interval
based on the velocity profil®lost of thesimulation results are for beamftow angle of
45 degresthough we do consider larger beanfltav anglesin the end

Typicd simulation parameters are shownTiable 2.5. For both CVE and DVE,
the velocity estimates are maole the center scéine; the distance betwedwo estimate
pointsis 0.5 mm. The estimated velocis then compared to the true velocity to measure

the performance of estimatioWVe use root mean square error defined s "YO
B ¥ Q 0 "Q wherev ‘Qand U "Q are the true velocityand the

estimated velocityof the "th estimate points respectivelgnd 0 is the number of
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estimate points along a scanlinedescribe in Table2.1. SmallerRMSE indicate better

estimation Maximum error is alseeportedin order toidentify theoutliers which could

result in misdiagnosis.

Name Description Value
Q Transducer center frequency 4 MHz
o Speed of sound 1540 m/s
_ arQ Wavelength 0.385 mm
n _ Pitch of transducer element 0.385 mm
Q Height of transducer element 5 mm
0 T@U Width of transducer element 0.368 mm
0 Number of ative elements 64
0 Number of transmissions per estimation 8
Q Sampling frequency 120 MHz
Q Pulse repetition frequency 10 kHz
Y Radius of vessel 10mm
0 Peak velocity of flow 1mls

Table2.5 Common parameters for both CVE and DVE

2.3.1 Comparison between CVE and DVE
Figure 2.8 shows the estimation results for both CVE and DYE,a system with64
active transducer elements and beamflaw angle of 45 degree No approximation

techniques are used for DVE heltas obvious that DVE gives more accurate estimation
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than CVE. TheRMSE and maximum erroare shown inTable 2.6. We seethat the

RMSE of DVE is abot1 20% of that of CVE.

CVE DVE DVE
(64 elements) (64 elements) (128elements)
Maximum error(m/s) 0.3502 0.0539 0.0656
RMSE (m/s) 0.1138 0.0257 0.0289
Table2.6 Performance of CVE andVE
estimated velocity estimated velocity
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Figure2.8 Estimation results and the true velocity for (a) CVE (b) DVE
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Figure2.9 Estimation results and the true velocity for (a) DVE with 64 active elements
(b) DVE with 128 active elements

2.3.2 Effect of nuniber of active transducer elements in DVE
Typically, the number of active transducer elements in a linear array is either 64 or 128.
Sincea larger number of transducers increase the power consumption significantly, we
compared the performance of a 64 eletmarray with a 128 element arrdyigure 2.9
shows that there iso obvious diference between the performance of the two systems
TheRMSE and maximum erraneasurements tell the samenclusion. Since 6élement
systemconsumes about half the transmissgpwer compared to 128 element system, it

is cleaty abetter choice.

2.3.3 Effect of correction in DVE
Here we test the performance of Lagrange interpolation filter as a substitute of the
guadratureorrection methogroposéd in [10]. Four cases are investigated:
Case 1: DVE with no correction
Case 2: DVE with quadratic correction
Case 3: DVE with Lagrange interpolation with interpolation factor of 5
Case 4: DVE with Lagramginterpolatiorwith interpolation factor of 9
FromFigure2.10 andTable2.7, we see thathe estimation results are close enough to the
true velocity except for the owaithout correction. Lagrange interpolation filter proves to
be a good substitute for thedrrection method proposed [h0]. The performance of
interpolation factor of 5 is almost as good as that of interpoldéidor of 9, with smaller

computational cost.
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No correction Quadratic Lagrange with | Lagrange with
correction factor of 5 factor of 9
Maximum error 0.2800 0.0539 0.0968 0.0502
(m/s)
RMSE (m/s) 0.1612 0.0257 0.0330 0.0302
Table2.7 Performance of correction methods
estimated velocity estimated velocity
1.4 T T 1.4 T T
estimated estimated
12k true 12 true
1+ 1+
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Figure2.10 Simulation results for different correction methods (a) no correction; (b)
guadratic correction; (c) Lagrange interpolation with factor of 5; (d) Lagrange
interpolation withfactor of 9.
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2.3.4 Effect of approximations in delay calculations for DVE
Figure2.11 shows the simulation resultsing theTaylor expansion approximations for
delay calculationNote that interpolation filter with &ctor of 5 is used for correction
here.The RMSE is 0.B85 andthe maximum error is 0.0683vhich arealmost identical
to the results without approximation.

estimated velocity

estimated

true

0 L L L L |
0.025 0.03 0.035 0.04 0.045 0.05 0.055
depth(m)

Figure2.11 Velocity estimation performance thiapproximations in delay calculations

2.3.5 Effect of number of firings
We observe that thdifference betweethe velocity estimationf successive firingef a
DVE system is small. Therefore, it is possible tantaan the performance with fewer
firings in ane direction. We investigate two scenarid firings and 8 firings, with beam
flow angleof 45 degrees. The interpolation factor for both sces#si®. Figure2.12and
Table2.8 shows theestimation results, which suggéisatthe performace loss is very
small with lesshumber of firings. Less firingsesults in fewer computatiorssd
improvesframe rate. Howevepg system based on fewer firings could be susceptible to
noise.Therefore, next we investigate teffect ofnoise orthe performance ajur

system.
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Figure2.12 (a) 3 firings in one direction (b) 8 firings in one direction

3 firings 8 firings
Maximum error(m/s) 0.0902 0.0683
RMSE (m/s) 0.0393 0.0385

Table2.8 Effect of number of firings

2.3.6 Effect of noise
We investigate two scenasgoone with 3 firings and one with 8 firingthe other system
settings are the sam@hite noise is inserted before the beamformatidmee SNR
configurations are considered: 23 dB, 13 dB and 3TdB.results are shown Figure
2.13, Figure2.15andTable2.9. In all cases, & see that estimations with 3 firings are
slightly worse than those with 8 firing8ut considering the reduction in computational
complexity,asystem with Jirings is worth pursuing. Noise did not affébe
performance very much unless it has almost the same magnitude with the signal (in the

case when SNR = 3 dB).

27



v(m/fs)

v(m/s)

v(m/s)

02

estimated velocity

08

06}

0.4

02

true

estimated

0
0.025

L
0.04
depth{m)

(@)

L L
0.03 0.035

L
0.045

L
0.05

0.085

estimated velocity

08}

v(mis)

06}

04}

02}

estimated
true

0
0.025

L
0.03

L
0.035

L
0.045

(b)

L
0.04
depth(m)

L
0.05 0.055

Figure2.13 Velocity estimatiorwith SNR = 23dB (a) 3 firings (b) 8 firings
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Figure2.14 Velocity estimatiorwith SNR = 13 dB (a) 3 firings (b) 8 firings
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Figure2.15 Velocity estimatiorwith SNR = 3 dB (a) 3 firings (b) 8 firings
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SNR =23 dB SNR = 13dB SNR =3dB
3 firings | 8firings | 3firings | 8 firings | 3 firings | 8 firings
Maximum error 0.0683 0.0614 0.0865 | 0.0668 | 0.3889 | 0.3987
RMSE 0.0342 0.0221 0.0396 0.0365 0.1443 | 0.1114

Table2.9 Effect of noiseon velocity estimation performance

2.3.7 Results with different beato flow angles
In this section, beam tihow angleof 60 degrees and 75 degrees are investig&iean
Figure 2.16 and Figure 2.17, it is obvious that vth the increase ofhe beam tdlow
angle, the estimation performance degrades severel@\far, while DVE still provides
accurate estimationtn CVE, this is because when the beanfltov angle increases, the
velocity component on beam axis becomes smaller and thus hardetect.For large
beam toflow angles, a larger interpolation factor is necessary. These simulation results
are based on interpolation factor ofl8.DVE, for beam toflow angle of 60 degrees,
RMSE is0.0393and standard deviation @6s0669. For beamnto flow angle of 75 degrees,

RMSE is 00700and standard deviation 1222
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Figure2.16 Resultsfor beam tdlow angle 60 degree for (a) CVE (b) DVE
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Figure2.17 Results for beam tthow angle 75 degge for (a) CVE (b) DVE

2.4 Conclusion

We investigatedthe performance ofCVE and DVE for estimating velocityCVE
providesacceptable estimation resilvhen the bearflow angle is 45 degrees, while
DVE generallygives accurate estimatioasults when the laenflow angle is 45 degrees
and acceptable results when the bdlknw angle is 60 or 75 degrees, the cost of higher
computational complexityA direct implementation of DVE includetivision and square
root operations, which are very expensive in terofishardware cost. Therefore,
techniques to remove those operations are described and implemented with small extra
cost. We find that he estimation accuracy is hardly affected by the approximation
techniqgues.We can even use fewdirings than the typicaB firings in DVE. The
performance of 3 fings is comparable to that offi@ings, with or without hserted noise.
With larger beam télow angle, DVE can still provide valid estimation results. However,

the interpolation factor needs to be larger to emse@asonable performance.
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CHAPTER 3

BACKEND PROCESSING
Backend processing is done after the acquisition of the beamformed radio frequency data
(RFdata). For Bmode imaging, backend processing generally consists of envelope
detection, log compression and scan @swn, as shown iRigure3.1. In this chapter,

all three blocks ardescribed and their computational complexity and performance trade

offsareanalyzed.
Beamformed ,
ional Display
signa Envelope Log Scan
» . > . > N e
Detection Compression Conversion

Figure3.1 Block diagram of backend processi(aglapted fronj3])

3.1 Envelope Detection

The RFdata acquired after beamforming are oscillating signals with a limited bandwidth
and no DC component. The envelope of the-ddfa represents the lefrequency
variation due to the different scattering properties of the tissue structures. The envelope
can be ideally detected using the Hilbert Transform (HT) followed by computation of the
magnitude of the complex signdlk3]. For a discrete beamformed signat , the HT

acts as an ideal 9egree phase shifter, which provides the imaginary term in the
analytic representation of the signal, given by¢ i & @ & . The envelope

‘O ¢ is then obtained by computing the magnituéle ot :

o0& 1 & 1 ¢t (3.1)
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There are several techniques for envelope detection. These ifdiIdeased Hilbert

Transform[14], FIR basedilbert Transform and Quadrature demodulafibs].

3.1.1 Computing the analytic signal using FFT
The Fourier Transform of a reahlued signal is complex symmetriBy removing the
negative frequency of the specatruwe can obtain the analytic representation of the
signal[14]. For the RF data acquired, we can repldeeFFT coefficients corresponding
to negative frequencies with zeros and then implement inverse &ddescribed in
Figure3.2. The envelope of the signal is then found by computing the magnitude of the

analytic signal.

r(n) x(n) , y(n) ra(n) E(n)

——  FFT IFFT P +Em —

A 4

A 4

A

—(X)

1,fori=1,(n/2)+1; h(n)
h(i) = 2,fori=2,3,..,n/2;
0,fori=(n/2)+2,..,n

Figure3.2 Computing the discrettme analytc signal using FFT14]

3.1.2 FIR based Hilbert Transform
Hilbert Transform can also be implemented by using a FIR fitelR filter [17]. A
design method of linear pra$IR Hilbert transform using eigen filter was proposed in
[16]. Leastsquare and minimax fitting based methods wesed for FIR and IIRilter
design in[17]. We desigredthe FIR basedHilbert filter using MATLAB . The imaginary
termi & is obtained after filtering. The envelope can be computed using equation

(3.1). The Hock diagram of this method is shovin Figure3.3.
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Figure3.3 Block diagram forFIR based Hilbert Transform

3.1.3 Quadrature Demodulation

Quadrature demodulation generates thephase and quadrature components by

multiplying with sine and cosine carrieiidlowed bylow pass filteringLet I(n) and Q(n)

be the inphase and qumature components. Assume that the carrier frequencys

known and does not vary with timehen theenvelope isbtained by:

O¢

O¢

0 ¢ (3-2)

The Hock diagramof this method is shown ifrigure 3.4, where "Y is the sampling

I(n)

period.
cos(nw oTs)
—(X)—> LPF
Ne
r(n)
—

| F[/)—O—» LPF

h 4

E(n)

ViEm +@*(n) [

a(n) A

sin(nw oTs)

Figure3.4 Block Diagram for Quadrature Demodulati@dapted fronj15])
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3.1.4 Simulation results
Simulations are done for andonly selected scanline of a synthetic apersystemfor
all three methods: FFT based Hilbert Transform, FIR based Hilbert Transform and
guadrature demodulatioithe parameters of the synthetic aperture system are described
in Table 3.1. The simulation results are shown kigure 3.5. The dashed line is the
original signal and the others are the envelopes detégtéde three methodsn this
figure, 100 successivesampes of the original signal and the detected envelopes are

shown to have a clear display.
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Figure3.5 Envelope detection performance comparisons

The results of theséiteemethods are almost identicas show in Figure3.5. If the FFT

based Hilbert transform method is considered ideal, we can calculate the RMSE of the
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other two methodsvith respect to it.Accordingly, the FIR based Hilbert transform
methodhas an RMSE 00.07 andthe quadrature demodulation based methosl &a

RMSE of 0.0G6.

Name Description Value
N Number of receiving elements 128
M Numkber of transmission elements amagmber of transmissio| 32
B 6dB bandwidth of transducer 4 MHz
fs A/D sampling frequency 40 MHz
fsod Sampling frequency after interpolation 120 MHz
c Speed of sound in body tissue 1540 m/s
R Number of focal points in one scanline 3117
Q Number of scanline in one image 200

— Angle range of the image 45 degrees

Table3.1 Parameter definitions and values for synthetic aperture based imaging system

3.1.5 Computational complexity

Assume R is the number of samples of the Rfa.dForthe FFT based Hilbert
Transformmethod an FFT and an inverde-T are neededThe FFT iscomputed for N
samples, wherBl is the next power of 2 of R. Thuke complexity of this part will be in
the order of 2*log(N)*N. Since log compressiadone after takinghe absolute value,
the square root padan be avoided. Therefore, we only need 2*R multiplicatioR
additiors, to obtain the magnitude of the signals.

For the FIR based Hilbert Transform methodhi order of the FIR filter is |,
0 2'Y multiplications and additions are needddr filtering. Another ¢z'Y

multiplications andY additions are needed to calculate the magnitude of the signals.
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For the quadrature demodulatidmasedmethod,¢ 2 Y multiplications are needed
to acquire the inphase and quadrature componeS8iace the signals are shifted on base
band, the Nyquist sampling rate is lower and thus we can downsample the signal by a
factor of 5 to save computationdissume thelowpass filter has ra order of U ,
¢z U Z'Yfu multiplications and additions are needed for the filteriugother ¢ 2 "YAu
multiplications andYfu additions are needed to calculate the magnitude of the signals.

In this work, simulations are dométh R of 31170 of 14, and0 of 26. 0 and
0 are selected according to the performaremuirementFor the proposed simulation
setup,FFT based method requiresoait 10% multiplications, FR based method requires
about 50k multiplications and quadrater demodlation requires about 40
multiplications We see thatFFT based Hilbert transform method is more
computationdl/ expensive and thus not preferred in our system. FIR based Hilbert
transform method is close enough to FFT based Hilbert transform matithdas
number ofcomputationccomparablevith quadrature demodulation. However, the phase
information is lost if FIR based Hilbert transform method is used for envelope detection.
Quadrature demodulation also provides accurate sesnit keeps the phase infmation
in the inphase and quadrature components of the sigiedreforewe choose to use
guadrature demodulatioas the envelope detection method in our systehen phase
information is necessary and we choose to use FIR based Hilbert transform mie¢inod

phase information is not needed
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3.2 Log compression

Considering 256 gray levels, the dynamic range of humanisyeshe order of 30dB

[3]. To display the Bnode image, a log compression is necessary in ¢odprovide

more detailed informatiofor lower magnitudedata Log compressn is generally done

by first dividing the magnitude obtained from envelope detection by a fixed number
(predetermined based on the expected maximum magnitude possible), andjubirga

the values with a threshold operator based on the actual dynamic range. Typically, the
dynamic range used in-Biode ultrasound image is 40dB or 60dB, depending on the

accuracy requiremefi]. This blod is typically implemented bg lookup table.

3.3 Scan conversion

The scan lines from a phased array or synthetic aperture system are often in the polar
coordinate system. In order to display the image on a regular screen, which ishender
Cartesiarcoordimate system, we need scan conversion. To translate the input data under
polarcoordinate system into the output data under Cartesiardinate system,
interpolation is needed. In this section, two different methods for interpolatien

described and theadeoffs analyzed.
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Figure3.6 Interpolation in scan conversion

Let i h— be the coordinatesf the pixel whose intensity will be determined by the
intensities of its four neighboring pixels whose cooattis arei h— hi h— h

i h— hi h— . Figure 3.6 describes the above configuration, which
corresponds to amterpolation window of size 2% The intensity ofpixel at i h— is
given by

Oh— 620 h— 620 h— 620 h— 0z0 h— (3-3)
where A, B, C and D are the weighting coefficients of the four neighboring pixXeds.
calculation of tle weighting coefficients is related toetimormalized geometric distance
between input and output dator instance, the normalized distances fpmint i h—

to point i h— can be computed as:

, s s

O v

: s s

O g (3-4)
whereYi g i §sandy— s— —s



3.3.1 Bilinear Interpolation
Bilinear interpolation 3 commonly used athe method forpolarCartesian coordinate
conversion because of its relatively low computational complexity. The weighting

coefficients are calculatedbased on theroduct of thenormalized distanceslong

i @& Q[19]. For example, weight A is given b§yy—$z %5 weight B is given by

s s, 8 s
g g and so on.

3.3.2 Gaussian Interpolation
The weighting coefficientan Gaussian interpolation are chosencordingto the

Gaussian function. For instance, the weighting coefficient A can be expressed as:
0 Qwon — — (3-6)

whereO @& Q are defined by equation @3.and, and, are the standard deviations

of corresponding dimensiofi20].

3.3.3 CNR calculation
In order tocompare the performancé the two interpolation methods, we use Contrast
to-noise ratio (CNR)s the performance metrithe CNR is calculated aftemvelope
detection and log compressiovWe analyze the performance of the different schemes

usingacyst imageThe CNRis given by

80y 3 : (3-7)

wherecyst is the black area without scatterers in the center and background is the area
surrounding it, as shown ifigure 3.7. The nean‘' and standard deviationp are

calculated for the cyst and the backgroygd]. In this work the bacground area is
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considered as the ring area witiree times larger radius than the cyst. However, deror
to avoid the fuzzy area near thgstbackground boundary, weonsider 10%, 20% or
30% smaller radiudf the cyst The corresponding CNRs are named CNR1, CNR2,

CNR3 as shown irFigure3.7.

3.3.4 Simulation results
The simulations are done with MATLAB R2012a, and the Field Il simulation platform
[22][23][24]. The cyst is ad depth 0of60 mm, and has a radius of 5 mithe phantoms
around the cyst consist ad20,000 random scatterer§ynthetic aperture with 32
transmissions and 128 receive elements is ukd. dynamic range is 60 dB. Other
system paameters wee described inTable 3.1 [7]. After the acquisition of the
beamformed data, multiple scan conversion settings are tested on the same data for

fairness of comparison. An example of theplayedmage is shown ifrigure3.8.

/‘/— \"\\
7 7.8
Background Area '\\
/ N
10% smialler 7\
gadius—CNR1 Cyst Boundary \

' 20% smaller 30% smaller
radius—CNR2 radius—CNR3
\-
X
%
#
\\_ //

Figure3.7 CNR calculation
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z(m]

Figure3.8 Resulantimage after scan conversion

3.3.4.1 Analysis o,
For Gaussian interpolation, needs to be carefully selected in order to produce
reasonable resultSince the distances from the input data points to the point to be
interpolated at the centere neomalized ,, for both dimensions should be the same.
Therefore, in this s#ion, only one, will be discussedFigure 3.9 shows a parametric

analysis of, based on CNR performance.
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CNR vs sigma (of Gaussian func)

0 1 2 3 4 5
sigma-R-dimension

Figure3.9 Analysis ofCNR as adinction ofstandard deviation

We can see there is a local minimum, oét 0.44. Even though we can achieve the same
CNR when, is larger than 5we do notconsider it. hisis becausa large, makes the
Gaussiarnnterpolation approximately equivaletattaking the average of the neighlmy

pixelsand is not effective when the pixels are far apart

3.3.4.2 Analysis on window size
Earlier, the interpolationschemes for window size 2xhavebeen describedLarger
window sizes havethe potential of providindgetier results since more information is
taken into consideratiorkirst we investigate the scenamoth 200 scanlines ang117
samples on each scanlin€he other system parameters are describedainle 3.1.
Bilinear interpolation and Gaussian interpolation with different window sizes are used for
scan conversion in both scenaridbe resultant figures after scan conversion are shown

in Figure3.10. TheCNR performanceesuts are shown iffable3.2.
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Bilinear interpolation Gaussian interpolation
CNR1 2.06 2.06
Window size
CNR2 3.08 3.09
2x2
CNR3 4.68 4.68
CNR1 2.06
Window size
CNR2 -- 3.08
4x4
CNR3 4.67

Table3.2 CNR results for different interpolation methods and different windovssize
when there are 200 scanlines and 3117 samples on each scanline.

Bilinear interpolation Gaussian interpolation
CNR1 2.08 2.08
Window size
CNR2 3.14 3.15
2%2
CNR3 4.89 4.90
CNR1 2.09
Window size
CNR2 -- 3.15
4x4
CNR3 4.92

Table3.3 CNR results for different interpolation methods and different window sizes,
when there are 100 scardmand 623 samples on each scanline.
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Figure3.10 Comparison of the interpolation perfoamce with (a) window size 2x

bilinear interpolatior(b) window siz 2x2; Gaussian interpolation) (gindow size 4x4;
Gaussian interpolatignvhen thee are 200 scanlines and 3117 samples on each scanline.

We see thaboth interpolation methods are sufficient in terms of performance.
Window size 4xHuf Gaussian interpolatigorovides slightly better CNR values but
requires about 4 times more computasidhan window size 2x2.

Next we repeat this experiment for a scenario with 100 scanlines and 623 samples
on each scanlind.able3.3 presents the CNR results for this scenario. We see that in this

case alx4window results in aninorimprovement in the CNR value. Our overall
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