iPhone Applications and Improvement in Weight and Health Parameters: A
Randomized Controlled Trial.

by

Claudia Thompson-Felty

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved February 2014 by the
Graduate Supervisory Committee:

Carol Johnston, Chair
Christopher Wharton
Simin Levinson

ARIZONA STATE UNIVERSITY
May 2014
ABSTRACT

Dietary counseling from a registered dietitian has been shown in previous studies to aid in weight loss for those receiving counseling. With the increasing use of smartphone diet/weight loss applications (app), this study sought to investigate if an iPhone diet app providing feedback from a registered dietitian improved weight loss and bio-markers of health. Twenty-four healthy adults who owned iPhones (BMI > 24 kg/m^2) completed this trial. Participants were randomly assigned to one of three app groups: the MyDietitian app with daily feedback from a registered dietitian (n=7), the MyDietitian app without feedback (n=7), and the MyPlate feedback control app (n=10). Participants used their respective diet apps daily for 8-weeks while their weight loss, adherence to self-monitoring, blood bio-markers of health, and physical activity were monitored. All of the groups had a significant reduction in waist and hip circumference (p<0.001), a reduction in A1c (p=0.002), an increase in HDL cholesterol levels (p=0.012), and a reduction in calories consumed (p=0.022) over the duration of the trial. Adherence to diet monitoring via the apps did not differ between groups during the study. Body weight did not change during the study for any groups. However, when the participants were divided into low (<50% of days) or high adherence (>50% of days) groups, irrespective of study group, the high adherence group had a significant reduction in weight when compared to the low adherence group (p=0.046). These data suggest that diet apps may be useful tools for self-monitoring and even weight loss, but that the value appears to be the self-monitoring process and not the app specifically.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>Obesity: The Problem</td>
<td>6</td>
</tr>
<tr>
<td>Establish Treatments</td>
<td>9</td>
</tr>
<tr>
<td>Linking Treatments with Technology</td>
<td>26</td>
</tr>
<tr>
<td>3 METHODS</td>
<td>31</td>
</tr>
<tr>
<td>4 RESULTS</td>
<td>36</td>
</tr>
<tr>
<td>5 DISCUSSION</td>
<td>46</td>
</tr>
<tr>
<td>6 CONCLUSIONS</td>
<td>53</td>
</tr>
<tr>
<td>7 FUTURE DIRECTIONS</td>
<td>54</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>55</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A CONSENT FORM</td>
<td>59</td>
</tr>
<tr>
<td>B IRB APPROVAL</td>
<td>62</td>
</tr>
<tr>
<td>C AMENDMENT TO APPROVED PROTOCOL</td>
<td>64</td>
</tr>
<tr>
<td>D RECRUITMENT ADVERTISEMENT</td>
<td>66</td>
</tr>
<tr>
<td>E HEALTH HISTORY QUESTIONNAIRE</td>
<td>68</td>
</tr>
<tr>
<td>F PHYSICAL ACTIVITY QUESTIONNAIRE</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DEMOGRAPHIC DATA</td>
<td>37</td>
</tr>
<tr>
<td>2.</td>
<td>ANTHROPOMETRIC CHARACTERISTICS INITIAL SCREENING</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>ANTHROPOMETRIC CHARACTERISTICS BEFORE AND AFTER TREATMENT</td>
<td>39</td>
</tr>
<tr>
<td>4.</td>
<td>BLOOD BIOMARKERS OF HEALTH BEFORE AND AFTER TREATMENT</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>EXIT SURVEY</td>
<td>43</td>
</tr>
<tr>
<td>6.</td>
<td>DIET QUALITY</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CHANGE IN WEIGHT</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>CHANGE % BODY FAT</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>CHANGE HDL</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>CHANGE A1C</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>CHANGE GLUCOSE</td>
<td>42</td>
</tr>
<tr>
<td>6.</td>
<td>ADHERENCE AND WEIGHT LOSS ALL PARTICIPANTS</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Self-monitoring of dietary intake has been shown in multiple studies to be one of few successful strategies for weight loss and weight maintenance. Understanding the importance of self-monitoring stems from the social cognitive theory of self-regulation. Social cognitive theory states that human behavior is extensively motivated and regulated by the ongoing appraisal of self-influence, and that people cannot influence their own motivation and actions if they do not pay adequate attention to their own actions and the consequences that they produce (1). Social cognitive theory's key component is self-monitoring of one's behavior (2). Social cognitive theory can be utilized as an effective tool for weight loss, and incorporating self-monitoring into a weight loss plan is essential for success.

Multiple studies have reported on the efficacy of self-monitoring of dietary intake for weight loss and weight management. A study conducted on 123 postmenopausal overweight to obese women demonstrated that women who monitored their dietary intake on most days of the week experienced a 2.7% greater weight loss than the women who did not monitor their intake (3). A study conducted from 2007 to 2010 by Akers and colleagues tested self-monitoring on weight maintenance for 12 months following an initial weight reduction phase (4). After the initial weight loss period, study participants were randomized into two groups: a group that utilized self-monitoring techniques, and a control group (4). The results of the study determined that the group that utilized self-monitoring had an 87% greater weight loss than the control group after a 12 month period (4). In 2012, a study on the impact of self-monitoring of blood glucose on a behavioral
A weight loss intervention for type 2 diabetic patients was published (5). The study found that the patients who were taught to use their diet to lose weight increased adherence to dietary recommendations when used in conjunction with the self-monitoring of blood glucose (5). These patients not only increased their weight loss but they also had better glucose control (5).

The traditional paper/pencil methods of self-monitoring is rapidly being replaced by technology, specifically hand-held devices such as personal digital assistants (PDA), smartphones, and iPads. A study conducted by Acharya and colleagues studied the use of a personal digital assistant (PDA) for self-monitoring versus the standard paper and pen method among overweight and obese adults (6). The study examined the difference in the two groups at six months (6). While both groups had significant reduction in weight, the PDA group increased consumption of fruit, vegetables, and decreased consumption of refined grains (6). These results lead researchers to believe that the use of a PDA for self-monitoring may improve self-awareness of dietary changes (6).

A study conducted at Arizona State University explored the use of smartphones and dietary tracking (7). The study assigned participants into three groups. A group utilizing an iPhone app to record and track dietary intake, a group using the memo function on the smartphone to input dietary tracking, and a group recording dietary intake via the traditional method of paper and pen (7). While all three groups had significant weight loss, the group using the iPhone app had greater adherence to self-monitoring when compared to the traditional paper and pen group (7). A follow-up focus group was conducted after these participants had completed the study to understand the participants' views regarding the use of the smartphones for dietary tracking (8). Overall, the
participants expressed the desire for feedback and social support in conjunction with the smartphone app (8).

A recent study investigated whether using a PDA with feedback was more effective than the PDA by itself, or the traditional paper and pen group for dietary self-monitoring and weight loss (9). Self-monitoring adherence was greater in both PDA groups when compared to the traditional paper and pen group (9). The greatest weight change was observed in the PDA with feedback group (9). Another study looked at the same parameters (paper & pen, PDA, PDA + feedback) as the above study but followed the study participants for 24 months (10). The results from this study showed that only the PDA + feedback group demonstrated significant weight loss at 24 months, suggesting that long-term weight loss requires feedback to maintain adherence to self-monitoring (10). A third study also explored the effect of technology on adherence to self-monitoring of diet and physical activity for weight loss. Of the three subject groups, paper & pen, PDA, and PDA with daily tailored feedback, the PDA and PDA + feedback intervention were associated with a significant weight loss through adherence to diet and physical activity self-monitoring (11). Additionally, the automated daily feedback messages available to the PDA + feedback intervention had an indirect effect on weight loss at 12 months (11).

While consistent self-monitoring of dietary intake improves weight loss outcomes in study participants; comprehensive nutrition and lifestyle education has been shown to improve dietary quality and weight loss in study participants as well. A randomized-controlled trial was conducted on obese Hispanic Americans following Roux-en-Y gastric bypass surgery. Participants were randomized into a comprehensive nutrition and
lifestyle intervention group (n=72) or a non-comprehensive approach group (n=72) (12). Twelve months after surgery, both groups had significant weight loss, but the comprehensive intervention group experienced greater weight loss and a larger reduction in BMI (12). The comprehensive intervention group also had a higher mean intake of protein and participated in physical activity more often (12).

In another study, a female NCAA volleyball team was recruited to determine if nutrition education provided by a registered dietitian improved the dietary intake of the team (13). At the conclusion of the study, a significant improvement in dietary intake and nutrition knowledge was evident for the volleyball team following the education intervention by a registered dietitian (13).

At this time, there is no available published research on the use of a smartphone app with feedback from a registered dietitian for dietary intake tracking and weight loss. Mobile phones offer a multitude of functions and are with the user throughout the day. The purpose of this study was to compare the use of a new dietary self-monitoring smartphone app (MyDietitian) with and without the feedback of a registered dietitian. We also compared both of these groups to a feedback control group that utilized a dietary self-monitoring smartphone app that encouraged adherence to the USDA's MyPlate dietary guidelines. We hypothesized that the use of the smartphone app with feedback from a registered dietitian would provide significant improvement in weight loss and biomarkers of health when compared to the non-feedback and feedback control groups. We also hypothesized that the use of the smartphone app with feedback from a registered dietitian would improve adherence to dietary tracking when compared to the non-feedback and feedback control groups. Finally, we hypothesized that the use of the
smartphone app with feedback from a registered dietitian would improve diet quality when compared to the non-feedback and feedback control groups.

Delimitation

Only motivated individuals that were willing to record their dietary intake with a smartphone, specifically an iPhone participated in this trial. This study did not address populations that either do not own or are not willing to utilize a smartphone. This study also did not address the population of individuals that own a smartphone brand other than an Apple iPhone. This study included only adults that live in the Southwest. This study cannot be generalized to children, elderly individuals, and people that live in other parts of the United States or the world.

Limitations

Adherence to protocol may not be consistent among participants over the 8-week trial. Also, since multiple registered dietitians provided feedback to the participants, there may not have been complete consistency in terms of counseling and nutritional information provided to each of the participants.

Definitions

Overweight- defined as a body mass index of 25.0-29.9 kg/m²
Obese- defined as body mass index of 30.0 kg/ m² and above.
PDA- defined as a personal digital assistant of hand-held computer device.
CHAPTER 2
REVIEW OF LITERATURE

Obesity: The Problem

The prevalence of overweight (BMI 25-29.9) and obese (BMI greater than or equal to 30.0) individuals in the United States rose drastically from the late 70's through the early 2000's, but in recent years the increase has leveled off (14). Results from the 1999-2000 National Health and Nutrition Examination Survey (NHANES) estimates that 64% of adults in the U.S. are either overweight or obese (15). Specifically, 35.7% of adults are obese (14). Obesity is related to multiple health conditions including heart disease, stroke, certain types of cancers, and type 2 diabetes (14). The Centers for Disease Control and Prevention (CDC) estimate that in 2008 the medical costs associated with obesity were $147 billion (14). The CDC also determined that the medical costs paid by a third-party payer for people that were obese was $1,429 higher than that of a person of normal weight (14).

A study conducted in 2003 examined the attitudes of primary care physicians about obesity and its treatment. The study sent a questionnaire by mail to 5000 primary care physicians (16). Half of the questionnaires (n=2500) classified obesity as a BMI of greater than 40 kg/m2; while the other half (n=2500) of the questionnaires classified obesity as a BMI of 30 to 40 kg/m2 (16). The different classifications of obesity were used to assess any effect of the degree of obesity on physicians' attitudes (16). Six hundred and twenty out of the five thousand primary care physicians responded to the survey (16). The survey asked the physicians questions on several areas of obesity: beliefs about treatment, causes of obesity, attributes of obese individuals, weight loss
outcomes, and efficacy of obesity treatments available. The physicians that responded to the survey rated physical inactivity as the most important cause of obesity. The next highest rating for the cause of obesity was overeating and a high-fat diet (16). Only 49% of the physicians felt competent in prescribing weight loss to their patients and 54% stated that they would spend more time working on weight related issues if they were able to be financially reimbursed for their time (16). Of the physicians polled at least 50% viewed their obese patients as unattractive, ugly, noncompliant, and awkward; while about one-third consider the obese to be weak-willed, lazy and sloppy (16). Only 14% of the physicians polled felt that they were able to help the obese lose weight (16).

The physicians, when asked if the efficacy of obesity treatment was as effective as the treatment of 10 other chronic conditions (hypertension, asthma, coronary artery disease, hyperlipidemia, diabetes, depression, osteoarthritis, cigarette smoking, alcoholism, and drug addiction), felt that the treatment of chronic conditions except drug addiction was more effective than the treatment of obesity (16).

The physicians in the previous study believe that physical inactivity is the most important cause of obesity. If physical inactivity is the main cause of obesity then using increased physical activity as a means to treat obesity should be rather effective. A study conducted by Dahlkoetter and associates randomly assigned forty-four subjects to one of four groups: exercise, eating habits, combination, and control (17). The study had a total of forty-four women, between the ages of 16 and 50 years of age, at least 15 pounds overweight, and had medical clearance if there were any underlying medical conditions (17). The exercise intervention group focused primarily on ways they could improve physical fitness and expend more energy through exercise (17). The exercise group like
the other two groups was educational in nature and did not consist of constant supervised exercise (17). The study consisted of an initial meeting, an 8-week intervention, and 8-week follow up and then an extended 6 month follow up (17). The combination of exercise and eating habits group had the greatest improvement in body circumference and weight loss (17). The combination group was also the only group that continued to lose week at the eight-week follow-up appointment (17). The results from this study lead researchers to believe that exercise alone will not allow individuals to meet their weight loss goals.

In 2006 a review was conducted by Drs. Jakicic and Otto to look specifically at the role of exercise in the treatment and prevention of obesity (18). This review noted that well known studies have shown a relationship between the amount of leisure-time physical activity and risk for all-cause mortality (18). While it is clear that physical activity can help mitigate the increased all-cause mortality risk of obesity, it is not clear that exercise alone can treat obesity (18). Weight loss that is achieved through exercise alone is far less than what can be achieved by significant reductions in energy intake (18).

A study conducted by Caudwell et al. in 2009 explored the relationship between diet, exercise, and weight loss. The study participants were fifty-eight obese men and women with a mean BMI of 31.8±4.5 kg/m2 (19). These participants were assigned an exercise regimen that expended approximately 500kcal per session five times per week for twelve weeks (19). The participants had anthropometric characteristics and total daily energy intake assessed at weeks 0, 4, 8, and 12 (19). The researchers found that while there was a significant reduction in weight over the trial (p<0.001), there was a large individual variability in weight loss between the participants (19). The researchers further explored
the dietary habits of the individuals that lost an insignificant amount of weight or gained weight and found that those individuals dietary intake changed from baseline to completion of the trial (19). These individuals increased their daily energy intake over the twelve weeks (p=0.043) while reducing their fruit and vegetable consumption (p=0.005) and increasing fat consumption (19). The individuals that lost significant amounts of weight did not increase their fat consumption, decreased energy intake, and increased their fruit and vegetable consumption (p=0.005) (19). This finding by Caudwell et al. suggests that in order for an exercise program to successfully reduce weight a reduced calorie diet is also required to have significant weight loss.

A meta-analysis conducted in 1997 looked at the previous twenty-five years of research on weight loss by diet, exercise, or diet plus exercise. The meta-analysis included 493 studies. The researchers found that exercise alone did not produce significant weight loss, and reduction in body fat (20). The diet and diet plus exercise groups produced significantly better reductions in weight and body fat when compared to the exercise alone groups (p<0.05). The diet plus exercise group had the highest level of weight and body fat reduction although the results were not significantly different from the diet alone group (20). The results from this meta-analysis suggest that when the goal is weight loss and body fat reduction diet or diet plus exercise is more effective than exercise alone (20).

Established Treatments:

Behavior Modification

Behavior interventions are often used in the treatment of obesity. Foster et al. reviewed the key components of the behavioral treatment of obesity in the *American
Behavioral treatment of obesity helps individuals obtain a set of skills that can be used to achieve weight loss and weight maintenance (21). Behavior therapy has the ability to help an individual identify triggers in their lives that bring on unhealthy eating habits, and gives them a set of skills to help the individual respond differently when these triggers occur (21). Behavior treatments also incorporate cognitive therapy techniques which teach individuals how to set realistic goals for weight loss, to have more realistic expectations of progress, and coping techniques when their goals are not met (21). The cognitive therapy techniques used to treat obesity are based on the therapies developed for the treatment of eating disorders, anxiety, and depression (21).

The treatment of obesity with a behavioral focus has several key components. The treatment is goal directed and the goal needs to be easily measurable by the individual and the counselor so that achievement of the goal can be clearly monitored (21). The individual is also expected to develop behavior change skills which can be used regularly so that as the individual learns to utilize the behavior change skills and success becomes a matter of skill use and not sheer will power to stay on a diet or exercise program (21). Behavior change models have been widely validated but there is a need to identify which aspects of a standard behavior change intervention have the greatest effects on obesity (22, 23). The interventions usually include food diaries, nutrition education, physical activity, problem-solving, stimulus control, portion control, mindful eating, and cognitive therapy (21).

The role of a behavioral counselor was reviewed by Foreyt et al. in 1998. The reviewers state that the first goal of a behavioral counselor for weight reduction should be
to establish a collaborative relationship with the individual being treated (24). The research has shown that when an individual has a strong relationship with their counselor there is an improved treatment outcome and less resistance to change from the patient (24). The reviewers state that if the counselor does come up against resistance from the patient, the counselor should use that resistance to make an assessment of the patient's readiness to change, and possibly leading the counselor in a direction that is better suited for that particular individual (24). The reviewers focus on the need to individualize treatment and that success can be measured by other means than just weight loss such as: improvements in physical activity, metabolic profiles, self-esteem, body image, functional capacity and quality of life (24). The review of the role of behavior counselor states that registered dietitians can effectively fill this role due to their extensive training in nutrition knowledge and training in nutritional behavior change counseling (24).

A randomized control trial examined how to strengthen the effectiveness of behavioral interventions for weight loss in 202 research participants half being women (n=101) and half being men (n=101) (25). Subjects were randomized into one of five groups: control, standard behavioral treatment (SBT), standard behavioral treatment plus food provision (SBT + FP), standard behavioral treatment plus incentives (SBT + I), and standard behavioral treatment plus food provision and incentives (SBT + FP + I) (21). The standard behavioral treatment included weekly counseling in small groups (about 20 individuals at a time) for the first twenty weeks and then once per month until the 18 month follow-up (25). The sessions were led by trained interventionists with advanced degrees in behavioral science or nutrition (25). The program emphasized several behavior modification techniques such as: problem-solving strategies, social assertion, stimulus
control techniques, short-term goal-setting and reinforcement techniques for enhancing motivation, cognitive strategies for replacing negative thinking, social support, and relapse prevention (25). The standard behavioral treatment was identical for all four groups that included SBT as part of the intervention. There were two groups that included food provision as a treatment intervention. The food provision provided consisted of prepackaged meals for five dinners and five breakfasts each week for the 18-month duration of the trial (25). These participants were also provided with a meal plan with recipes (25). The intervention groups that included an incentive were given a cash payment based on the amount of weight lost that week in relationship to their overall weight loss goal (25). The minimum payment per week was $2.50 and the maximum payment was $25 per week (25). The results of the study showed that the SBT plus food provision group lost 1/3 more weight than the standard behavior treatment group at the six month mark (25). The SBT plus food provision also had 100% greater weight loss than the standard behavior treatment group at the 12 month mark and 40% greater weight loss at 18 months (25). The SBT plus food provisions and incentives had the second greatest weight loss of an average loss of just over 6kgs at 18 months (25). The study found that there was no significant effect on weight change for providing financial incentives, and that the significant reduction in BMI was due to providing food provisions to the participants (25). When analyzing the findings of this study several key components stood out as possible explanations as to why the SBT plus food provision group fared better than the other groups. The food provision participants completed more components of the assigned standard behavior treatment assigned. These participants completed more food and exercise diaries, attended more SBT meetings, had greater ease
in estimating caloric content of the food eaten, and overall had greater adherence to the program than that of the other groups (25). Greater adherence to the program and greater adherence to food and exercise diaries may be why the SBT plus food provision group had a greater weight loss than the other three groups.

The National Weight Control Registry (NWCR) was established in 1994 to investigate the behaviors of individuals that succeed at long-term weight loss. (26) The NWCR has identified key behavioral strategies of individuals that have successfully maintained weight loss. Consistent self-monitoring of weight, self-monitoring and recording of dietary intake, including exercise daily, and consuming a diet low in fat and calories were associated with successful weight loss and long-term weight maintenance. (27)

Self-Monitoring

A recent publication aimed to examine more closely diet strategies for weight loss. The authors conducted a secondary study to the Nutrition and Exercise for Women study (3). The Nutrition and Exercise for Women study was a four-arm randomized control trial that combined effects of dietary weight loss and exercise-based weight change on overweight to obese postmenopausal women (3). The researchers examined the strategies used for successful weight loss in the Nutrition and Exercise for Women study and only included the women who completed the 12-month trial (3). This included a total of 123 women with 59 of them being randomized to the diet group and 64 being randomized into the diet and exercise group (3). The secondary study found that nine specific behaviors were significantly associated with the percent of weight change at the twelve month mark (3). They were: change in percent energy from carbohydrates, change
in percent energy from fat, using food journals continuously, measuring foods, monitoring energy intake, eating out for breakfast, eating out for lunch, eating out for dinner, and skipping meals (3). Most notable were the results from women who complied to journaling their food intake. The women who were in the 75th percentile for food journaling had a 3.7\% greater weight loss than the women in the 25th percentile for food journaling (3). These women also had a 2.7\% greater weight loss than the women who did not comply with food journaling (3).

In 2010, Akers et al. tested self-monitoring of body weight, fruit/vegetable intake, water consumption and step count for weight maintenance after weight loss. The participants in this study completed an initial 12-month weight loss intervention where they were randomly assigned to an intervention group which consisted of a 1200 to 1500 kcal diet plus 16 fl oz of water prior to each meal (WEV+) or a control group which consisted of 1200 to 1500 kcal diet alone (WEV) (4). The initial 12-month weight loss intervention did not include self-monitoring or self-regulation strategies (4). During the subsequent weight maintenance intervention the groups maintained their status of either having additional water before meals or no additional water requirements (4). Both groups were directed to track body weight, fruit/vegetable intake, and step count on tracking sheets during the weight maintenance intervention with the WEV+ group additionally tracking water consumption (4). The study found that while there was not a difference between the groups, the participants that had the greatest adherence to dietary tracking maintained the greatest weight loss (4). The overall compliance for returning the tracking sheet was 76\% ± 5\%, leading researchers to believe that dietary tracking is a feasible approach to weight loss maintenance (4).
Self-monitoring of dietary tracking has been traditionally done with a paper and pencil method. This traditional method is being rapidly replaced by electronic hand-held devices like personal digital assistants (PDA), smartphones, and iPads. A recent study conducted by Acharya et al. studied the use of a personal digital assistant (PDA) for dietary self-monitoring among overweight and obese adults versus the standard paper and pencil method in the same population (6). The participants (n=210) were randomized into three groups at the start of the study (6). The groups were a standard paper record (PR), a PDA with dietary and exercise software with customized feedback (PDA+FB), and a PDA with just the dietary and exercise software (PDA) (6). At the end of the trial no difference was found between the PDA and PDA+FB groups so they were combined to compare against the standard paper record group (6). All study participants were provided with a cognitive-behavioral intervention in the form of 20 group sessions during the first six months of the trial (6). Every participant was trained to use their specific self-monitoring tool during the initial two weeks of the intervention (6). During each of the twenty group sessions the standard paper record group turned in their records and the researchers downloaded the data from the PDA groups (6). The study monitored tracking adherence weekly by evaluating if the participant consumed (via diet records) more than 50% of the weekly calorie goal, and if the participant accomplished this they were considered adherent to dietary tracking for that week (6).

At the six month completion mark of the trial 91% or 192 participants of the original 210 completed the 6-month assessment (6). The breakdown of the groups at the six month mark was as follows PR=63, PDA (both groups combined) =129 (6). While both groups had significant weight loss at the completion of the trial, the PDA group
increased their servings of fruits and vegetables and decreased consumption of refined grains significantly (6). The standard paper record group also had a significant decreased total fat intake with increased adherence to self-monitoring (6). The researchers from this study believe that greater adherence to self-monitoring might assist people with becoming more aware of their consumption choices (6).

While the study above combined the PDA and PDA+feedback group at the conclusion of the study due to statistical insignificance between the groups another study sought to find out if a standard paper record, a PDA, or a PDA with feedback was more effective for self-monitoring adherence. This study conducted by Burke et al. used the 6-month assessment data from the SMART Trial which was a 24-month single-center randomized control trial for the behavioral treatment of weight loss (9). All of the intervention groups received standardized behavioral intervention which included: weekly exercise goals, daily dietary goals, groups sessions, and daily self-monitoring of eating and exercise (9). The standard paper record group (PR) was given standardized paper food diaries and given instructions to record the calories and fat grams of foods, all food consumed, and minutes of exercise completed (9). The PDA groups were both provided with Palm Tungsten E2 PDA's that included dietary tracking software, and the PDA plus feedback group had customized software that provided daily feedback messages based on an algorithm from the participants dietary entries (9). This feedback focused on positive reinforcement and guidance on how to obtain goals (9). The participants were monitored for self-monitoring adherence weekly (9). If the participant met more than 50% of the weekly caloric goals the participant was counted as adherent for that week (9). In addition, if the standard paper record group simply did not turn in
the paper record, they were classified as non-adherent for that week (9). The results of this study showed that all three groups had a statistically significant weight loss (P<0.01), and there was not a significant difference between the groups (9). While there was not a significant difference between the groups, the PDA+FB group (63%) had a higher percentage of weight loss greater than or equal to 5% (9). The paper record group had 46% achieve greater than or equal to 5% weight loss, and the PDA without feedback had 49% achieve greater than or equal to 5% weight loss (9). The adherence to self-monitoring was also significantly greater in both of the PDA groups than in the standard paper record group (9). All of the groups lost a significant amount of weight, but only the PDA+FB group had the largest percentage of participants lose greater than 5% body weight (9).

The same group of researchers conducting the SMART Trial described above continued to monitor the participants for a 24-month period (10). This publication compared only the PDA group and the PDA+FB group at the 24-month conclusion of the trial (10). The intervention groups received standardized behavioral intervention which included: weekly exercise goals, daily dietary goals, groups sessions, and daily self-monitoring of eating and exercise (10). Both groups were both provided with Palm Tungsten E2 PDA's that included dietary tracking software, and the PDA plus feedback group had customized software that provided daily feedback messages based on an algorithm from the participants dietary entries (10). Only the PDA + feedback group demonstrated a statistically significant weight loss at the 24 month mark, suggesting that long-term weight loss requires feedback to maintain adherence to self-monitoring for weight loss (10).
In 2012, The Cochran Collaboration published a review article on interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. (28) The review included four weight maintenance studies (n=1603) and 14 weight loss studies (n=2537). The review only included articles containing randomized or quasi-randomized controlled trials that studied interactive computer-based weight maintenance or weight loss. The participants were overweight or obese adults, and the duration of the trial needed to be at least four weeks (28). The studies included had a treatment duration between four and 30 months (28). The studies reviewed had a computer-based intervention group, a minimal intervention group (control, usual care, pamphlets), and an in-person treatment group (28). The computer-based interventions had a greater weight loss than a minimal intervention (usual care, pamphlets) at six months with a mean difference of -1.5kg (95% CI -2.1 to -0.9) (28). The computer-based interventions also had a greater effect at limiting weight regain when compared to the minimal interventions at the six month mark with a mean difference of -0.7kg (95% CI -1.2 to -0.2) (28). While the computer-based interventions were superior to a minimal intervention, the in-person treatment group was superior to both the minimal intervention and computer-based interventions suggestion that direct feedback from a professional may be more effective for losing and maintaining weight loss in overweight or obese adults (28).

Nutrition Education

Comprehensive nutrition and lifestyle education has been found to improve weight loss and physical activity (12). A randomized controlled trial from 2008-2010 that included 144 Hispanic Americans following Roux-en-Y gastric bypass surgery looked at
the effectiveness of a comprehensive nutrition and lifestyle intervention conducted over a 12 month time period (12). The study participants were randomized into one of two groups: the comprehensive nutrition and lifestyle intervention (n=72) or the non-comprehensive approach standard care (n=72) (12).

The comprehensive intervention group received six nutrition and lifestyle education classes (12). The classes were in groups of up to 12 individuals and were provided in either English or Spanish following the individual's language preferences (12). Each session was approximately 90 minutes in duration. In the first session the intervention group received a meal planning guide and a diet, including characteristics of a Hispanic diet and modifications specific to the Hispanic culture (12). The session also included tips for controlling portion sizes, recommendations for avoiding unhealthy foods, and an exchange list for weight management (12). The diet provided to the intervention participants limited calories to 1,400 kcals and recommended a minimum daily protein intake of 60-70g (12). The second session focused on the importance of physical activity after weight loss surgery (12). Session 3, 4, 5, and 6 focused on emotional support and behavior change strategies for weight loss and weight maintenance (12). The comprehensive intervention group also received reminders by email and telephone encouraging them to adhere to self-monitoring of dietary intake and physical activity (12).

The results of this program showed that twelve months after surgery both groups had significant weight loss, but the comprehensive nutrition and lifestyle intervention group experienced a larger reduction in BMI (CN&L 6.48+/-4.37 vs. standard care 3.63 ± 3.41; P<0.001) and had an overall greater excess weight loss (CN&L 80% preoperative
excess weight vs. standard care 64%, P<0.001) (12). The researchers also found that the comprehensive nutrition and lifestyle intervention group had a higher mean intake of protein (P=0.02) and participated in physical activity more often than the non-comprehensive group (CN&L +14min/wk vs. standard care -4 min/wk; P<0.001) (12). These results lead researchers to believe that a comprehensive nutrition and lifestyle education program could be effective in assisting obese individuals to lose weight while having a better diet quality (12).

A feasibility study conducted on overweight and obese breast cancer survivors explored the use of a lifestyle intervention to reduce the recurrence of cancer and the development of other chronic diseases (29). The study participants (n=14) were women >18 yrs of age, a BMI 25-35, diagnosed with Stage I to IIIa breast cancer in the previous 5 years, completed chemotherapy/radiation therapy for at least 3 months, and could fill out study questionnaires in English (29). The exclusion criteria were as follows: plans to join an organized weight loss program, if the participants was already participating in >150 min/wk of moderate to vigorous activity in the past six months, has uncontrolled diabetes, or had any indications that treadmill testing or entry into a diet/exercise program could not be completed by the participant due to health complications (29). The study utilized a single group design to assess the efficacy of the intervention (29). The diet intervention was conducted by a registered dietitian (29). The intervention consisted of 16 group-based sessions and the curriculum followed the Diabetes Prevention Program model (29). The 16 sessions were held over a 24-month period with the sessions being once per week for the first eight weeks and every other week for the duration of the trial (29). The sessions were led by registered dietitians with at least 15 years of experience.
working with breast cancer survivors (29). The diet intervention sessions provided specific strategies to reduce energy intake such as food diaries and daily weighing (29). The results of the study showed that the participants lost a mean of 3.8 ± 5.0 kg (p=0.01), reduced BMI by 1.4 ± 1.9 (p=0.01), reduced total body fat percent by 2.4 ± 2.7% (p<0.01), reduced waist circumference by 4.2 ± 6.6 cm (p=0.03), and reduced hip circumference by 5.5 ± 5.3 (p<0.01) (29). The results of this feasibility intervention has lead researchers to believe that a diet and lifestyle intervention led by registered dietitians could be a feasible strategy to improve outcomes in overweight and obese cancer survivors (29).

The Diabetes Prevention Program was a 27-center randomized controlled trial conducted in the United States (30). The trial evaluated the efficacy and safety of interventions in preventing or delaying diabetes in high-risk individuals (30). The trial compared three treatment groups that were: standard care plus metformin, standard care plus placebo, and intensive lifestyle modification (30). Dietitians were considered an integral role in the programs application (30). The lifestyle intervention consisted of a 16-module lifestyle change curriculum, and each participant was to complete this curriculum with a dietitian on an individual basis in the first 24 weeks of participation in the study (30). The curriculum included sessions on self-monitoring of diet and exercise, reducing fat intake, strategies for eating away from home, stress management, healthy eating to prevent diabetes, and ways to increase physical activity (30). Once the participants completed the first 24 weeks they moved onto a post-core curriculum phase (30). In this phase the dietitian was to contact the participant at least once per month to discuss weight loss intervention goals (30).
The dietitians were able to tailor the intervention to the individual at this stage. While the dietitians were required to meet with the participant at least once per month, the dietitian had the freedom to meet with the participant once per week if that is what they felt was necessary for the participant's success in the program (30). Some participants received weekly sessions, while others only met once per month. Each dietitian used their individual counseling skills to build a bond with the participants to encourage the participants' success in overcoming their individual barrier to change (30). The dietitians tailored post-core classes to meet the needs of each individual participant, and the dietitian could choose from an approved list of classes provided to each center or create their own post-core class (30).

The results of the diabetes prevention program showed that the intensive lifestyle intervention group achieved a mean weight loss of 7% at 1 year of intervention and maintained a 5% weight loss at 3 years (30). The lifestyle intervention group had an average weight loss of 5.6 kg while the metformin group had an average weight loss of 2.1 kg, and the placebo group had a loss of 0.1 kg (31). These results lead researchers to believe that dietitians can play a pivotal role in helping overweight and obese individuals meet their health and weight loss goals through a prescribed curriculum of diet and lifestyle strategies that can be individually tailored for different participant needs.

Another study looked at the efficacy of a dietitian intervention and lipid values in hyperlipidemic men with a history of niacin non-compliance. Niacin is widely prescribed for patients with a combined hyperlipidemia since it lowers VLDL and LDL while increasing HDL (32). Niacin is also poorly tolerated in some patients and can have a high non-compliance rate due to adverse side effects (32). The studies main outcome measures
were serum total cholesterol, low-density lipoprotein cholesterol, triglycerides, if the cost of medical nutrition therapy for 1 year would be less than lipid-lowering medications, and to evaluate if eight weeks of medical nutrition therapy is effective enough to remove a patient from lipid-lowering medications (32). The study looked at medical records of 73 male veterans with hyperlipidemia and then screened by telephone for niacin compliance (32). The number of subjects that completed the study was 43 (32). The subjects that self-reported discontinued use of a prescribed niacin regimen were then determined to be non-compliant (32). The participants had dietitian intervention visits at week 0, 2, 4, 6, and 7 (32).

The study resulted in significant reductions in total cholesterol, low-density lipoprotein cholesterol, total triglycerides, and BMI from baseline (32). There was not a control group in this study (32). There was also a significant increase in high-density lipoprotein levels (32). The researchers also conducted a cost savings analysis and found that medical nutrition therapy provided $638.35 net cost benefit per patient when compared with statin therapy (32). This study illustrates the efficacy of dietitian intervention when compared with pharmacology or standard care in hyperlipidemic patients.

A 12-month study conducted in 2004, by Wolf and associates evaluated a dietitian-led intervention to reduce waist circumference and weight in obese patients with type 2 diabetes. The study provided either a registered dietitian intervention (n=74) or standard care (n=73) (33). The participants that were assigned to a registered dietitian intervention received a total of 6 individual meeting, 6 one-hour small group sessions, and telephone communication with the dietitian case manager to assess waist
circumference, weight, lab results, patient care issues with physician, goal-setting, and nutrition education (33). The standard care participants were provided with educational materials and given the freedom to belong to other weight loss or diabetes care programs (33).

The results of the study indicated that the dietitian-led intervention group improved significantly over the standard care group in several areas (33). The dietitian intervention group had a mean weight change of -2.4kg, while the standard care group had a mean change of +0.6kg (33). The dietitian intervention group also had a mean change of -5.5cm for waist circumference while the standard care group had a mean change of -1.4cm (33). The dietitian intervention group also took fewer prescription medications per day (p=0.03). The health related quality of life questionnaire also indicated that the dietitian intervention group improved in 7 of the 9 domains when compared to the standard care group (p<0.05) (33). These results indicate that a registered dietitian-led intervention is superior to standard care in obese patients with type 2 diabetes (33).

Another study involving diabetic participants looked at the effect of the use of dietitian education on metabolic and cardiovascular health after a 24 month intervention (34). The participants studied were assigned to a control group with conventional endocrinologist follow up (n=50) or an on-site dietitian education intervention provided every 3 months with an annual endocrinologist follow up appointment (n=51) (34).

The results of the study showed that weight (p=0.04), BMI (p=0.009) and waist circumference (p=0.01) were significantly different between the control group and the dietitian education group (34). Hemoglobin A1C was reduced significantly in the
dietitian education group when compared to the control group (p=0.04) with a drop of 0.6% vs. the control -0.3% (34). The dietitian education group had improved energy intake as well with -548 kcal/day vs. the control -74 kcal/day (p=0.04) (34). The results from this study indicate that dietitian education should serve, at least in part, as standard care with annual endocrinologist follow-up to reduce risk of cardiovascular disease in diabetic patients (34).

A study conducted by Welty et al. examined the effect of onsite dietitian counseling of weight loss and lipid levels in an outpatient physician office (35). The study utilized a weight-loss program that focused on assessment of cardiovascular risk factors and lifestyle changes that included diet and exercise (35). The program used dietitian counseling on two occasions (35). The study stressed that the dietitian visits in this study are fully reimbursable and have strong implications for a cost-effective strategy to combat obesity (35).

The study included eighty overweight or obese patients, and all of the participants were assigned to treatment (35). This study did not utilize a control group, and the results of this study are significant (35). The participants (n=64) lost a total of 5.6% of total body weight at a mean follow-up point of 1.75 years, and 81% of participants maintained an average weight loss of 5.3% at 2.6 years (35). The participants also improved their lipid profile by lowering LDL cholesterol by 9.3%, increasing HDL by an average of 9.6%, and lowering triglycerides by an average of 34% (35).

These data show that dietitian education provided in an outpatient physician office provides significant reductions in weight and improvements in lipid profile (35).
The intervention utilized is also a fully reimbursable service indicating that cost-effective reimbursable approaches are available to combat obesity (35).

Linking Treatments with Technology:

Social Cognitive Theory and Technology

Social cognitive theory is frequently used in weight-loss and physical activity interventions (36). Social cognitive theory asserts that the less individuals are aware of how their lifestyle affects their health, the less likely the individuals are to change those lifestyle factors (36). Knowledge of the effects of one's behavior creates a precondition for change, but self-influences are necessary to overcome the barriers to adopting new lifestyle behaviors (36).

The strongest self-influence, according to social cognitive theory, is perceived self-efficacy (36). Self-efficacy is one's belief that they are capable of completing a task (36). Having self-efficacy that one can complete a task or exercise self-control can make the difference between losing self-control and exercising it (36). Self-efficacy regulates motivation by influencing the goals individuals set for themselves (36). It also determines the commitment to the goal and the expectations the individual has when they reach that goal (36). The individual's personal belief that they have the power to achieve their goals determines how long an individual will continue to try to reach that goal in the face of obstacles and failure (36).

Bandura has determined that there are four main sources of influence when developing beliefs about self-efficacy. The first source, and strongest, is through mastery experiences (36). Mastery experiences build a portfolio of successes and this strengthens a person's level of self-efficacy (36). The successes must come from experiences that
challenge the individual by allowing them to overcome obstacles by persistent effort (36).
If the success comes quickly and without obstacles the individual will expect quick results and will be easily overcome by failures (36).

The second source of building self-efficacy is through vicarious experiences (36). This source is also known as modeling. This is where an individual in a social situation sees a similar individual have success achieved by sustained effort to reach a goal (36). Modeling provides a social standard where an individual can judge their own capabilities as well as the model can teach the observer effective strategies for reaching a goal with environmental obstacles (36).

The third source of building self-efficacy is through social persuasion (36). If an individual is persuaded verbally that they are capable of mastering a given task they are more likely to put forth greater effort to accomplish that task (36). The fourth source is an individual's reliance on their somatic and emotional states when making decisions on their self-efficacy to complete a task. A person will evaluate their stress response, mood state, and strength and stamina when assessing their ability to complete a task (36). In order to increase an individuals’ self-efficacy it is important to foster positive mood states, and reduce physical and mental stressors (36). Social cognitive theory requires that individual’s set accurate goals and monitor their behavior in order to achieve those goals (36).

A study conducted by Palmeira et al. explored predicting short-term weight loss and the four leading health behavior change theories. The study subjects were overweight or obese women (n=142), older than 24 years of age, premenopausal and not currently pregnant, free from major disease, and have a BMI greater than 24.9 kg/m2 (22). The
women were randomized into one of four groups: Social Cognitive Theory (SCT), Theory of Planned Behavior (TPB), Transtheoretical Model (TTM), and Self-Determination Theory (SDT) (22). The researchers found that the SCT and TTM groups represented the strongest models for weight management (p<0.001). In the SCT group changes in self-efficacy accounted for 20.5% of the weight change variance (22). Both the SCT and TTM theories include self-efficacy within the behavior change model (22).

A web-based randomized controlled trial was conducted by Collins et al. This study evaluated a commercial web-based weight loss and weight maintenance program in overweight and obese adults (23). The web-based weight loss and weight maintenance program was designed around the social cognitive theory of behavior change (23). The key components of social cognitive theory that were targeted in the program were: self-efficacy (goal-setting, self-monitoring, body measurements, exercise, and diet), outcome expectations (knowledge of web-based components), modeling (interactive website demonstrations and features), and social support (forums, blogs, email contact, and feedback) (23). The participants were randomized to a control, basic, and enhanced program groups (23). The control group was a 12-week wait list; at the end of 12 weeks these participants were then randomized into one of the intervention groups. The basic group received free access to the study website with the following features: individualized daily calorie targets, online food and exercise diaries, weekly menu plans with a grocery list, weekly educational tips and challenges, online forums for social support, daily and weekly calculations of nutrition summaries and energy balance, weekly newsletters, self-monitoring of body weight and waist circumference reminders, goal-setting options with graphical display (23). The enhanced group received the basic
features plus these additional features: a personalized enrollment report which suggests weight loss goals and key behaviors the participant will need to change to reach the goals, weekly automated personal feedback for nutrition and exercise levels based on the participants entries into the online diary, weekly feedback on their current level of weight loss success, and a reminder schedule for diary compliance (23). The results showed that the basic and enhanced groups lost a significant amount of weight and had a significant reduction in waist circumference when compared with the control groups (23). The study also found significant between-group differences in the percentage of participants who lost greater than or equal to 10% of their baseline weight (control: 0%, basic: 18%, enhanced 28%; p<0.001), suggesting that the enhanced version of the web-site allowed participants to lose the greatest amount of weight (23). The enhanced version group also had the least amount of participants that gained weight at 17% (p<0.001) (23). This study illustrates that social cognitive theory based weight loss interventions can be successful in an online format.

A study conducted by Cowan et al. sought to quantify the presence of health behavior theory constructs in iPhone apps that target physical activity. The study design was a content analysis of health behavior theory within iPhone applications used to target physical activity with the App Store's Health & Fitness category (37). The researchers returned an initial 1,336 possible apps but after examining the apps for exclusion criteria the researchers evaluated 127 total applications. The coders downloaded the apps, explored all functions, and then used a theory-based instrument to do content analysis of each application for the top four behavior theories (Health Belief Model, Transtheoretical Model, Theory of Planned Behavior, and Social Cognitive Theory) (37). Social cognitive
theory accounted for 20.38% ± 3.40 (mean ± SD) of the behavior constructs in the top 10% of applications (top 10% is based on the total theory score) (37). The Health Belief Model had the highest percentage in the top 10% of applications with 32.00% ± 4.54 (mean ± SD) (37). The authors of this study concluded that the iPhone apps included very few behavior change constructs (37). The authors also indicated that there is an available opportunity for health professionals to partner with app developers to incorporate behavior change constructs into the iPhone apps (37). The available research suggests that a weight loss intervention that has social cognitive theory incorporated into the program increases participants success, and incorporating these constructs into the iPhone applications would allow for greater success when using an app for weight loss (22, 23).
CHAPTER 3

METHODS

Participants

Thirty healthy individuals with no unresolved medical conditions or recent changes in prescription medications, who were between the ages of 19 and 58 years of age, owned an iPhone, had a BMI > 24 kg/m², and desired to lose weight were recruited for this study. There were 130 responses to the study ad through Survey Monkey (see Appendix D for advertisement). Of those 130 responses, 46 individuals did not qualify from the initial screening criteria. The remaining 84 individuals were sent an email asking them to schedule an in-person visit for the final screening. Of the 84 individuals asked to participate, 36 were screened. Six individuals did not meet the study criteria. Participants were willing to track food intake daily for an eight week period via an app on their iPhone and travel to the downtown campus of Arizona State University on four separate occasions. The four research visits included the consenting visit prior to the start of the study and visits at study weeks 0, 4, and 8. The exclusion criteria included the use of any medications that affected weight status in the past three months, adherence to a weight loss diet plan within the past 3 months, and an unwillingness to provide a blood sample in a fasted state on three occasions (see Appendix E for Health History Questionnaire). All subjects provided written and informed consent prior to participation in the study (see Appendix A), and Arizona State University Institutional Review Board approved this research prior to initiation of recruitment (see Appendix B & C).

Study Protocol
Eligible participants were randomized into three smartphone app groups. The feedback control (MP-C) participants (n=10) used the diet tracking smartphone app “My Daily Plate” that encourages users to record foods consumed each day to meet the USDA’s MyPlate food recommendation guidelines (http://cookingdistrict.com/mydailyplate ’GigaChef, LLC’). The picture (PIC-C) participants (n=10) tracked their daily dietary intake by taking pictures of all foods and beverages ingested each day using the MyDietitian app (http://www.mydietitian.com 'MyDietitian, LLC'). Body weight and physical activity is also tracked by the participant via a separate section of each app. The participant entered a daily weight from an at home scale to track weight change over time. The physical activity type and frequency is entered by the participant, and can be tracked over time within the app. While useful for the participant, body weight and physical activity was not tracked through the application by the researchers; rather, these factors were quantified at the test facility during study visits. Educational videos were available to view within the MyDietitian app if the user chose to view them. The picture plus registered dietitian (PIC-RD) participants (n=10) used the MyDietitian app described in the PIC-C group but also received daily feedback from a registered dietitian that specifically addressed the individual’s daily dietary intake and eating patterns. The registered dietitians provided feedback based on the participants’ uploaded images of their meals, and were not provided any additional information about the participants’ goals regarding weight loss. The registered dietitians were trained to use their professional judgement when deciding how best to counsel the participants on their diet, and were not given specific guidelines for feedback. The participants did not have a direct link to communicate with the dietitians, although the participant was able to use the
description box feature on the app to provide more information about meals consumed. This feedback was in the form of a 3-4 sentence text message. The app has the capability to send the user a short video message, but this feature was not utilized during this study.

The participants received only text feedback. All participants received generalized instructions on their respective iPhone app (see Appendix H, I, & J). For two consecutive days on three occasions during the trial (trial week 1, 4, and 8) participants were asked to log onto the ASA24 web site operated by the National Cancer Institute to record dietary intakes. The website provides data entry instructions to the user as the website is being used, no additional instructions were provided to the participants. At each study visit, participants were weighed on a calibrated Tanita scale (model #TBF300A, Tanita Corp. Arlington Hts, IL) and height (visit 1 only), waist circumference, and hip circumference were recorded. The participants' blood pressures were also taken at each visit with a Medline blood pressure cuff (model #MDS2001, Mundelein, IL). For this measure, the participants' upper arm was bare and supported, and the cuff was placed approximately one inch above the bend in the elbow. All participants were sitting in a chair with their back supported, legs uncrossed, and feet on the floor. A fasting blood sample (2 TBLS) was collected on three occasions (trial visits 2, 3 & 4) and analyzed for bio-markers of health including fasting blood glucose, insulin, blood cholesterol, lipid panel (total triglycerides, HDL, CRP (a measure of inflammation in the body)), and A1c (a diabetes risk assessment measure) (see appendices N-K). Blood samples were collected from serum and plasma in a red top tube (no additive), EDTA, and Na Fluoride vacutainer tubes. A1c was analyzed on whole blood from the EDTA sample. Samples were spun at 3000rpm for fifteen minutes and plasma and serum aliquots were saved in microfuge
tubes and frozen at -80 degrees until analysis. Insulin was measured on serum. Lipids and CRP were measured on EDTA plasma, and glucose was measured on Na Fluoride plasma. Participants were also asked to fill out a validated physical activity questionnaire (38) on trial weeks 1, 4, and 8 (Appendix F). All participants that completed the trial filled out an exit survey on trial week 8 (Appendix G). Participants were also asked to fill out a physical activity questionnaire on trial weeks 1, 4, and 8 (Appendix F). All participants that completed the trial filled out an exit survey on trial week 8 (Appendix G).

The participants' compliance was determined by the number of days completed. The PIC-C and PIC-RD groups were considered compliant for the day if the participant uploaded at least one picture onto the MyDietitian app. The MP-C group was considered compliant if they emailed a picture of their MyPlate at the end of the day to the researcher. Adherence to protocol was encouraged by sending all participants weekly emails encouraging them to continue with the study and thanking them for their participation. The participants also received a $15 Target gift card at the fourth-week visit and at the eight-week visit to encourage attendance at follow-up visits during the trial (See Appendix R for detailed timeline).

Statistical Analysis

All data were analyzed using The Statistical Package for the Social Sciences (SPSS 18.0 for Windows, SPSS Inc., Chicago, IL). Mean, standard deviation, and range of data are reported using descriptive statistics. Data were checked for normality and transformed if needed to achieve normality. Repeated measures ANOVA was used to examine difference between groups over time. Due to a small sample size the non-
parametric Kruskal-Wallis Test was used to assess if there was a significant mean difference between groups over time. Baseline data by group were assessed using Oneway ANOVA; nominal data by group were assessed using Pearson's Chi Square analysis.
CHAPTER 4

RESULTS

Thirty participants with iPhone smartphones were recruited into this study to determine if feedback from a registered dietitian while using an iPhone app for dietary tracking would improve weight, biomarkers of health, and adherence to dietary tracking (PIC-RD) when compared to participants tracking with pictures alone (PIC-C) or an iPhone app designed to mimic the USDA's MyPlate (MP-C). Thirty participants began the trial and during the trial six participants declined to continue to participate, leaving twenty-four participants that completed the eight week trial. Five of the six participants felt it was too time consuming to continue to meet on campus for follow-up appointments and one subject switched phone plans and no longer owned an iPhone. All subjects were recruited via an online survey with distribution through the Arizona State University listserves. After completing an initial screening the participants were randomized into one of three groups; MP-C (n=10), PIC-C (n=10), and PIC-RD (n=10). There was no significant mean difference in demographics (Table 1) or anthropometric characteristics (Table 2) between the groups.
Table 1: Demographic Data

<table>
<thead>
<tr>
<th></th>
<th>MP-C (n=10)</th>
<th>PIC-C (n=10)</th>
<th>PIC-RD (n=10)</th>
<th>P-Value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>27.1 +/- 6.0</td>
<td>28 +/- 8.9</td>
<td>28.8 +/- 11.3</td>
<td>0.602</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1.000</td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some College</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>0.387</td>
</tr>
<tr>
<td>College Graduate</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.535</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian/Alaskan Native</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.243</td>
</tr>
<tr>
<td>African American</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.501</td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Previously smoked, but quit</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0.843</td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Pearson's Chi Square

Table 2: Anthropometric Characteristics Initial Screening

<table>
<thead>
<tr>
<th></th>
<th>MP-C (n=10)</th>
<th>PIC-C (n=10)</th>
<th>PIC-RD (n=10)</th>
<th>P-Value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waist (in)</td>
<td>38.3 +/- 7.2</td>
<td>39.7 +/- 7.4</td>
<td>38.6 +/- 4.2</td>
<td>0.871</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>195.5 +/- 48.6</td>
<td>197.5 +/- 62.2</td>
<td>195.4 +/- 29.4</td>
<td>0.994</td>
</tr>
<tr>
<td>Hip (in)</td>
<td>46.1 +/- 7.6</td>
<td>45.8 +/- 7.0</td>
<td>45.6 +/- 2.3</td>
<td>0.984</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td>123.6 +/- 17.4</td>
<td>122.5 +/- 13.7</td>
<td>122.6 +/- 9.4</td>
<td>0.981</td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
<td>76.7 +/- 9.7</td>
<td>84.2 +/- 10.7</td>
<td>79.1 +/- 9.1</td>
<td>0.236</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>31.4 +/- 7.3</td>
<td>32.5 +/- 8.1</td>
<td>30.3 +/- 3.4</td>
<td>0.754</td>
</tr>
<tr>
<td>Body Fat (%) weight</td>
<td>34.4 +/- 9.1</td>
<td>36.9 +/- 5.9</td>
<td>36.9 +/- 6.7</td>
<td>0.683</td>
</tr>
<tr>
<td>Exercise (MET)</td>
<td>26.7 +/- 18.3</td>
<td>31.7 +/- 31.0</td>
<td>28.0 +/- 19.6</td>
<td>0.887</td>
</tr>
</tbody>
</table>

One-Way ANOVA
There was no significant difference in attrition rates between groups. 100% of the MP-C group, 70% of the PIC-C group, and 70% of the PIC-RD completed the eight week study. There was an overall completion rate of 80%. There was no significant mean difference in anthropometric characteristics between groups at the completion of the eight week trial (Table 3). At the completion of the 8-week trial, body weight did not change among groups (p=0.896) or over time (p=0.998) (Figure 1). Similarly, body fat did not change among groups (p=0.298), but body fat tended to increase in all participants over time p=0.055) (Figure 2). Waist and hip circumferences did not change among groups; however, both measures decreased significantly over time in all participants (p<0.001).
Table 3: Anthropometric Characteristics Before and After Treatment

<table>
<thead>
<tr>
<th></th>
<th>MP-C (n=10)</th>
<th>PIC-C (n=7)</th>
<th>PIC-RD (n=7)</th>
<th>P-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waist (in)</td>
<td></td>
<td></td>
<td>Group</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Pre: 38.3 +/- 6.7</td>
<td>Pre: 41.8 +/- 9.7</td>
<td>Pre: 37.7 +/- 4.6</td>
<td>0.529</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Post: 37.2 +/- 6.4</td>
<td>Post: 40.2 +/- 10.8</td>
<td>Post: 36.9 +/- 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: -1.25</td>
<td>Median Δ: -1.50</td>
<td>Median Δ: -0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight (lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 195.8 +/- 48.6</td>
<td>Pre: 206.5 +/- 70.3</td>
<td>Pre: 194.8 +/- 28.5</td>
<td>0.896</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>Post: 196.0 +/- 47.3</td>
<td>Post: 207.3 +/- 71.9</td>
<td>Post: 193.8 +/- 27.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 0.10</td>
<td>Median Δ: 0.80</td>
<td>Median Δ: 0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hip (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 46.4 +/- 7.2</td>
<td>Pre: 45.9 +/- 7.4</td>
<td>Pre: 45.6 +/- 2.1</td>
<td>0.864</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Post: 45.0 +/- 6.7</td>
<td>Post: 44.7 +/- 8.2</td>
<td>Post: 44.2 +/- 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: -1.75</td>
<td>Median Δ: -1.5</td>
<td>Median Δ: -0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systolic Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre:112.2 +/- 13.1</td>
<td>Pre: 125.1 +/- 19.3</td>
<td>Pre: 109.9 +/- 5.3</td>
<td>0.391</td>
<td>0.419</td>
</tr>
<tr>
<td></td>
<td>Post: 115.7 +/- 10.1</td>
<td>Post: 123.9 +/- 17.2</td>
<td>Post: 113.4 +/- 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 5.00</td>
<td>Median Δ: -3.00</td>
<td>Median Δ: 3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diastolic Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 71.1 +/- 8.8</td>
<td>Pre: 84.3 +/- 14.6</td>
<td>Pre: 74.4 +/- 5.1</td>
<td>0.904</td>
<td>0.735</td>
</tr>
<tr>
<td></td>
<td>Post: 72.7 +/- 9.3</td>
<td>Post: 84.4 +/- 13.2</td>
<td>Post: 77.7 +/- 11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 1.50</td>
<td>Median Δ: 0.00</td>
<td>Median Δ: -2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Body Mass Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 31.4 +/- 7.2</td>
<td>Pre: 33.6 +/- 9.3</td>
<td>Pre: 29.4 +/- 3.2</td>
<td>0.921</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td>Post: 31.5 +/- 7.1</td>
<td>Post: 33.7 +/- 9.5</td>
<td>Post: 29.3 +/- 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 0.00</td>
<td>Median Δ: 0.10</td>
<td>Median Δ: 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Body Fat (% weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 35.5 +/- 9.5</td>
<td>Pre: 37.5 +/- 7.0</td>
<td>Pre: 35.9 +/- 6.8</td>
<td>0.298</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>Post: 36.8 +/- 8.4</td>
<td>Post: 39.3 +/- 7.4</td>
<td>Post: 35.8 +/- 6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 1.60</td>
<td>Median Δ: 0.40</td>
<td>Median Δ: -0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercise (MET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre: 29.7 +/- 21.5</td>
<td>Pre: 41.7 +/- 42.0</td>
<td>Pre: 25.9 +/- 15.7</td>
<td>0.833</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>Post: 33.3 +/- 27.4</td>
<td>Post: 39.7 +/- 36.3</td>
<td>Post: 33.6 +/- 33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median Δ: 3.50</td>
<td>Median Δ: -3.00</td>
<td>Median Δ: 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adherence %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.3 +/- 23.5</td>
<td>53.0 +/- 27.5</td>
<td>68.3 +/- 38.1</td>
<td>0.47</td>
<td></td>
</tr>
</tbody>
</table>

There was a significant mean difference from initial screening in SBP (p<0.001) and %Fat (p<0.001) using a paired sample t-test, there was no significant difference between groups.

MET=standard metabolic equivalent unit used to estimate the amount of oxygen used by the body during physical activity.

**Kruskal-Wallis Test
***Repeated Measures ANOVA
There was no significant change in blood biomarkers between groups at the completion of the eight week trial (Table 4). However, HDL cholesterol rose significantly (+6%), hemoglobin A1c fell significantly (-3%) in the participants overall during the trial (P<0.05; Table 4), and there was a trend towards significance between groups for glucose (p=0.084).
Table 4: Blood Biomarkers of Health Before and After Treatment

<table>
<thead>
<tr>
<th></th>
<th>MP-C (n=10)</th>
<th>PIC-C (n=7)</th>
<th>PIC-RD (n=6)</th>
<th>P-Value**</th>
<th>P-Value***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group Interaction</td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 173.8 +/- 35.7</td>
<td>103.5 +/- 38.7</td>
<td>101.3 +/- 36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 176.3 +/- 39.3</td>
<td>106.7 +/- 38.9</td>
<td>104.5 +/- 37.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 4.25</td>
<td>4.25</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 53.8 +/- 19.0</td>
<td>53.8 +/- 19.0</td>
<td>53.8 +/- 19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 57.4 +/- 17.4</td>
<td>57.4 +/- 17.4</td>
<td>57.4 +/- 17.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglyceride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 122.1 +/- 59.3</td>
<td>122.1 +/- 59.3</td>
<td>122.1 +/- 59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 97.2 +/- 51.5</td>
<td>97.2 +/- 51.5</td>
<td>97.2 +/- 51.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: -14.91</td>
<td>-14.91</td>
<td>-14.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDLc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 95.6 +/- 29.5</td>
<td>95.6 +/- 29.5</td>
<td>95.6 +/- 29.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 99.5 +/- 35.0</td>
<td>99.5 +/- 35.0</td>
<td>99.5 +/- 35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 3.37</td>
<td>3.37</td>
<td>3.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 4.5 +/- 5.7</td>
<td>4.5 +/- 5.7</td>
<td>4.5 +/- 5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 3.8 +/- 4.4</td>
<td>3.8 +/- 4.4</td>
<td>3.8 +/- 4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: -0.18</td>
<td>-0.18</td>
<td>-0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 92.1 +/- 7.1</td>
<td>92.1 +/- 7.1</td>
<td>92.1 +/- 7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 94.0 +/- 7.1</td>
<td>94.0 +/- 7.1</td>
<td>94.0 +/- 7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 2.50</td>
<td>2.50</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(uU/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 14.2 +/- 8.0</td>
<td>14.2 +/- 8.0</td>
<td>14.2 +/- 8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 13.4 +/- 6.7</td>
<td>13.4 +/- 6.7</td>
<td>13.4 +/- 6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 0.34</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 3.3 +/- 2.1</td>
<td>3.3 +/- 2.1</td>
<td>3.3 +/- 2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 3.2 +/- 1.8</td>
<td>3.2 +/- 1.8</td>
<td>3.2 +/- 1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: 0.13</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre: 5.1 +/- 0.3</td>
<td>5.1 +/- 0.3</td>
<td>5.1 +/- 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post: 5.0 +/- 0.3</td>
<td>5.0 +/- 0.3</td>
<td>5.0 +/- 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median: -0.15</td>
<td>-0.15</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There was no significant mean difference between groups at baseline. One participant in the PIC-RD group was unable to give blood.

HOMA-IR=Homeostasis model assessment-estimated insulin resistance ((fasting plasma insulin x fasting plasma glucose)/ 22.5)

LDLc=total cholesterol – (HDL + Triglycerides/5)

**Kruskal-Wallis Test

***Repeated Measures ANOVA
An exit survey was given at the completion of the eight week trial. The exit survey consisted of seven statements. Each statement required the participant to mark on a line showing how strongly they agreed or disagreed with the statement listed. The higher the score, the more the participant agreed with the statement listed (Table 5). There was a significant mean difference between the MP-C and PIC-RD group for statement 1 (p=0.018). The statement was “Using the iPhone app was helpful in keeping me on track toward my weight loss goal”. The PIC-RD group agreed with this statement significantly more than the MP-C group (p=0.018).

Table 5: Exit Survey

<table>
<thead>
<tr>
<th>Statement</th>
<th>MP-C (n=10)</th>
<th>PIC-C (n=7)</th>
<th>PIC-RD (n=7)</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Using the iPhone app was helpful in keeping me on track toward my weight loss goal.</td>
<td>-1.45 +/- 5.16</td>
<td>1.58 +/- 2.86</td>
<td>3.23 +/- 0.06</td>
<td>0.049**</td>
</tr>
<tr>
<td>2. The app I used for recording my daily food intake was too time consuming to be practical.</td>
<td>-1.85 +/- 4.64</td>
<td>-2.39 +/- 2.85</td>
<td>-1.45 +/- 4.66</td>
<td>0.917</td>
</tr>
<tr>
<td>3. I was more aware of my eating habits because I was recording my food intake.</td>
<td>3.34 +/- 3.21</td>
<td>1.86 +/- 2.61</td>
<td>4.51 +/- 4.25</td>
<td>0.359</td>
</tr>
<tr>
<td>4. I am more confident in my ability to lose weight after participating in this study.</td>
<td>-1.07 +/- 3.59</td>
<td>0.80 +/- 3.40</td>
<td>2.19 +/- 2.82</td>
<td>0.156</td>
</tr>
<tr>
<td>5. I have learned much about my food habits and my eating has improved by participating in this study.</td>
<td>1.53 +/- 3.49</td>
<td>0.14 +/- 4.17</td>
<td>2.94 +/- 2.66</td>
<td>0.344</td>
</tr>
<tr>
<td>6. I will continue to record my food intake after the study is over.</td>
<td>1.74 +/- 4.20</td>
<td>0.66 +/- 3.50</td>
<td>0.18 +/- 4.01</td>
<td>0.709</td>
</tr>
<tr>
<td>7. Having a dietitian providing feedback to my diet on a daily basis was (or would have been) beneficial.</td>
<td>4.06 +/- 2.51</td>
<td>3.33 +/- 3.25</td>
<td>5.09 +/- 3.15</td>
<td>0.540</td>
</tr>
</tbody>
</table>

*One-Way ANOVA
** Significant mean difference between MP-C and PIC-RD group (p=0.018, LSD post-hoc)

Participants’ diets were analyzed over the eight week period using 24-hour diet recalls that were entered into the ASA24 database at baseline, 4 weeks, and 8 weeks. The participants in all groups significantly reduced their mean energy intake from baseline at
the completion of the 8 week trial (p=0.022). There was no significant change in the other measures of diet quality over the eight week period or between groups (Table 6).

Table 6: Diet Quality

<table>
<thead>
<tr>
<th></th>
<th>MP-C 0 (n=6)</th>
<th>PIC-C 0 (n=4)</th>
<th>PIC-RD 0 (n=3)</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>1654.7 +/- 903.4</td>
<td>2084.2 +/- 312.6</td>
<td>2616.1 +/- 1200.4</td>
<td>0.022</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>1390.7 +/- 490.9</td>
<td>1550.1 +/- 391.7</td>
<td>1746.3 +/- 604.9</td>
<td>0.865</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>1033.8 +/- 398.5</td>
<td>1541.4 +/- 295.1</td>
<td>2025.7 +/- 84.8</td>
<td></td>
</tr>
<tr>
<td>Fat % energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>30.6 +/- 8.1</td>
<td>33.5 +/- 9.7</td>
<td>38.8 +/- 2.4</td>
<td>0.715</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>29.2 +/- 16.0</td>
<td>40.4 +/- 9.7</td>
<td>41.1 +/- 7.1</td>
<td>0.743</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>26 +/- 14.7</td>
<td>31.6 +/- 3.5</td>
<td>46.8 +/- 14.4</td>
<td></td>
</tr>
<tr>
<td>Vitamin C (mg/1000kcal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>36.2 +/- 49.9</td>
<td>37.3 +/- 20.4</td>
<td>23.0 +/- 23.9</td>
<td>0.625</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>63.26 +/- 101.0</td>
<td>29.7 +/- 15.4</td>
<td>41.8 +/- 14.4</td>
<td>0.900</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>72.0 +/- 75.6</td>
<td>18.5 +/- 22.4</td>
<td>25.8 +/- 11.6</td>
<td></td>
</tr>
<tr>
<td>Fiber (g/1000kcal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>12.7 +/- 8.9</td>
<td>10.1 +/- 2.5</td>
<td>7.77 +/- 2.1</td>
<td>0.311</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>16.4 +/- 18.4</td>
<td>7.6 +/- 1.0</td>
<td>9.20 +/- 2.7</td>
<td>0.962</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>11.3 +/- 4.2</td>
<td>7.3 +/- 1.0</td>
<td>5.86 +/- 3.0</td>
<td></td>
</tr>
<tr>
<td>Sodium (mg/1000kcal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>1814.4 +/- 494.7</td>
<td>1635.5 +/- 224.3</td>
<td>1835.9 +/- 403.2</td>
<td>0.421</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>2286.3 +/- 748.5</td>
<td>2115.7 +/- 690.4</td>
<td>1718.5 +/- 309.5</td>
<td>0.486</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>1887.2 +/- 141.8</td>
<td>1697.7 +/- 367.3</td>
<td>2257.8 +/- 349.6</td>
<td></td>
</tr>
<tr>
<td>Sugar (g/1000kcal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Weeks</td>
<td>47.2 +/- 27.1</td>
<td>52.0 +/- 25.4</td>
<td>31.4 +/- 13.9</td>
<td>0.996</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>59.1 +/- 52.1</td>
<td>40.1 +/- 21.3</td>
<td>29.6 +/- 17.6</td>
<td>0.839</td>
</tr>
<tr>
<td>8 Weeks</td>
<td>41.0 +/- 14.9</td>
<td>54.4 +/- 23.9</td>
<td>35.2 +/- 26.9</td>
<td></td>
</tr>
</tbody>
</table>

*Two-Way ANOVA
Adherence to self-monitoring was assessed at the completion of the trial. The researchers obtained a daily upload log from the MyDietitian app developers. The participants in these groups were considered adherent for the day if they uploaded at least once during the day. The MP-C group was asked to email a picture of their MyPlate at the end of each day. The MP-C group participants were considered adherent for the day if they sent an email containing a picture of their MyPlate. Adherence to the phone app explained 29% of the variation in all of the study participants' weight change, and there was a significant correlation between % adherence and weight change when all groups were combined (r=0.536, p=0.007). There was not a significant difference in adherence between groups (p=0.467). The correlation between % adherence and weight change shows a trend towards significance in the feedback control group (p=0.095) and the PIC-RD group (0.110).
CHAPTER 5
DISCUSSION

Widely marketed techniques for weight management have been embraced by the general public. It is currently estimated that in 2013 the United States weight loss market will reach a value of $66.5 billion per year (39). While the weight loss market is largely composed of weight loss supplements, food products, diet drugs, and diet programs; market researchers anticipate more technology-based weight loss programs to appear in the 2013 market (39). In 2012, Flurry reported that there are 165 million active Android and Apple devices in the United States and that these devices are used by 78% of the adult population ages 15-64 (40). These mobile devices are now being used to target weight loss. It is estimated that by 2017, the mobile health app market will be worth upwards of $26 billion dollars (41). Currently there are more than 97,000 mobile apps available related to health and fitness (41). While this market is becoming very profitable, there is very little research published on the value of smartphone apps for weight loss. At this time, there is no available published research on the use of a smartphone app with feedback from a registered dietitian for dietary intake tracking and weight loss.

This research compared the use of a new dietary self-monitoring smartphone app (MyDietitian) with and without the feedback of a registered dietitian to a feedback control app that encouraged adherence to the USDA’s MyPlate dietary guidelines. We hypothesized that the use of the smartphone app with feedback from a registered dietitian would provide a significant improvement in weight loss and bio-markers of health when compared to the non-feedback and feedback control app groups. We also hypothesized that the use of the smartphone application with feedback from a registered dietitian would
improve adherence to dietary tracking when compared to the non-feedback and feedback control group. Finally, we hypothesized that the use of the smartphone application with feedback from a registered dietitian would improve diet quality when compared to the non-feedback and feedback control group.

All study participants had a desire to lose weight and had a BMI of at least 24 kg/m2. The participants were not provided advanced training on their assigned phone application. The study was designed to mimic free-living individuals that downloaded apps for personal use. There was no significant difference in demographic or anthropometric characteristics between groups. All participants were sent weekly emails thanking them for their participation in the study.

All participants were assessed for anthropometric characteristics and blood bio-markers of health on three separate occasions (week 0, 4, 8). All of the groups significantly reduced their waist and hip circumference (p<0.001) at the completion of the trial. All of the groups significantly increased HDL levels (p=0.012), decreased A1C levels (p=0.002), and decreased 24-h calorie intakes at the completion of the trial. However, there were no significant differences between groups in any of the anthropometric markers or blood bio-markers of health.

The results indicate that while significance was not found the PIC-RD group was the only diet group to lose weight. A study conducted with a larger sample size may produce significant results. A power calculation based on data derived from this investigation indicates that ~17 participants per group are necessary to observe a 4lb weight change between groups over 8 weeks at 80% power. However, 250 participants
per groups are necessary if the change in weight is only expected to be 1 pound between groups.

The energy intake and diet quality of the participant were analyzed over the eight week period by having the participants enter 24-hour diet recalls into the ASA24 database at baseline, 4 weeks, and 8 weeks. Overall, participants significantly reduced their mean energy intake at trial week 8 versus baseline (p=0.022). There was no significant change in measures of diet quality (vitamin C, fiber, sodium, and sugar) over the eight week period or between groups. The lack of change in diet quality may be due to the low number of complete 24-hour diet recalls. At baseline only 60% of the MP-C, 40% of the PIC-C, and 30% of the PIC-RD group participants completed the 24-hour diet recalls. At the completion of the study 40% of the MP-C, 30% of the PIC-C, and 20% of the PIC-RD group participants completed the 24-hour diet recalls.

At the completion of the study the participants were asked to complete an exit survey. There was a significant mean difference between the MP-C and PIC-RD group for statement 1 (p=0.018). The statement was “Using the iPhone app was helpful in keeping me on track toward my weight loss goal”. The PIC-RD group agreed with this statement significantly more than the MP-C group (p=0.018). This is most likely due to the differences in the iPhone apps themselves. It is likely that the MyDietitian app was more user friendly and had more useful features which gave the users the perception that the app was more helpful.

Adherence to self-monitoring for the PIC-C and PIC-RD groups were assessed at the completion of the trial. The researchers obtained a daily upload log from the MyDietitian application developers. The participants in these groups were considered
adherent for the day if they uploaded at least once in the day assessed. The MP-C group was asked to email a picture of their MyPlate at the end of each day. The MP-C group participants were considered adherent for the day if they sent an email containing a picture of their MyPlate. Adherence was 69.33% ±23.50%, 68.27% ±38.08, and 52.97% ±27.50% for the MP-C, PIC-RD, and PIC-C groups respectively. There was no significant difference in adherence between groups (p=0.467).

Adherence to self-monitoring was further assessed by separating participants into two groups based on the criteria of having less than 50% or greater than 50% adherence to self-monitoring. A significant difference in weight loss was found between the high and low adherence groups (p=0.046). The group that adhered to self-monitoring greater than 50% of the time had an average weight loss of 1.7 pounds while the group that adhered to self-monitoring less than 50% of the time had an average weight gain of 2.7 pounds. These results were supported by a previous study conducted by Kong et al.. The study conducted by Kong et al. found that women who were in the 75th percentile for food journaling had a 3.7% greater weight loss than the women in the 25th percentile for food journaling (3). The women in the 75th percentile also had a 2.7% greater weight loss than the women who did not comply with food journaling (3). These results are also consistent with research conducted with the National Weight Control Registry. The NWCR identified that a key component of successful weight loss and long-term weight maintenance was consistent self-monitoring and recording of dietary intake (27).

Adherence to self-monitoring as a weight loss tool has been widely supported by previous studies (3, 4, 6, 9). The significant difference in weight loss found between the low and high adherence groups (without a significant difference between phone
application groups) indicates that regardless of the phone application used, adherence to self-monitoring is the key for successful weight loss.

The Cochran Collaboration's review article published in 2012 found that while a computer-based intervention was superior to a minimal intervention, the in-person treatment group was superior to both the minimal and the computer-based intervention groups (28). A feasibility study conducted by Campbell et al. found that diet and lifestyle interventions led by registered dietitians could be a feasible strategy to improve outcomes in overweight and obese cancer patients (29). The participants in this study received 16 group-based sessions led by registered dietitians (29). The Diabetes Prevention Program also found that dietitians can play a pivotal role in lifestyle interventions (30). While the results from these studies indicate that interventions conducted by registered dietitians are effective they also indicate that the level of feedback provided by the MyDietitian application may have been lacking. Both the Campbell study and the Diabetes Prevention Program utilized a 16 session lifestyle change curriculum (29,30). The Diabetes Prevention Program also used individual sessions once per month after the initial 16 sessions were completed (30). The individual sessions allowed the dietitians to tailor the intervention to the participant, and allowed them to utilize their counseling skills to build a bond with the person (30). While the MyDietitian application provided feedback to the PIC-RD participants, feedback was 3-4 sentences per day only and participants were not allowed to actively interact with their dietitian which may have reduced the ability for the dietitian to build a bond with the participant.

The study conducted by Collins et al. also indicated that the features available to the PIC-RD group could be further enhanced to allow for greater adherence and weight
loss. Collins et al. developed a web-based intervention based on social cognitive theory of behavior change (23). This intervention included access to the following features for the basic group: individualized daily calorie targets, online food and exercise diaries, weekly menu plans with a grocery list, weekly educational tips and challenges, online forums for social support, daily and weekly calculations of nutrition summaries and energy balance, weekly newsletters, self-monitoring of body weight and waist circumference reminders, goal-setting options with graphical display (23). The enhanced group had access to all the basic features plus these additional features: a personalized enrollment report which suggests weight loss goals and key behaviors the participant will need to change to reach the goals, weekly automated personal feedback for nutrition and exercise levels based on the participants entries into the online diary, weekly feedback on their current level of weight loss success, and a reminder schedule for diary compliance (23). Collins et al. found significant between-group differences in the percentage of participants who lost greater than or equal to 10% of their baseline weight (control: 0%, basic: 18%, enhanced 28%; p<0.001), suggesting that the enhanced version of the website allowed participants to lose the greatest amount of weight (23) The MyDietitian app is lacking in the above listed online features, and including these features could increase the effectiveness of this application for weight loss and health.

Including features in iPhone apps that incorporate behavior change constructs may increase the effectiveness of iPhone apps and weight loss. Cowan et al. evaluated 127 total iPhone apps for the presence of health behavior theory constructs and found that very few iPhone apps included health behavior theory (37). The research available suggests that a weight loss intervention that includes social cognitive theory into the
program increases participants’ success (22, 23). MyDietitian could benefit from incorporating health behavior theory into the application.

There were several limitations present in this study. The sample sizes were small which greatly reduced the power to observe significant changes in the outcome measures. Adherence to protocol was low reducing the internal validity; however, the study was designed to mimic natural use of the apps. The information provided by the registered dietitians to the PIC-RD participants may not have been consistent in that group. Each PIC-RD participant was randomly assigned to a registered dietitian and multiple dietitians were used. The level of counseling and type of nutritional information provided to each of the participants likely varied between individuals.

The participants were recruited from the Arizona State University list-serves which created a level of homogeneity that would not exist in a larger sample from the general population. The study also does not address individuals that own a smartphone brand other than an Apple iPhone. The study only included individuals from the southwest and cannot be generalized to the elderly, children, and individuals that live in other parts of the United States or worldwide.
CHAPTER 6

CONCLUSION

Our study utilized two different iPhone apps in three different groups to track dietary intake. Two groups used the MyDietitian iPhone app and one group used the MyPlate iPhone app. The purposes of this study was to compare the use of the new dietary self-monitoring iPhone app (MyDietitian) with and without the feedback of a registered dietitian against the feedback control app MyPlate to assess the differences in adherence, anthropometric characteristics, diet quality, and bio-markers of health between groups. All of the groups had a significant reduction in waist and hip circumference, a significant increase in HDL and a significant decrease in A1c, and a reduction in their calorie intake during the length of the study. There was no significant difference between groups. The individuals that lost the largest amount of weight were the individuals that had adherence to self-monitoring greater than 50% of study days. These results indicate that regardless of which iPhone app the participant is using, the more an individual uses self-monitoring the greater the successes in terms of weight loss. This study indicates that adherence to self-monitoring is the key for weight loss success. App developers should incorporate ways to increase self-monitoring adherence into weight loss phone apps. Future studies exploring ways to increases self-monitoring of diet within iPhone applications are needed.
CHAPTER 7

FUTURE DIRECTIONS

App developers should incorporate ways to increase self-monitoring adherence into weight loss phone apps. App developers could utilize smartphone features that allow the app to periodically remind the individual to record daily meals and snacks. The app could also reward the individual through a point system within the app when a defined level of adherence to dietary tracking is reached. Allowing the individual to self-monitor eating behaviors in a fun and engaging way may lead to more successful weight loss through smartphone apps. In the future, smartphone apps developed for weight loss may be built with social cognitive theory as a foundation providing individuals with a readily accessible weight management tool.
REFERENCES

ASU NUTRITION: iPhone apps and dieting success

INTRODUCTION
The purposes of this form are (1) to provide you with information that may affect your decision as to whether or not to participate in this research study, and (2) to record your consent if you choose to be involved in this study.

RESEARCHERS
Dr. Carol Johnston, ASU nutrition professor, and Claudia Thompson-Petly, graduate student, have requested your participation in a research study.

STUDY PURPOSE
The purpose of this research study is to evaluate the usefulness of iPhone apps as a tool to help individuals improve food choices, lose weight, and improve health markers in blood.

DESCRIPTION OF RESEARCH STUDY
Qualifying participants desire to lose weight and are willing to use their iPhones daily to record food intake for eight weeks. Participants will be randomly assigned to one of three smart phone apps which will be provided at no cost. You will be asked to record all food intakes on your iPhone daily, a strategy that has been shown in previous research to facilitate weight loss. Initially you will come to the test site to complete a brief health history questionnaire to demonstrate the absence of medical conditions or situations that may impact the study. At this visit you will be trained to complete 24-hour diet recalls on the web; these recalls will take place randomly during the 8-week trial. Your blood pressure, weight, and height will be measured, and we will measure your waist and hip circumferences. The scale that determines your body weight will also provide information regarding your body composition by sending a weak electrical current through your body that cannot be felt. You will be scheduled for study visits 2, 3, and 4 which correspond to the start, middle, and end of the 8-week trial. For these three visits, you will be asked to present in a fasted state (no food or drink [with the exception of water] for ≥10 hours). At each of these 3 visits, a blood sample (2 tablespoons) will be collected to analyze for common health markers including glucose and cholesterol. The same measurements will be performed as in visit #1. Each visit will last about 30 minutes. You will receive weekly emails from the researchers so any questions can be answered. There is a short exit survey we will ask you to complete at the end of the trial.

If you begin taking new medications during the study, you are to notify the study investigators. About 60 people will participate in this study. This study will take place at the ASU Downtown campus.

RISKS
There are no foreseeable risks associated with this study. Individuals may become bored or frustrated with the daily protocol of food entry on the iPhone. Blood draws may cause dizziness, nausea, and faintness; a trained phlebotomist will perform all blood draws and respond immediately to any adverse reaction.

BENEFITS
This study will provide information regarding the usefulness of iPhone apps for improving diet adherence and possibly weight loss. You may learn more about your diet if you participate in this study.

NEW INFORMATION
If the researchers find new information during the study that would reasonably change your decision about participating, then they will provide this information to you.

CONFIDENTIALITY
All information obtained in this study is strictly confidential unless law requires the disclosure. The results of this research study may be used in reports, presentations, and publications, but your name or identity will not be revealed. In order to maintain confidentiality of your records, Dr. Johnston will use subject codes on all data
collected, maintain a master list separate and secure from all data collected, and limit access to all confidential information to the study investigators.

WITHDRAWAL PRIVILEG
You may withdraw from the study at any time for any reason without penalty or prejudice toward you. Your decision to withdraw would not affect you in any manner.

COSTS AND PAYMENTS
You will receive two $15.00 gift certificates to Target if you participate in this study. The first gift card will be received at visit 1 ($15) and at visit 2 ($15).

COMPENSATION FOR ILLNESS AND INJURY
If you agree to participate in the study, then your consent does not waive any of your legal rights. However, in the event of harm, injury, or illness arising from this study, neither Arizona State University nor the researchers are able to give you any money, insurance coverage, free medical care, or any compensation for such injury. Major injury is not likely but if necessary, a call to 911 will be placed.

VOLUNTARY CONSENT
Any questions you have concerning the research study or your participation in the study, before or after your consent, can be answered by Dr. Carol Johnston (908-965-6789). If you have questions about your rights as a subject/participant in this research, or if you feel you have been placed at risk, you can contact the Chair of the Human Subjects Institutional Review Board, through the ASU Office of Research Integrity and Assurance, at 480-965-6786.

This form explains the nature, demands, benefits and any risk of the project. By signing this form you agree knowingly to assume any risks involved. Remember, your participation is voluntary. You may choose not to participate or to withdraw your consent and discontinue participation at any time without penalty or loss of benefit. In signing this consent form, you are not waiving any legal claims, rights, or remedies. A copy of this consent form will be given to you.

Your signature below indicates that you consent to participate in the above study.

<table>
<thead>
<tr>
<th>Subject's Signature</th>
<th>Printed Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date

Contact phone number

<table>
<thead>
<tr>
<th>Email (print clearly)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

INVESTIGATOR’S STATEMENT
"I certify that I have explained to the above individual the nature and purpose, the potential benefits, and possible risks associated with participation in this research study, have answered any questions that have been raised, and have witnessed the above signature. These elements of Informed Consent conform to the Assurance given by Arizona State University to the Office for Human Research Protections to protect the rights of human subjects. I have provided the subject/participant a copy of this signed consent document."

Signature of Investigator

Date

ASU IRB Approved
by Carol Johnston
9/13/12 to 9/12/13

61
To: Carol Johnston
AUC 132

From: Carol Johnston, Chair
Biosci IRB

Date: 09/13/2012

Committee Action: Expedited Approval

Approval Date: 09/13/2012

Review Type: Expedited F2 F4 F7

IRB Protocol #: 12090008222

Study Title: iPhone Apps and Dieting Success

Expiration Date: 09/12/2013

The above-referenced protocol was approved following expedited review by the Institutional Review Board.

It is the Principal Investigator’s responsibility to obtain review and continued approval before the expiration date. You may not continue any research activity beyond the expiration date without approval by the Institutional Review Board.

Adverse Reactions: If any untoward incidents or severe reactions should develop as a result of this study, you are required to notify the Biosci IRB immediately. If necessary a member of the IRB will be assigned to look into the matter. If the problem is serious, approval may be withdrawn pending IRB review.

Amendments: If you wish to change any aspect of this study, such as the procedures, the consent forms, or the investigators, please communicate your requested changes to the Biosci IRB. The new procedure is not to be initiated until the IRB approval has been given.

Please retain a copy of this letter with your approved protocol.
To: Carol Johnston
ABC 132

From: Carol Johnston, Chair Biosk IRB

Date: 10/01/2012

Committee Action: Amendment to Approved Protocol

Approval Date: 10/01/2012

Review Type: Expedited F12

IRB Protocol #: 1200008222

Study Title: IPhone Apps and Dieting Success

Expiration Date: 09/12/2013

The amendment to the above-referenced protocol has been APPROVED following Expedited Review by the Institutional Review Board. This approval does not replace any departmental or other approvals that may be required. It is the Principal Investigator's responsibility to obtain review and continued approval of ongoing research before the expiration noted above. Please allow sufficient time for reapproval. Research activity of any sort may not continue beyond the expiration date without committee approval. Failure to receive approval for continuation before the expiration date will result in the automatic suspension of the approval of this protocol on the expiration date. Information collected following suspension is unapproved research and cannot be reported or published as research data. If you do not wish continued approval, please notify the Committee of the study termination.

This approval by the Biosk IRB does not replace or supersede any departmental or oversight committee review that may be required by institutional policy.

Adverse Reactions: If any untoward incidents or severe reactions should develop as a result of this study, you are required to notify the Biosk IRB immediately. If necessary a member of the IRB will be assigned to look into the matter. If the problem is serious, approval may be withdrawn pending IRB review.

Amendments: If you wish to change any aspect of this study, such as the procedures, the consent forms, or the investigators, please communicate your requested changes to the Biosk IRB. The new procedure is not to be initiated until the IRB approval has been given.

Please retain a copy of this letter with your approved protocol.
APPENDIX D

RECRUITMENT ADVERTISEMENT
Can your iPhone help you eat better and lose weight?
HELP US FIND OUT
INVESTIGATORS FROM THE NUTRITION PROGRAM AT ARIZONA STATE UNIVERSITY
ARE RECRUITING VOLUNTEERS (20-70 y of age) to test iPhone diet apps

IF YOU CURRENTLY OWN AN iPHONE AND ARE OVERWEIGHT AND DESIRE TO LOSE WEIGHT, YOU MAY QUALIFY FOR THIS TRIAL

THIS STUDY WILL EVALUATE THE USEFULNESS OF iPHONES APPS AS TOOLS TO HELP INDIVIDUALS ADHERE TO WEIGHT LOSS DIETS

Participation will include:
• Using the iPhone app daily for 8 weeks to record food consumed
• Meeting with trial investigators on four occasions at the ASU Downtown campus
• Being weighed and measured, and providing fasting blood samples on 3 occasions

You will receive the app at no charge during the trial and $30 in gift cards to Target if you participate in this trial
INTERESTED? Please complete our online survey at: https://www.surveymonkey.com/s/ASUiPhoneStudy
APPENDIX E

HEALTH HISTORY QUESTIONNAIRE
HEALTH /HISTORY QUESTIONNAIRE

ID# ______________________

1. Gender: M F Age: ______ To be completed by study personnel: Weight ______ Height ______ Waist ______

2. Have you lost or gained more than 5 lbs in the last 3 months? Yes No
 If yes, how many pounds lost or gained? ______ How long ago? ______
 Do you desire to lose weight? Yes No How many pounds? ______

3. Do you follow a special diet? (weight gain/loss, vegetarian, low-fat, etc.) Yes No
 If yes, please explain:

4. Are you willing to record food consumed on a daily basis for 8 weeks on your iPhone? Yes No

5. Education (please circle) High school Some college College graduate

6. Ethnicity: (please circle one) Hispanic or Latino Not Hispanic or Latino

7. Race: (please circle) American Indian/Alaska Native African-American White
 Native Hawaiian/Other Pacific Islander Asian Other

8. Do you smoke? No, never ______
 Yes ______ # Cigarettes per day = ______
 I used to, but I quit ______ months/years (circle) ago

9. Do you take any medications regularly? Yes No
 If yes, list type and frequency:
 Medication Dosage Frequency

10. Do you currently take supplements (vitamins, minerals, herbs, etc.)? Yes No
 If yes, list type and frequency:
 Supplement Dosage Frequency

11. Are you OK with providing a fasting blood sample (~2 TBLS) on 3 occasions during the study? Yes No

12. How much alcohol do you drink? (average drinks per day) ______

69
13. Please ANSWER (YES) if you have ever been diagnosed with any of the following diseases or symptoms:

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary Heart Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Blood Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Murmur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic Fever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular Heart Beat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varicose Veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Blood Sugar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchial Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay Fever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg or Ankle Swelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortness of Breath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Palpitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Heart Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coughing of Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling Faint or Dizzy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone Imbalances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional Problems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please elaborate on any condition listed above

__

14. How would you rate your lifestyle? (please check)
 Not active Active Somewhat active Very Active

15. Please circle the number of times you did the following kinds of exercises for more than 15 minutes last week.

 Mild exercise (minimal effort):
 Easy walking, golf, gardening, bowling, yoga, fishing, horseshoes, archery, etc.
 Times per week: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

 Moderate exercise (not exhausting):
 Fast walking, easy bicycling, tennis, easy swimming, badminton, dancing, volleyball, baseball, etc.
 Times per week: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

 Strenuous exercise activities (heart beats rapidly):
 Running, jogging, hockey, football, soccer, squash, basketball, cross country skiing, judo, roller skating, vigorous swimming, vigorous long distance bicycling, etc.
 Times per week: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

16. Do you have any food allergies? Yes No If yes, please explain:

__
APPENDIX F

PHYSICAL ACTIVITY QUESTIONNAIRE
Godin Leisure-Time Exercise Questionnaire

1. During a typical 7-Day period (a week), how many times on the average do you do the following kinds of exercise for more than 15 minutes during your free time (write on each line the appropriate number).

 Times Per Week:

 a) STRENUOUS EXERCISE
 (HEART BEATS RAPIDLY)
 (e.g., running, jogging, hockey, football, soccer,
 squash, basketball, cross country skiing, judo,
 roller skating, vigorous swimming,
 vigorous long distance bicycling)

 b) MODERATE EXERCISE
 (NOT EXHAUSTING)
 (e.g., fast walking, baseball, tennis, easy bicycling,
 volleyball, badminton, easy swimming, alpine skiing,
 popular and folk dancing)

 c) MILD EXERCISE
 (MINIMAL EFFORT)
 (e.g., yoga, archery, fishing from river bank, bowling,
 horseshoes, golf, snow-mobiling, easy walking)

2. During a typical 7-Day period (a week), in your leisure time, how often do you engage in any regular activity long enough to work up a sweat (heart beats rapidly)?

 OFTEN SOMETIMES NEVER/RARELY
 1. □ 2. □ 3. □
EXIT SURVEY: Please answer the following questions regarding your participation in the research study on successful weight loss strategies.

Mark an 'X' on the line best fitting your opinion.

1. Using the iPhone app was helpful in keeping me on track toward my weight loss goal.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

2. The app I used for recording my daily food intake was too time consuming to be practical.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

3. I was more aware of my eating habits because I was recording my food intake.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

4. I am more confident in my ability to lose weight after participating in this study.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

5. I have learned much about my food habits and my eating has improved by participating in this study.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

6. I will continue to record my food intake after the study is over.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

7. Having a dietitian providing feedback to my diet on a daily basis was (or would have been) beneficial.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>No Opinion</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
</table>

Comments regarding study participation/expectations:
APPENDIX H
APP INSTRUCTIONS MP-C
1. Go to the settings tab and enter in the appropriate gender and year born.
2. Turn Bravo Alerts to the ON setting.

- Each day you will record all food and drinks consumed, by pressing the corresponding food group on the screen. (If the food item is not available in the database select a similar item that is available in the database.)
- The corresponding food group section will start to fill up as you add new items.
- The goal is to fill all sections of the plate.

- The My Progress tab allows you to see previous days and weeks along with an overall picture of your daily diet.

*At the end of each day, when all foods eaten have been entered take a screen shot of the **Today's Plate** section.*

- This is done by pressing the round button on the front of the touch screen and the power button on the top of the phone at the same time. You will then email this photo to:

 claudia.thompson@asu.edu

This will be done everyday for the duration of the trial.
APPENDIX I

APP INSTRUCTIONS PIC-C
This is the home screen. From the home screen you can access all of the features of the app.

Daily Parameters: Everyday you will enter your weight, hours of sleep, sleep quality, energy level, and stress level by tapping that button.

Meal Input: Everyday all meals and drinks will be entered into the app by selecting meal input. This will allow you to take a picture of all of the food items you consume.

Today's Timeline: This section will show a running list of all of the food items you have entered throughout the day so you may review them at anytime throughout the day.

Physical Activity: If you complete physical activity, log it by tapping that button.

Reports: This is where you will receive daily feedback from a registered dietitian. The R.D. will be evaluating your diet from the information you have provided. Each day you will receive feedback on the previous day's diet. This button will also allow you to look at all previous data entered into the MyDietitian app.

Video Library: This section provides a wide variety of short educational videos. The videos were created by nutrition professionals. Examples are: FAD Diets, Fiber, Alcohol, Metabolism, Office Snacking... If you feel like you need help in a specific area, there is a good chance a video on that topic has been provided.
1. Once the app has been loaded onto your phone you will click the sign up button to create an account. Use an email account that you check regularly.

2. Next, you will click the settings tab at the bottom of the app. You will want to click on the User Account tab to enter your personal information.

3. When in the User Account tab you will enter your name, date of birth, gender, current weight, and your personal goal for using this phone application. Once the data has been entered hit save.
APPENDIX J

APP INSTRUCTIONS PIC-RD
Tour

Please watch video below that provides a overview of My Dietitian.

Press the tour button at the bottom of the home screen, and watch the instructional video on the use of the MyDietitian phone application.
1. Once the app has been loaded onto your phone you will click the sign up button to create an account. Use an email account that you check regularly.

2. Next, you will click the settings tab at the bottom of the app. You will want to click on the User Account tab to enter your personal information.

3. When in the User Account tab you will enter your name, date of birth, gender, current weight, and your personal goal for using this phone application. Once the data has been entered hit save.
This is the home screen. From the home screen you can access all of the features of the app.

Daily Parameters: Everyday you will enter your weight, hours of sleep, sleep quality, energy level, and stress level by tapping that button.

Meal Input: Everyday all meals and drinks will be entered into the app by selecting meal input. This will allow you to take a picture of all of the food items you consume.

Today’s Timeline: This section will show a running list of all of the food items you have entered throughout the day so you may review them at anytime throughout the day.

Physical Activity: If you complete physical activity, log it by tapping that button.

Reports: This is where you will receive daily feedback from a registered dietitian. The R.D. will be evaluating your diet from the information you have provided. Each day you will receive feedback on the previous day’s diet. This button will also allow you to look at all previous data entered into the MyDietitian app.

Video Library: This section provides a wide variety of short educational videos. The videos were created by nutrition professionals; Examples are: SAD Diets, Fiber, Alcohol, Metabolism, Office Snacking... If you feel like you need help in a specific area, there is a good chance a video on that topic has been provided.
APPENDIX K

HEMOGLOBIN A1C
SIEMENS
DCA Systems

For Use With DCA - Analyzers
A Quantitative Assay for Hemoglobin A1c in Blood

Recommended Procedures for Handling Reagent Cartridges:
To open the full peel, tear down the corner tab (cut the entire long side of the peel as shown).

Discard the reagent cartridge if the cartridge is damaged, the pull-tab is loose or missing, the desiccant is missing, or if loose desiccant particles are found under the Peel back.

Upon removal from refrigerated storage, allow the reagent cartridge to warm up to room temperature for 10 minutes (or the unpeeled full peel) or 5 minutes (if removed from the full peel). After opening the full peel, the reagent cartridge must be used within (1) hour.

Recommended Procedures for Handling Carrying Capsule Holder:
- Unlidded carrying holders may be opened and used with any of the reagent cartridges. Each carrying holder is packaged separately in a peelable pouch. To remove the carrying holder, remove the white plastic film from the peelable pouch. DO NOT PULL the carrying holder out of or through the peal.

- Discard the plastic carrying holder if any of the following are missing from the filter: (a) glass capillary, (b) measurement card, (c) liquid reagent. After the glass capillary is filled with sample, analysis must begin within 5 minutes.

Stability of Reagent Cartridges:
- Do not store reagent cartridges after the last day of the expiration month.

Specimen Collection and Preparation:
The provided glass capillary (white plastic capillary holder) 7.5 µL of whole blood. The blood sample may be obtained by finger stick or venipuncture. Acceptable capillary is EDTA, heparin, or saline, and chlorhexidine.

Impedance: After filling the glass capillary with sample, analysis must begin within 5 minutes.

Testing Procedure:

Calibration:
- Instrument: The DCA Analyzer is calibrated by the manufacturer. However, the instrument automatically self-calibrates during startup and once
All laboratory tests are subject to certain errors. If the test result is questionable, or if clinical signs and symptoms appear inconsistent with test results, consult a sample of this book instead using another method.

Limitations of Procedure:

The DCA HbAc assay gives accurate and precise results over a range of HbA1c levels of 7-12%. Most patients with normal hemoglobin concentrations were within these values, however, patients with severe anemia may have hemoglobin concentrations lower than 7%, and patients with polycythemia may have hemoglobin concentrations above 14%. Patients known to have these conditions should be assessed by a test employing a different assay principle. Their hemoglobin concentrations may be outside of the standard range.

Average hemoglobin F is not measured by the DCA HbAc assay. At levels of hemoglobin F below 20%, the DCA HbAc assay indicates a value of 0% for hemoglobin F. At hemoglobin F above 20%, the amount of hemoglobin F in the sample is determined by the DCA HbAc assay. The value for hemoglobin F is calculated from the results of the DCA HbAc assay and a calibration function that includes the expected value of the standard range.

Conditions such as hemolytic anemia, polycythemia, high hemoglobin concentration, and high creatinine concentration may result in decreased specificity or accuracy of the test used, and should be evaluated by appropriate methods when using the described reference ranges.

SPECIFIC PERFORMANCE CHARACTERISTICS:

The precision and accuracy data are results of studies conducted by the staff at specific physician offices. The statistical calculations were performed following Clinical Laboratory Standards Institute (CLSI) procedure.

Procedure:

Multiple DCA 2000 HbAc assays of two different commercially prepared whole blood controls were performed by three independent laboratories. The assigned values listed were determined from studies conducted by the manufacturer. Within-run precision was evaluated by including normal and abnormal controls, in duplicate, in each run of each analysis.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Control</th>
<th>Assigned Value (HbA1c)</th>
<th>Mean Value (HbA1c)</th>
<th>No.</th>
<th>No.</th>
<th>Regression Line</th>
<th>Within-Run S.D.</th>
<th>Between-Run S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Normal 1</td>
<td>5.2</td>
<td>4.95</td>
<td>21</td>
<td>45</td>
<td>0.15</td>
<td>5.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2 Normal 2</td>
<td>5.2</td>
<td>5.10</td>
<td>25</td>
<td>44</td>
<td>0.13</td>
<td>5.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>3 Normal 3</td>
<td>5.2</td>
<td>5.11</td>
<td>25</td>
<td>44</td>
<td>0.12</td>
<td>5.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1 Acutaneous 1</td>
<td>11.5</td>
<td>11.22</td>
<td>21</td>
<td>42</td>
<td>0.34</td>
<td>3.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2 Acutaneous 2</td>
<td>11.5</td>
<td>11.85</td>
<td>22</td>
<td>44</td>
<td>0.33</td>
<td>2.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>3 Acutaneous 3</td>
<td>11.5</td>
<td>11.61</td>
<td>25</td>
<td>44</td>
<td>0.34</td>
<td>2.7</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Correlation: The percentage of HbA1c in clinical applications ranging from 3.8% to 14.5% (both men and women) was determined using the DCA 2000 HbAc assay and standard high-performance liquid chromatography (HPLC) (x). Results are as follows:

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Sample Type</th>
<th>No. of Assays</th>
<th>Regression Line</th>
<th>Standard Error of Estimate</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Venous 1</td>
<td>100</td>
<td>0.12</td>
<td>0.09</td>
<td>0.05</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Clinical Performance:

To evaluate the expected performance of the DCA 2000 HbAc test, the DCA 2000 HbAc was used and the DCA 2000 analyzer in a clinical setting. A total of 105 patients were participants in this study. The DCA 2000 HbAc was performed on whole blood from patients with established target levels of HbA1c in the laboratory. The results were compared to target values established for the high-pressure liquid chromatography (HPLC) reference method used at the DCA 2000 HbAc reference laboratory at the University of Missouri School of Medicine.

A summary of the performance is shown below.

Overview: The overall accuracy and precision data for HbA1c were:

<table>
<thead>
<tr>
<th>Target Level (% HbA1c)</th>
<th>Mean (% HbA1c)</th>
<th>Accuracy</th>
<th>Standard Deviation</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.36</td>
<td>4.35</td>
<td>4.30-4.40</td>
<td>0.24</td>
<td>5.4</td>
</tr>
<tr>
<td>5.25</td>
<td>5.14</td>
<td>6.10-6.18</td>
<td>0.18</td>
<td>2.9</td>
</tr>
<tr>
<td>8.08</td>
<td>8.07</td>
<td>8.00-8.04</td>
<td>0.28</td>
<td>3.2</td>
</tr>
<tr>
<td>9.04</td>
<td>9.06</td>
<td>9.00-9.10</td>
<td>0.30</td>
<td>3.0</td>
</tr>
<tr>
<td>11.63</td>
<td>11.71</td>
<td>11.50-11.81</td>
<td>0.39</td>
<td>3.4</td>
</tr>
</tbody>
</table>

90% Confidence Interval: Statistical analysis (unpublished) demonstrated that the observed differences among the three study sites were not significant.
For the measurement of hemoglobin, Drabkin's reagent is used to oxidize hemoglobin in the sample to methemoglobin. The methemoglobin then reacts with the indicator to form the color methemoglobin, the color species that is measured. The rate of color development at 570 nm is proportional to the concentration of free hemoglobin in the sample.

For the measurement of specific HbA1c, an inhibition of hemoglobin glycation assay is used (Figure 2).

Figure 2

An enzyme-linked immunosorbent assay (ELISA) method is used for the quantification of HbA1c. The assay is based on the principle of competitive inhibition, where the inhibition of the enzyme-linked immunosorbent reaction is monitored. The HbA1c sample is mixed with a labeled antibody and a nonenzymatic reaction mixture. The reaction mixture is then incubated and the amount of labeled antibody bound to the HbA1c is measured. The concentration of HbA1c in the sample is calculated as follows:

\[
\text{HbA1c (percent)} = \left(\frac{\text{Sample Absorbance} - \text{Blank Absorbance}}{\text{Standard Absorbance} - \text{Blank Absorbance}} \right) \times 100
\]

The HbA1c concentration in the sample is calculated as follows:

\[
\text{HbA1c concentration (percent)} = \left(\frac{\text{Sample Absorbance} - \text{Blank Absorbance}}{\text{Standard Absorbance} - \text{Blank Absorbance}} \right) \times 100
\]

The HbA1c concentration of the sample is calculated as follows:

\[
\text{HbA1c concentration (percent)} = \left(\frac{\text{Sample Absorbance} - \text{Blank Absorbance}}{\text{Standard Absorbance} - \text{Blank Absorbance}} \right) \times 100
\]

Figure 3

A chromatographic column is used for the separation and quantification of hemoglobin types. The column is packed with a specific chromatographic material that allows for the separation of different hemoglobin types based on their molecular size and charge. The column is then eluted with a gradient of elution buffers, and the effluent is monitored for absorbance at 280 nm. The absorbance profile is then analyzed to determine the concentration and type of hemoglobin in the sample.

Figure 4

A spectrophotometric method is used for the quantification of hemoglobin. The sample is mixed with a specific reagent, and the absorbance is measured at a specific wavelength (usually 570 nm). The concentration of hemoglobin in the sample is calculated based on the absorbance and a calibration curve.

Figure 5

A calorimetric method is used for the quantification of hemoglobin. The sample is mixed with a specific reagent, and the heat release is measured. The concentration of hemoglobin in the sample is calculated based on the heat release and a calibration curve.

Figure 6

A fluorometric method is used for the quantification of hemoglobin. The sample is mixed with a specific reagent, and the fluorescence is measured. The concentration of hemoglobin in the sample is calculated based on the fluorescence and a calibration curve.

Figure 7

A mass spectrometric method is used for the quantification of hemoglobin. The sample is mixed with a specific reagent, and the mass spectrometric signal is measured. The concentration of hemoglobin in the sample is calculated based on the mass spectrometric signal and a calibration curve.

Figure 8

A capillary electrophoresis method is used for the quantification of hemoglobin. The sample is injected into a capillary, and the hemoglobin types are separated based on their migration rate. The concentration of hemoglobin in the sample is calculated based on the migration rate and a calibration curve.

Figure 9

A nuclear magnetic resonance method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the nuclear magnetic resonance signal is measured. The concentration of hemoglobin in the sample is calculated based on the nuclear magnetic resonance signal and a calibration curve.

Figure 10

A mass spectrometric method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the mass spectrometric signal is measured. The concentration of hemoglobin in the sample is calculated based on the mass spectrometric signal and a calibration curve.

Figure 11

A fluorescent blotting method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the fluorescent signal is measured. The concentration of hemoglobin in the sample is calculated based on the fluorescent signal and a calibration curve.

Figure 12

A mass spectrometric method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the mass spectrometric signal is measured. The concentration of hemoglobin in the sample is calculated based on the mass spectrometric signal and a calibration curve.

Figure 13

A fluorescent blotting method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the fluorescent signal is measured. The concentration of hemoglobin in the sample is calculated based on the fluorescent signal and a calibration curve.

Figure 14

A mass spectrometric method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the mass spectrometric signal is measured. The concentration of hemoglobin in the sample is calculated based on the mass spectrometric signal and a calibration curve.

Figure 15

A fluorescent blotting method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the fluorescent signal is measured. The concentration of hemoglobin in the sample is calculated based on the fluorescent signal and a calibration curve.

Figure 16

A mass spectrometric method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the mass spectrometric signal is measured. The concentration of hemoglobin in the sample is calculated based on the mass spectrometric signal and a calibration curve.

Figure 17

A fluorescent blotting method is used for the quantification of hemoglobin. The sample is subjected to a magnetic field, and the fluorescent signal is measured. The concentration of hemoglobin in the sample is calculated based on the fluorescent signal and a calibration curve.
Specificity:

Effect of the glycogenin variants: The antibody in the DCA HbA1c assay is specific for the first few amino acid residues of the glycated amino-terminus of the ε-chain of hemoglobin A. Any glycated hemoglobin molecule having the same structure will be measured in the assay. Most glycated hemoglobin variants are interconvertible in the DCA HbA1c assay (such as HbA1c, HbA1d, HbA1f). The point mutations in these molecules occur at the 6 position of the ε-chain (HbS and HbC) and at the 26 position of the ε-chain (HbE). Thus, the point mutations in these variants do not affect the binding of the antibody used in the DCA HbA1c assay. The DCA reports HbA1c values that reflect the glycoform control of patients with these hemoglobinopathies.5-10

Effect of Pro-HbA1c (Proline Ladder): The proline fraction (breakdown products of prolyl to HbA1c, or pro-HbA1c) does not affect the assay result because the antibody is not specific for the sugar moiety of HbA1c.5-10

Effect of Carbamylated Hemoglobin: Carbamylated hemoglobin (elevated in patients with renal disease) does not affect the assay result because the antibody is specific for the sugar moiety of HbA1c.5-10

AVAILABILITY:
DCA Hb A1c Reagent Kit is available as REF 5033C (10's). DCA Control Normal and DCA Control Abnormal Control is available as REF 5034A.

GLOSSARY OF ACRONYMS
ADA: American Diabetes Association • CLSI: Clinical Laboratory Improvement Amendments • CMA: Cytometry and Mass Spectrometry Association • DCC: DCA Control Center • DCCS: DCA Control Standardization Program

BIBLIOGRAPHY:
CHOL2
Cholesterol Gen2

* Indicates cobas c systems on which reagents can be used

Order Information
- Cholesterol Gen2
 - 4 x 100 tests
 - Cat. No. 0471697 190

Calibrator f.a.s. (12 x 3 mL)
- Cat. No. 107594B 190

Calibrator f.a.s. (12 x 3 mL, for USA)
- Cat. No. 107593L 190

Precipitin U plus (10 x 3 mL)
- Cat. No. 1214645 122

Precipitin U plus (10 x 3 mL, for USA)
- Cat. No. 1214645 160

Precipitin U plus (10 x 3 mL, for USA)
- Cat. No. 1214644 322

Precipitin U minus (10 x 3 mL, for USA)
- Cat. No. 1214644 180

Precipitin U minus (20 x 5 mL)
- Cat. No. 1071775 122

Precipitin U minus (20 x 5 mL)
- Cat. No. 1071777 122

Precipitin U minus (4 x 3 mL)
- Cat. No. 1076181 122

Precipitin U minus (4 x 5 mL)
- Cat. No. 1288574 122

Reagents - working solutions
R1: PIPES buffer: 220 mMol/L, pH 6.8; MgCl2: 10 mMol/L; sodium cholate: 0.6 mMol/L, 4-aminoantipyrine: ≥ 0.45 mMol/L; phenol: ≥ 12.5 %; CE (Pseudomonas sp.): ≥ 25 units (1.5 U/mL); CHOD (E. coli): ≥ 7.5 units (0.45 U/mL); FOD (horse radish): ≥ 12.5 katal (0.07 U/mL); stabilizer: preservative

Precautions and warnings
For in vitro diagnostic use. Exceed the normal precautions required for handling all laboratory reagents. Safety data sheet available for professional user on request. Disposal of all waste material should be in accordance with local guidelines.

Reagent handling
Ready for use.

Inaccurate pipetting of reagent, leading to potentially erroneous results, may be caused by excessive foaming of this reagent. Ensure that foam is removed from the surface of the reagent prior to setting the reagent in the analyzer.

Storage and stability
CNO2
Sodium bisulfite: 2-8 °C

Expiration date on reagent
On-board in use and reagent on the analyzer: 4 weeks

Specimen collection and preparation
For specimen collection and preparation, only use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable.
Serum, Plasma: Lithium heparin, K$_2$-EDTA plasma.

Use of EDTA plasma leads to slightly lower values.

Do not use saline, oxalate, or fluoride.

Pooling and nonlabeling samples can be used.

This sample type is not tested with selection of sample collection tubes that were commercially available at the time of testing. I.e., not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the results in some cases. When procuring samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay.

Stability
- 7 days at 15-25 °C
- 7 days at 2-8 °C
- 3 months at (-15)-(-20) °C

Materials provided
See "Reagents - working solutions" section for reagents.

Materials required (but not provided)
See "Order information" section.
CHOL2
Cholesterol Gen.2

Degassed water
General laboratory equipment

Assay
For optimum performance of the assay below the diagram given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyte-specific assay instructions.
The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma

cobas c 111 test definition

<table>
<thead>
<tr>
<th>Measuring mode</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. correction mode</td>
<td>Endpoint</td>
</tr>
<tr>
<td>Reaction direction</td>
<td>Increase</td>
</tr>
<tr>
<td>Wavelength 460</td>
<td>513.659 nm</td>
</tr>
<tr>
<td>Calc. firstlast</td>
<td>607</td>
</tr>
<tr>
<td>Unit</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Reaction mode</td>
<td>IV-V</td>
</tr>
</tbody>
</table>

Pipetting parameters

(R)	47 μL
Sample	2 μL
Diluent (H2O)	70 μL
Total volume	127 μL

Calibration

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>Calibrator I.a.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluted water is used automatically by the instrument as the zero calibrator.</td>
<td></td>
</tr>
<tr>
<td>Calibration mode</td>
<td>Linear regression</td>
</tr>
<tr>
<td>Calibration interval</td>
<td>Each lot and as required following quality control procedures</td>
</tr>
</tbody>
</table>

Transparency: This method has been standardized according to Ablitt&Kendall82 and also by (irodos) (laboratories) (spectrometry)83. This complies with the requirements of the National Institute of Standards and Technology (NIST). Quality control

For quality control, use control materials as listed in the "Order Information" section.
Other control materials can be used in addition.
The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the limits.
Follow the applicable government regulations and local guidelines for quality control.

Calculation

The cobas c 111 analyzer automatically calculates the analytic concentration of each sample.

Conversion factor: mmol/L x 0.3996 = μg/dL
mg/dL x 0.0259 = mmol/L

Limitations - Interference

Cholesterol: Recovery within ± 10% of initial values at a cholesterol concentration of < 5.2 mmol/L (< 200 mg/dL).

Interference: No significant interference up to an index of 14 for conjugated bilirubin (conjugated bilirubin concentration: 239 μmol/L; 14 mg/dL). No significant interference up to an index of 7 for unconjugated bilirubin (unconjugated bilirubin concentration: 120 μmol/L; 7 mg/dL).

Hemolysis: No significant interference up to an index of 350 (approximate hemoglobin concentration: 217 μmol/L; 350 mg/dL).

Lipids (triglycerides): No significant interference up to an index of 1000.

There is no correlation between the L index (corresponds to turbidity) and triglyceride concentration.

Drugs: No interference was found at therapeutic concentrations using common drug panels.84,85

In very rare cases, asymmetry, in particular type IL (Waldenström's macroglobulinemia), may cause unreliable results.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

Special wash requirements

No interfering assays are known which require special wash steps.

Limits and ranges

Measuring range

0.05-2.07 mmol/L (0.7-60 mg/dL)

Determine samples having higher concentrations via the renin function. Dilution of samples via the renin function is a 1:10 dilution. Results from samples diluted by the renin function are automatically multiplied by a factor of 10.

Lower limits of measurement

Lower detection limit of the test

0.25 mmol/L (0.7 mg/dL)
The detection limit represents the lowest measurable analytic value that can be distinguished from zero. It is calculated as the value (μg/dL) three standard deviations above that of the lowest standard (standard 1 = 0 SD, repeatability, n = 21).

Expected values

Clinical interpretation according to the recommendations of the European Atherosclerosis Society86

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>mmol/L</th>
<th>mg/dL</th>
<th>Lipid metabolic disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5.2</td>
<td>< 200</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>> 2.3</td>
<td>> 200</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Cholesterol

5.0-7.8 (200-300) mg/dL
< 0.9 mmol/L (< 35 mg/dL)

Triglycerides

> 78 (≥ 200) mg/dL
< 2.3 (≤ 200) mg/dL

Recomendations of the NCEP Adult Treatment Panel for the following risk cutoff thresholds for the US American population87

Desirable cholesterol level

< 5.2 mmol/L (< 200 mg/dL)

Borderline high cholesterol

5.2-6.2 mmol/L (200-240 mg/dL)

High cholesterol

≥ 6.2 mmol/L (≥ 240 mg/dL)

Each laboratory should investigate the transferrability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Precision was determined using human samples and controls in an internal protocol. *repeatability = within-run precision
**intermediate precision = total precision / between-run precision / between-day precision
The following results were obtained:

<table>
<thead>
<tr>
<th>Repeatability</th>
<th>Mean (mg/dL)</th>
<th>SD</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prealbumin U</td>
<td>2.4 (2.06)</td>
<td>0.01 (0.39)</td>
<td>0.46</td>
</tr>
<tr>
<td>Pepsinogen C</td>
<td>4.8 (4.00)</td>
<td>0.03 (1.10)</td>
<td>0.69</td>
</tr>
<tr>
<td>Hemoglobin A1c</td>
<td>9.9 (11.0)</td>
<td>0.01 (0.35)</td>
<td>1.15</td>
</tr>
<tr>
<td>Hemoglobin A2</td>
<td>6.1 (6.0)</td>
<td>0.02 (0.32)</td>
<td>0.73</td>
</tr>
</tbody>
</table>
CHOL2
Cholesterol Gen.2

Method comparison
Plasma cholesterol
in healthy volunteers
plasma samples obtained
on the cobas c 111 analyzer
(y) were compared to those
determined with the same
method on a COBAS INTEGRA 400 analyzer (x).

Sample size (n) = 111

P value, 95% CI: 0.972

The sample concentrations were between 0.40 and 16.55 mmol/L (7.8 and 722.8 mg/dL).

References
Saturation, Rostock 1989.
10. Kohler JS, KRN, Sander C, Leichter Cholesterol
C- Reactive Protein (Latex) High Sensitive Assay

Order Information
C- Reactive Protein (Latex) High Sensitive Assay
- 4 x 50 tests
 - Calibrator A, B, Protein (5 x 1 ml)
 - CRP Control 1 (4 x 0.5 ml, for USA)
 - Precipitin Protein (1 x 1 ml)
 - NaCl Oxidizer (4 x 12 ml)

Cat. No. 6007402 190
Cat. No. 61865297 106
Cat. No. 61865297 106
Cat. No. 20765213 122
Cat. No. 1057687 122
Cat. No. 04747430 100

cobas® systems

cobas c 111

* indicates cobas c systems on which reagents can be used

Intended use
An in vitro test for the quantitative determination of C-reactive protein (CRP) in human serum and plasma on the cobas c 111 system. Measurement of CRP is useful for the detection and evaluation of inflammatory disorders and associated diseases. CRP is a highly sensitive marker of acute coronary syndrome. Various assay methods are available for CRP determination, such as nephelometry and turbidimetry. TheReference CRP assay is based on the principle of particle-enhanced immunosorbent assay.

Test principle
CRP is enhanced immuno-turbidimetric assay.

Human CRP antibodies with latex particles coated with monoclonal anti-CRP antibodies. The precipitates determined turbidometrically.

Reagents - working solutions
- TRIS buffer with bovine serum albumin and immunoglobulins (mouse), preservative, stabilizers
- SR latex particles coated with anti-CRP (mouse) in glycine buffer, preservative, stabilizers

Precautions and warnings
- Precautionary measures required for handling all laboratory reagents.
- Sealed safety data sheet available for professional use on request.
- Disposal of all waste material should be in accordance with local guidelines.

Reagent handling
- Reagent Stability
- Stability
- Stability
- Stability
- Stability
- Stability
- Stability

Storage and stability

CRPAS
Shelf life at 2-8°C: See expiration date on reagent

On-board in use and refrigerated on analyzer: 4 weeks

NaCl Oxidizer
Shelf life at 2-8°C: See expiration date on reagent

On-board in use and refrigerated on analyzer: 4 weeks

Specimen collection and preparation
- Specimen collection and preparation, only use suitable tubes or collection containers.
- Only the specimens listed below were tested and found acceptable.

Materials provided
- See "Reagents - Working Solutions" section for reagents.

Various assay methods are available for CRP determination, such as nephelometry and turbidimetry. The Reference CRP assay is based on the principle of particle-enhanced immunosorbent assay.
CRP2S
C-Reactive Protein (Latex) High Sensitive Assay

Materials required (but not provided)
See “Order information” section.

Cobas® c 111 system - test definition

Measuring modes
Abundance

As, calculation mode
Kinetic

Reaction direction
Increase

Wavelength, λ
552 nm

Calc. formula
17254

Unit
mg/L, mmol/L, mg/dL

Reaction mode
FR-3-SR

Pipetting parameters

FR1 82 µL
Sample 6 µL
SIR 28 µL
Total volume 178 µL

Calibration
Calibrator
Calibrator dilution ratio
1:5, 1:10, 1:20, 1:40, 1:80, 1:160, performed automatically by the instrument, and Standard 6 = 0 mg/L

Calibration mode
Linear Interpolation

Calibration interval
Each lot and as required following quality control procedures

Enter the assigned lot-specific CRP2S value of the undiluted calibrator (mg/L) indicated in the package insert of the c 111 system. Traceability: This method has been standardized against the reference preparation of the IRMM (Institute for Reference Materials and Measurements) CRP2S/IRMM-070 (CRP: Reference Preparation for Proteins in Human Serum). Qualitätskontrolle

For quality control, use control materials as listed in the “Order information” section.

Other suitable control material can be used in addition.

The control intervals and limits should be adapted to each laboratory’s individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the limits.

Calculation
The cobas® c 111 analyzer automatically calculates the analytic concentration of each sample.

Correlation (normal): y = 0.00733x + 0.001; r = 0.9999

Limitations - interference
Peak absorption to 1% of the initial value at CRP levels of 3.0 mg/L.

Non-enzymatic: No significant interference was observed for conjugated and unconjugated bilirubin (approximately conjugated and unconjugated bilirubin concentrations: 100 µmol/L (60 mg/dL)).

Hemolysis: No significant interference was observed for an H index of 700 (approximately a hemoglobin concentration: 450 µmol/L (150 mg/dL)).

Lipemia: No significant interference was observed for an L index of 4/5; the mean correlation between the L index (corresponds to turbidity) and CRP concentrations is 0.98.

Rheumatoid factors up to 5000 IU/mL do not interfere.

High-dose hook effect: does not occur at CRP concentrations below 40 mg/L or 280 µmol/L. Samples with concentrations >40 mg/L are flagged either TEST REN or TEST A27.

Drug: No interference was found at therapeutic concentrations using common drug panels.

In very rare cases, spurious results may occur in case of other proteins (e.g., anti-mouse antibodies, mouse antibodies). In case of high levels of mouse antibodies or high levels of mouse antibodies, the results should be rechecked.

For diagnostic purposes, the results should always be assessed in conjunction with the patient’s medical history, clinical examination, and other findings. Special wash requirements: No interfering assays are known which require special wash steps.

Measuring range

0.05-20.0 mg/L (0.43-160 nmol/L), 0.4-2.0 mg/dL

Lower detection limit
0.15 mg/L (0.43 nmol/L), 0.25 mg/dL

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the average of the three standard deviations above that of the lowest standard.

Functional sensitivity (limit of quantitation)
0.3 mg/L (0.78 nmol/L)

The functional sensitivity (limit of quantitation) is the lowest CRP concentration that can be reproducibly measured with an inter-assay coefficient of variation <10%.

Expected values

Cordless reference interval for adults:
0-0.4 mg/L (0-11 nmol/L)

0-0.2 mg/L (0-5.8 nmol/L)

The Cordless/AHA recommended the following hsCRP cut-off point (threshold) for CV risk assessment:

hsCRP level (mg/L)
hsCRP level (nmol/L)
Relative risk
<1.0
<8.0
Low
1.0-3.0
9.0-28.6
Average
>3.0
>25.6
High

Patients with higher hsCRP concentrations are more likely to develop myocardial infarction and severe peripheral vascular disease.

Cordless reference interval of neonates and children:

Neonates (0-3 weeks): 0.05-4.4 mg/L (0.35-29.0 nmol/L)
Children (≤18 years): 0.2-2.8 mg/L (0.96-26.7 nmol/L)

It is important to monitor the CRP concentration during the acute phase of the illness.

Each laboratory should investigate the transferability of the expected values to its own patient population and determine its own reference ranges. Increases in CRP values are non-specific and should not be interpreted without a complete clinical history.

When using hsCRP to assess the risk of coronary heart disease, measurements should be made on metabolically stable samples and compared to previous values. Optimally, the average of hsCRP results repeated two weeks apart should be used for risk assessment. Measurements should
C-Reactive Protein (Latex) High Sensitive Assay

With previous results, when the results are being used for risk assessment, patients with persistently unexplained hsCRP levels of above 10 mg/L (0.62 mg/dL) should be evaluated for non-cardiovascular causes. Testing for any risk assessment should not be performed while there is a history of infection, systemic inflammation or tissue injury.

Specific performance data

Results obtained in individual laboratories may differ.

Precision

Reproducibility was determined using human samples and controls in an internal protocol (within-run n = 21, total n = 30).

The following results were obtained:

Within-run Mean \(\pm \) SD CV

<table>
<thead>
<tr>
<th>Prozone Protein</th>
<th>11.4 (10.5, 11.4)</th>
<th>0.014 (0.411)</th>
<th>0.39</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP T Control N</td>
<td>4.0 (3.6, 4.2)</td>
<td>0.016 (1.332)</td>
<td>0.24</td>
</tr>
<tr>
<td>Human serum 1</td>
<td>0.49 (0.46, 0.51)</td>
<td>0.007 (0.099)</td>
<td>1.46</td>
</tr>
<tr>
<td>Human serum 2</td>
<td>1.52 (1.52, 1.67)</td>
<td>0.003 (0.203)</td>
<td>0.61</td>
</tr>
<tr>
<td>Human serum 3</td>
<td>1.69 (1.61, 1.78)</td>
<td>0.001 (0.618)</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Total Mean \(\pm \) CV

<table>
<thead>
<tr>
<th>Prozone Protein</th>
<th>11.3 (10.8, 11.3)</th>
<th>0.057 (0.543)</th>
<th>0.51</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP T Control N</td>
<td>3.9 (3.5, 4.0)</td>
<td>0.035 (0.562)</td>
<td>0.79</td>
</tr>
<tr>
<td>Human serum 1</td>
<td>0.49 (0.45, 0.53)</td>
<td>0.030 (0.613)</td>
<td>0.69</td>
</tr>
<tr>
<td>Human serum 2</td>
<td>1.51 (1.43, 1.60)</td>
<td>0.024 (0.154)</td>
<td>1.37</td>
</tr>
<tr>
<td>Human serum 3</td>
<td>1.69 (1.61, 1.78)</td>
<td>0.119 (0.704)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Method comparison

CRP values for human serum and plasma samples obtained on the cobas e 411 analyzer (A) were compared to those determined with the same reagent on a COBAS INTEGRA 400 analyzer (B).

Sample size (n) = 30

Passing-Bablok[12] Linear regression

\[
y = 1.030x - 0.101 \text{ mg/L} \\
y = 1.024x - 0.209 \text{ mg/L}
\]

r = 0.992 = 0.999

The sample concentrations of the reference system (A) were between 0.21 and 15.6 mg/L at 2.02 and 1.80 mg/L.

References

FOR US CUSTOMERS ONLY: LIMITED WARRANTY
Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE, IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.
APPENDIX N

GLUCOSE
GLUC2

Glucose HK

4 x 160 tests

Calibrator L.s. (12 x 0.3 mL)	Cat. No. 10769259 190
Calibrator L.s. (12 x 0.3 mL, for USA)	Cat. No. 10769259 380
Precision U plus (10 x 3 mL)	Cat. No. 12145435 122
Precision U plus (15 x 3 mL)	Cat. No. 12145433 122
Precision U plus (20 x 3 mL)	Cat. No. 12145443 122
Precision U plus (25 x 3 mL)	Cat. No. 12145445 122
Precision U plus (30 x 3 mL)	Cat. No. 12145450 122
Precision U plus (35 x 3 mL)	Cat. No. 12145448 122
Precision U plus (40 x 3 mL)	Cat. No. 12145455 122
Precision U plus (45 x 3 mL)	Cat. No. 12145458 122
Precision U plus (50 x 3 mL)	Cat. No. 12145460 122
Precision U plus (55 x 3 mL)	Cat. No. 12145462 122
Precision U plus (60 x 3 mL)	Cat. No. 12145465 122
Precision U plus (65 x 3 mL)	Cat. No. 12145468 122
Precision U plus (70 x 3 mL)	Cat. No. 12145470 122

System Information

GLUC2: ACN 707

GLUC2: ACN 295

Intended use

In vitro test for the quantitative determination of glucose in human serum, plasma and urine on the cobas e 111 system.

Summary

Glucose is the major carbohydrate present in the peripheral blood. Oxidation of glucose is the major source of cellular energy in the body. Glucose derived from dietary sources is converted to glycogen for storage in the liver or to fatty acids for storage in adipose tissue. The concentration of glucose in blood is controlled within narrow limits by many hormones, the most important of which are produced by the pancreas. The most frequent cause of hyperglycemia is diabetes mellitus resulting from a deficiency in insulin secretion or action. A number of secondary factors also contribute to elevated blood glucose levels. These include pancreatectomy, thyroid dysfunction, renal failure and liver disease. Hypoglycemia is less frequently observed. A variety of conditions may cause low blood glucose levels such as malnutrition, hypothyroidism or insulin-induced hypoglycemia.

Glucose measurement in urine is used as a diabetes screening procedure and is a component of the evaluation of glucosuria, to detect renal tubular defects, and in the management of diabetic mellitus.

Test principle

UV test

Enzymatic reference method with hexokinase.

Glucose + ATP + HK → G-6-P + ADP

Glucose-6-phosphate dehydrogenase catalyzes glucose-6-phosphate in the presence of NADP to glucose-6-phosphate. No other carbohydrates are oxidized. The rate of NADPH formation during the reaction is directly proportional to the glucose concentration and is measured photometrically.

Reagents - working solutions

RT TRIS buffer: 100 mmol/L, pH 7.3; MgCl₂: 4 mmol/L; ATP: ≥ 7 mmol/L; NADPH: ≥ 0.0 mmol/L; preservative

SR TRIS buffer: 30 mmol/L, pH 7.3; MgCl₂: 4 mmol/L; HK (asialo); ≥ 100 mmol/L; G-6-PDH (E.coli): ≥ 500 µmol/L; preservative

Precautions and warnings

For in vitro diagnostic use.

When using this assay the normal precautions recommended for handling all laboratory reagents should be taken. Dispose of all waste material in accordance with local guidelines.

Materials provided

See "Reagents - working solutions" section for reagents.

Materials required (but not provided)

See "Order information" section

Order information

 cobas systems

 GLUC2: ACN 707
 GLUCU: ACN 295

cobas e 111

Rugrant handling

Ready for use.

Storage and stability

GLUC2

Shelf life at 2-8°C:

See expiration date on the reagent bottle.

On-board in use and refrigerated on the analyzer:

4 weeks

Specimen collection and preparation

For specimen collection and preparation, only use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable.

Serum

Plasma: U-heparin, K₂-EDTA or Na₂EDTA plasma.

Collect blood by venipuncture from fasting individuals using an evacuated tube system. The stability of glucose in specimens is affected by storage temperature, bacterial contamination, and glycolysis. Plasma or serum samples without preservative should be separated from the cells at or below 4°C within 4 hours of drawing. When blood is drawn and permitted to clot and is stored unrefrigerated at room temperature, the average decrease in serum glucose is -1% in 1 hour (0.28 mmol/L), or 5 to 10 mg/dL. This decrease is the result of glycolysis. Glycosuria can be inhibited by collecting the specimen in fluoride tubes.

The samples types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e., not all available tubes of all manufacturers were tested. Barolo collected from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Stability (no hemolysis) 6 hours at 25°C 8 hours at 4°C 4 weeks at 2-8°C 2 weeks at 8°C

Stability in Na₂EDTA plasma 6 hours at 25°C 8 hours at 4°C 4 weeks at 2-8°C 2 weeks at 8°C

Urine

Collect urine in a dark bottle. For 24 hour urine collections, glucose may be preserved by adding 5 mL of 0.5% glacial acetic acid to the container before collection. Unpreserved urine samples may lose up to 45% of their glucose after 24 hours storage at room temperature. Therefore, keep samples on ice during collection.

Materials provided

See "Reagents - working solutions" section for reagents.

Materials required (but not provided)

See "Order information" section

Order information

General laboratory equipment

Assay

For optimum performance of the assay follow the guidelines given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer-specific assay instructions.
GLUC2
Gluco HK

This performance of applications not satisfied by Roche is not warranted and must be defined by the user.

Application for serum, plasma and urine
coabs c 111 system – test definition

Measuring mode
Absorbance

Abs. calculation mode
Endpoint

Abs. calculation:
Increase

Wave length
450 nm

Calc. instill (serum, plasma)
1:39

Calc. instill (urine)
1:198

Unit
mmol/L

Reaction mode
RF-S-UR

Pipetting parameters
Diluent (μL)

RI
150 μL

Sample
2 μL

SR
30 μL

Total volume
200 μL

Calibration
Calibrators
Calibrator 1 ns.

Calibration mode
Linear regression

Calibration interval
Each kit and as required quality control procedures.

Traceability:

This method has been standardized against IDMS.

Quality control

Assay performance
For assay control, use control materials as listed in the "Order Information" section.

Other suitable control materials can be used in addition.

Unreliable urine controls are recommended for routine quality control.

Calculation

The cobas c 111 analyzer automatically calculates the analyte concentration of each sample. Conversion factors:

mmol/L x 18.03 = mg/dL

mmol/L x 0.1802 = g/L

mg/dL x 0.0555 = mmol/L

Limitations – Interference

Colorimetric measurement with 1.2% of initial value at a glucose concentration of 0.80 mmol/L (15 mg/dL).

Serum:

No significant interference up to an L index of 63 (approximately conjugated and unconjugated bilirubin concentration: 1050 μmol/L, 60 mg/dL)).

Urine:

No significant interference up to an L index of 1000 (approximately hemoglobin concentration: 0.91 g/dL, 100 mg/dL).

Urinary lipase (NATRIUM): No significant interference up to an L index of 2000. There is poor correlation between the L index (corresponds to turbidity) and lipase concentration.

Drugs:

No interference was found using common drug panels.7

In very rare cases gamma-glutamyl transferase (gamma-glutamyltransferase) may cause unreliable results.

For diagnostic purposes, the results should always be assessed in conjunction with the patient’s medical history, clinical examination and other findings.

NOTE: Glucose values achieved on some proficiency testing materials, when evaluated against a glucose oxidase-oxidase electrode comparison method, demonstrate an approximate 3% positive bias on average.

Special wash requirements

No interfering assays are known which require special wash steps.

Measuring range

Serum, plasma and urine

0.11–40 mmol/L (2.00–720 mg/dL)

Determine samples having higher concentrations via the reagent function.

Dilution of samples via the reagent function is a 1:15 dilution.

Results from samples diluted via the reagent function are automatically multiplied by a factor of 10.

Lower detection limit

0.01 mmol/L (0.18 mg/dL)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value plus three standard deviations above that of the lowest standard.

Expected values

Plasma and Serum

Fasting

3.88–5.39 mmol/L (70–115 mg/dL)

Urine

First morning urine

0.3–1.1 mmol/L (60–200 mg/dL)

24 hours urine

0.3–0.96 mmol/L (6–19 mg/dL)

Free of therapeutics

Adults

41.6–59.2 mmol/L (74–105 mg/dL)

60-90 years

4.56–6.36 mmol/L (85–115 mg/dL)

>90 years

4.16–6.72 mmol/L (75–120 mg/dL)

Children

3.10–5.25 mmol/L (56–90 mg/dL)

Neonates (1 day)

2.25–3.35 mmol/L (40–60 mg/dL)

Neonates (> 1 day)

2.73–4.44 mmol/L (48–79 mg/dL)

Urine

24 hours urine

< 2.78 mmol/24 hours (< 0.5 g/24 hours)

Random urine

0.06–0.83 mmol/L (1–15 mg/dL)

Each laboratory should investigate the testability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Predectors

Reproducibility was determined using human samples and controls in an internal protocol (within-run n = 21, total n = 50).

The following results were obtained:

<table>
<thead>
<tr>
<th>Serum, plasma</th>
<th>Within-run</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mmol/L</td>
<td>mmol/L</td>
<td>%</td>
</tr>
<tr>
<td>Predichrom U</td>
<td>0.03 (0.03)</td>
<td>0.03 (0.03)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Predichrom U</td>
<td>0.03 (0.03)</td>
<td>0.03 (0.03)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Human serum 1</td>
<td>1.20 (0.89)</td>
<td>0.1 (0.1)</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Human serum 1</td>
<td>1.20 (0.89)</td>
<td>0.1 (0.1)</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mmol/L</td>
<td>mmol/L</td>
<td>%</td>
</tr>
<tr>
<td>Predichrom U</td>
<td>9.12 (91.3)</td>
<td>0.02 (0.5)</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Predichrom U</td>
<td>14.1 (25.1)</td>
<td>0.1 (0.1)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Human serum 1</td>
<td>2.23 (50.4)</td>
<td>0.01 (0.1)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Human serum 1</td>
<td>2.23 (50.4)</td>
<td>0.01 (0.1)</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
GLUC2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
</tr>
<tr>
<td>Within-run</td>
<td>mmol/L</td>
<td>mmol/L</td>
<td>%</td>
</tr>
<tr>
<td>Control level 1</td>
<td>1.80 (34.2)</td>
<td>0.01 (0.10)</td>
<td>0.7</td>
</tr>
<tr>
<td>Control level 2</td>
<td>15.7 (283)</td>
<td>0.04 (0.27)</td>
<td>0.3</td>
</tr>
<tr>
<td>Urine sample 1</td>
<td>0.80 (15.4)</td>
<td>0.01 (0.12)</td>
<td>1.6</td>
</tr>
<tr>
<td>Urine sample 2</td>
<td>30.0 (541)</td>
<td>0.10 (1.8)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Method comparison

Glucose values for human serum, plasma and urine samples obtained on the cobas e 111 analyzer (x) were compared with those determined using the same reagent on the COBAS INTEGRA 400 analyzer (y).

Serum, Plasma

- **Sample size (n) = 50**
- **Passing Bablok**
 - Linear regression
 - \(y = 1.022 - 0.000 \text{ mmol/L} \)
 \(t = 0.980 \)
 \(r = 1.000 \)
 The sample concentrations were between 2.2 and 29.5 mmol/L (39.6 and 537 mg/dL).

Urine

- **Sample size (n) = 54**
- **Passing Bablok**
 - Linear regression
 - \(y = 0.986x - 0.037 \text{ mmol/L} \)
 \(t = 0.989 \)
 \(r = 1.000 \)
 The sample concentrations were between 0.13 and 30.1 mmol/L (2.34 and 705 mg/dL).

References

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.

© 2006 Roche Diagnostics

Roche Diagnostics North America
2650 Old Village Road
Indianapolis, IN 46268
1-800-233-4545

Roche Diagnostics, Kloster閉
1-800-526-0430
1-800-526-0430

102
APPENDIX O

HDL
HDLC3
HDL-Cholesterol plus 3rd generation

Order Information

<table>
<thead>
<tr>
<th>Test Code</th>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDLC3: ACN 435</td>
<td>Cat. No. 04657589 190</td>
<td>HDLC3: ADN 435</td>
</tr>
<tr>
<td>Code 454</td>
<td>Code 454</td>
<td></td>
</tr>
<tr>
<td>Code 604</td>
<td>Code 319</td>
<td></td>
</tr>
<tr>
<td>Code 951</td>
<td>Code 200</td>
<td></td>
</tr>
</tbody>
</table>

*Indicates cobas c systems on which reagents can be used

cobas c systems

cobas c 111

System Information

HDLC3: ACN 435

Intended Use

In vitro diagnostic test for the quantitative determination of the HDL-cholesterol concentration in human serum and plasma on the cobas c 111 system.

Summary

High density lipoproteins (HDL) are responsible for the reverse transport of cholesterol from the peripheral cells to the liver. Here, cholesterol is transformed to bile acids which are excreted into the intestines via the biliary tract. Monitoring of HDL-cholesterol in serum is of clinical importance since an inverse correlation exists between serum HDL-cholesterol concentrations and the risk of atherosclerotic disease. Elevated HDL-cholesterol concentrations are protective against coronary heart disease, while reduced HDL-cholesterol concentrations, particularly in conjunction with elevated triglycerides, increase the cardiovascular risk. Strategies have emerged to increase the level of HDL-cholesterol to treat cardiovascular diseases.

A variety of methods are available to determine HDL-cholesterol, including ultracentrifugation, electrophoresis, HPLC, precipitation-based methods, and direct methods. Of these, the direct methods are used routinely. Several approaches for direct measurement of HDL-cholesterol in serum have been proposed, including the use of magnetic or responsive particles as polymer-metal composites and the use of polystyrene gel (PEG) with anti-apolipoprotein B and anti-apolipoprotein CIII antibodies.

This automated method for direct determination of HDL-cholesterol in serum and plasma uses PEG-modified enzymes and detergent solution. When cholesteryl esters and cholesterol esterification enzymes are modified by PEG, they show an active catalytic activity toward lipoprotein fractions, with the reaction increasing in the order: LDL > VLDL > cholesteryl esters > HDL-β > HDL-α, HDL-β > HDL-α

Non-fasting sample results are slightly lower than fasting results. Comparable non-fasting results were obtained with the data quantitation method. The Roche direct HDL-cholesterol assay meets the 1997 National Institute of Health (NIH) / National Cholesterol Education Program (NCEP) goals for acceptable performance. The results of this method correlate with those obtained by precipitation-based methods and are also by an ultracentrifugation method.

Test principle

Homogenous enzymatic colorimetric test.

In the presence of magnesium ions, deuterium sulfate selectively forms water-soluble complexes with LDL, VLDL and cholesteryl esters which exhibit no interference to HDL-cholesterol measurement.

The cholesteryl concentration of HDL-cholesterol is determined enzymatically by cholesteryl esterase and cholesterol oxidase coupled with PPO to the amino groups (approx. 40%).

Cholesterol esters are broken down quantitatively into free cholesterol and fatty acids by cholesteryl esterase.

In the presence of oxygen, cholesterol is oxidized by cholesterol oxidase to 7α-hydroxysterone and hydrogen peroxide.

HDL-cholesterol oxidase

\[
7\alpha\text{-}H_{2}O_{2} + \text{HDL-cholesterol} \rightarrow \text{7α-hydroxysterone} + H_{2}O_{2}
\]

In the presence of peroxidase (PPO), the hydrogen peroxide generated reacts with 4-amino-antipyrine and hexacyanoferrate (II) to form a purple-blue dye. The color intensity of this dye is directly proportional to the HDL-cholesterol concentration and is measured photometrically.

\[
2\text{H}_{2}O_{2} + 4\text{-amino-antipyrine} + \text{hexacyanoferrate (II)} + \text{H}_{2}O \rightarrow \text{purple-blue pigment} + 5 \text{H}_{2}O
\]

Reagents - working solutions

1. **HRP** buffer: 10.07 mmol/L, CHES: 96.95 mmol/L, pH 7.4, Dextrose solution: 1.5 g/L, magnesium nitrate hexahydrate: 0.17 mmol/L, HEPES: 0.95 mmol/L, ascorbic acid solution (Eppendorf, Inc.): 6 μL/kg, L-proline (Sigma): ≥ 50 μg/mL, PDD (polydisperse): ≥ 16.7 μg/mL, preservative

2. **HRP** buffer: 10.07 mmol/L, pH 7.0, PEO-cholesterol esterase (Pseudozymes sp.: ≥ 30.55 U/mL, PEO-cholesterol esterase (Sphingomonas sp., recombinant): ≥ 127 μA/mL, PDD (polydisperse): ≥ 33.5 μg/mL, 4-amino-antipyrine: 2.46 mmol/L, preservative

Precautions and warnings

For in vitro diagnostic use. Exercise the normal precautions required for handling all laboratory reagents. Safety data sheet available for professional use on request. Disposal of all waste material should be in accordance with local guidelines.

Reagent handling

Ready for use.

The intense blue color of the cholesteryl esterase does not interfere with the test. Inaccurate plotting of reagent, leading to potentially erroneous results, may be caused by excessive foaming of the reagent. Ensure that foam is removed from the surface of the reagent prior to setting the reagent in the analyzer.

Storage and stability

HDLC3

- Shelf life at 2-8°C: 2 years
- On-board in use and refrigerated on the analyzer: 3 weeks
- NaCl 0.9% IV: 2 years
- Shelf life at 2-8°C: 2 years

- On-board in use and refrigerated on the analyzer: 3 weeks
- NaCl 0.9% IV: 2 years
- Shelf life at 2-8°C: 2 years

- On-board in use and refrigerated on the analyzer: 3 weeks
- NaCl 0.9% IV: 2 years
- Shelf life at 2-8°C: 2 years

Specimen collection and preparation

For specimen collection and preparation, only use suitable tubes or collection containers. Only the specimens listed below were tested and found acceptable.

- Serum: Normal
- Plasma: LH-heparin, K3 EDTA plasma, EDTA plasma causes decreased results.

It is reported that EDTA stabilizes lipoproteins. Fasting and non-fasting samples can be used. Collect blood by using an evacuated tube or syringe. Specimens should preferably be analyzed on the day of collection.
HDLC3

HDL-Cholesterol plus 3rd generation

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e., not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuged samples containing precipitates before performing the assay.

Stability: 7 days at 2-8°C
 30 days at -70°C

Materials provided:
See "Reagents - working solutions" section for reagents.

Materials required (but not provided):
See "Order information" section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma:
cobas c 111 test definition:

Cholesterol: Determination of the cholesterol concentration in the sample by the cobas c 111 analyzer using the Cholesterol Program supplied by Roche. The cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors:
- mmol/L x 38.66 = mg/dL
- mg/dL x 0.0259 = mmol/L

Limitations:
Inaccuracy of the test results may occur in cases where the sample is not collected properly or the sample is not processed in accordance with the instructions provided in this document.

Calculations:
These calculations are performed by the cobas c 111 analyzer.

Stability:
7 days at 2-8°C
30 days at -70°C

Materials provided:
See reagents - working solutions section for reagents.

Materials required (but not provided):
See order information section.

Deionized water

General laboratory equipment.

Assay:
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator manual for analyzer specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.
HDLC3
HDL-Cholesterol plus 3rd generation

International Cholesterol Education Program (NCEP) guidelines:³⁰
<40 mg/dL: Low HDL-cholesterol (major risk factor for CHD)
40-60 mg/dL: Normal HDL-cholesterol
60-70 mg/dL: High HDL-cholesterol
70 mg/dL: “Negative” risk factor for CHD

HDL-cholesterol is affected by a number of factors, e.g., smoking, exercise, hormones, age and age.

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

National Cholesterol Education Program (NCEP) guidelines are based on serum values, and when classifying patients, serum or serum equivalent values should be used. Therefore the NCEP recommends a factor of 1.03 to convert EDTA plasma values to serum values. However, our own investigations revealed that a factor of 1.06 should be used for the HDLC3 reagent. To comply with the 1992 NCEP goal of a 5% base we recommend that each laboratory validate this conversion factor and enter it into the test parameters for HDLC C (A3S).³⁹

Specific performance data
Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precaution
Reproducibility was determined using human samples and controls in an internal protocol (within-run n = 21, total n = 50).
The following results were obtained:

Within-run
Mean CV

mEq/L (mg/dL)
mEq/L (mg/dL)

0.98 1.28
0.95 0.70
0.98 1.35
0.95 0.70

Packed red blood cells

0.98 1.28
0.95 0.70
0.98 1.35
0.95 0.70

Human serum

0.98 1.28
0.95 0.70
0.98 1.35
0.95 0.70

Reference

0.98 1.28
0.95 0.70
0.98 1.35
0.95 0.70

Method comparison

HDL-cholesterol values for human serum and plasma samples obtained on the cobas c 111 analyzer (a) were compared with those determined using the same reagent on a COBAS INTEGRA 400 analyzer (b). A sample size (n) = 101.

Sample size (n) = 101

Pearson’s correlation coefficient

y = 0.970x + 0.001 mmol/L
0.970

r = 0.969

The sample concentrations were between 0.16 and 3.05 mmol/L. (6.2 and 118 mg/dL).

References
19. Data on file at Roche Diagnostics.
28. Assmann G. At what levels of total low- or high-density lipoprotein cholesterol should diet therapy be initiated? European guidelines. J Am Coll Cardiol 1992;20:11F.

FOR US CUSTOMERS ONLY: LIMITED WARRANTY
Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.
APPENDIX P

TRIGLYCERIDES
TRIGL

Triglycerides

Order Information

- Cat. No. 04657594 100
- Cat. No. 10079560 100
- Cat. No. 10079560 100
- Cat. No. 12149435 122
- Cat. No. 12149435 100
- Cat. No. 12149432 122
- Cat. No. 12149432 100
- Cat. No. 10177478 122
- Cat. No. 10177478 122

System Information

TRIGL: ACN 781

Intended use

In vitro test for the quantitative determination of triglycerides in human serum and plasma on the cobas® e 111 system.

Summary

Triglycerides are esters of the trihydric alcohol glycerol with 3 long-chain fatty acids. They are partly synthesized in the liver and partly ingested in food.

The determination of triglycerides is utilized in the diagnosis and treatment of patients having diabetes mellitus, nephrosis, liver obstruction, lipid metabolism disorders, and numerous other endocrine diseases.

The enzymatic triglycerides assay as described by Heggestad and Ketel and is now recommended as first-choice method. Numerous attempts were subsequently made to replace alkaline saponification by enzymatic hydrolysis with lipase. Butcher and Davey tested a lipase/glucose oxidase system; Wark and Wolfson used a system from the liver in combination with peroxidase.

This method is based on the work of Wark and Wolfson using a lipase/glucose oxidase system.

Test principle

Enzymatic calorimetric test.

- Triglycerides + 3 H₂O → glycerol + 3 RCOOH
- Glycerol + ATP → glycerol-3-phosphate + ADP
- Glycerol-3-phosphate + O₂ → dihydroxyacetic phosphate + H₂O
- Dihydroxyacetic phosphate → 4-phenoxyacetophenone monomethyl ether + 2 H₂O + HCl

Reagents - working solutions

- R1: PBS buffer, pH 6.8, MgCl₂: 40 mmol/L; sodium cholate: 0.20 mmol/L; ATP: 1.4 mmol/L; 4-aminoacetophenone: 20.13 mmol/L; dihydroxyacetone phosphate: 4.0 mmol/L; Pseudomonas sp.: 128 kIU/L; GC: 0.10 mmol/L; EDTA (sodium salt): 0.15 mmol/L; preservative

Precautions and warnings

- In vitro diagnostic use.
- Use the normal precautions required for handling all laboratory reagents.
- Safety data sheet available for professional user on request.
- Do not freeze reagents.

Reagent handling

- Keep reagents refrigerated.

Storage and stability

TRIGL:

Shelf life: 2 years

Specimen collection and preparation

- On-board in use and refrigerated on analyzer: 2 weeks

Materials provided

- See "Reagents - working solutions" section for reagents.

General laboratory equipment

- Assay
- For optimum performance of the assay, follow the directions given in this document to the analyzer concerned. Refer to the appropriate operator manual for analyzer-specific assay instructions.
TRIGL

Triglycerides
Application for serum and plasma

cobas c 111 system – test definition

Measuring mode
Absorbance

Abs. calculation mode
Endpoint

Reaction direction
Increase

Wavelength / A
520/600 nm

Cal. factor
591

Unit
mmol/L

Reaction mode
R-6

Pipetting parameters

Diluent (H2O)

Reagent volume
120 µL

Sample volume
3 µL

Total volume
123 µL

Calibration
Calibrator f.a.c.

Calibration solution
Diluted urine is used automatically by the instrument at the zero calibrator

Calibration mode
Linear regression

Calibration interval
Each lot and/or required following quality control procedures

Traceability: This method has been standardized against the ECAS method.

Quality control
For quality control, use control materials as listed in the "Order information" section.

Other suitable control material can be used in addition.

The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits.

Each laboratory should establish corrective measures to be taken if values fall outside the limits.

Calculation
The Cobas c 111 analyzer automatically calculates the analyte concentration of each sample.

Conversion factors: mmol/L x 85 = mg/dL

mg/dL x 0.0183 = mmol/L

Limitations - Interference

Criteria: Recovery within ±10% of initial values at triglycerides levels of ≤0.3 mmol/L (<200 mg/dL).

Interferences: No significant interference up to 10% of elevated levels of HDL cholesterol, ALT and AST.

Endogenous unidentified compounds in the sample will falsely elevate serum triglycerides.

Drugs: No interference was observed when using common drug panels.

Exception: Aminophylline and calcium doxastenate cause artificially low triglycerides results at the tested drug levels. Tenidap, methsulfox and phenylbutazone cause artificially low triglycerides results at a higher drug level.

In very rare cases hyperammonemia, in particular type IIA (Wagner's type A2) hyperammonemia, may cause unreliable results.

For diagnostic purposes, the results should always be assessed in conjunction with the patient’s medical history, clinical examination and other findings.

Special wash requirements
No interfering assays are known which require special wash steps.

Measuring range
61-10 mmol/L (85-865 mg/dL)

Cholesterol samples having higher concentrations via the reagent function.

Dilution of samples is via the reagent function is a 1:19 dilution.

Results from samples diluted by the reagent function are automatically multiplied by a factor of 19.

Lower detection limit
61 mmol/L (865 mg/dL)

The lower detection limit represents the lowest analyte level that can be distinguished from zero. It is calculated as the value lying three standard deviations above that of the lowest standard.

Expected value according to MOCQA:

Cholesterol <0.3 mmol/L (<20 mg/dL)

Clinical interpretation according to the recommendations of the European Atherosclerosis Society:

Cholesterol 6.2-7.8 mmol/L

HDL cholesterol

<0.9 mmol/L (<35 mg/dL)

Yes

Yes

Yes

Yes

Each laboratory should investigate the transferrability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below.

Results obtained in individual laboratories may differ.

Precision

Reproducibility was determined using human samples and controls in an internal protocol (within n = 21, total n = 30).

The following results were obtained:

Table: [Table with data]

The sample concentrations were between 0.4 and 10 mmol/L (65 and 865 mg/dL).
References

1. Gaalinger H, Deussen AM, eds. Lehrbuch der Klinischen Chemie und
4. Whittaker SJ, Burchay HA, eds. Methods of Enzymatic Analysis
8. Glauk MH, Rynie KW, Jackson SA. Graphical Comparisons of Interferences
10. Stin K, Myers GL. National Cholesterol Education Program
Recommendations for Lipid and Cholesterol Measurement: Executive
11. Study Group, European Atherosclerosis Society. Strategies for the
prevention of coronary heart disease. A policy statement of the European

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications
stated in the labeling when used in accordance with such labeling and
will be free from defects in material and workmanship until the expiration
date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY
OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR
PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.
APPENDIX Q

INSULIN
HUMAN INSULIN SPECIFIC RIA KIT
250 TUBES (Cat. # HI-14K)

I. INTENDED USE

Insulin is a polypeptide hormone secreted from beta cells of the pancreas. The primary function of insulin is to control blood glucose levels through its biochemical actions on cellular glucose uptake, glycogenesis, lipogenesis, and glucose oxidation. Insulin secretion into the bloodstream is predominantly controlled by the level of glucose in plasma but is also influenced by other factors, such as neural influences, intestinal hormones, and other beta cell secretory hormones. The measurement of in vivo insulin concentrations may aid in the diagnosis of conditions, such as nesidioblastosis, islet-cell tumors, and various insulin resistant conditions, such as diabetes mellitus. This Human Insulin Specific Kit is for the quantitative determination of insulin in serum, plasma, and tissue culture media. This assay does not cross-react with Human Proinsulin (<0.2%) and therefore measures "true" insulin levels. It is a completely homogeneous assay since the antibody was raised against purified Human insulin and both the standard and the tracer are prepared with Human Insulin.

For research purposes only.

II. PRINCIPLES OF PROCEDURE

In radioimmunoassay, a fixed concentration of labeled tracer antigen is incubated with a constant dilution of antiserum such that the concentration of antigen binding sites on the antibody is limited, for example, only 50% of the total tracer concentration may be bound by antibody. If unlabeled antigen is added to this system, there is competition between labeled tracer and unlabeled antigen for the limited and constant number of binding sites on the antibody. Thus, the amount of tracer bound to antibody will decrease as the concentration of unlabeled antigen increases. This can be measured after separating antibody-bound from free tracer and counting one or the other, or both fractions. A standard curve is set up with increasing concentrations of standard unlabeled antigen and from this curve the amount of antigen in unknown samples can be calculated. Thus, the four basic necessities for a radioimmunoassay system are: a specific antiserum to the antigen to be measured, the availability of a radioactive labeled form of the antigen, a method whereby antibody-bound tracer can be separated from the unbound tracer, and finally, an instrument to count radioactivity.

The Millipore Human insulin assay utilizes ^{125}I-labeled Human Insulin and a Human Insulin antiserum to determine the level of insulin in serum, plasma or tissue culture media by the double antibody/PEG technique.

III. REAGENTS SUPPLIED

Each kit is sufficient to run 250 tubes and contains the following reagents.

A. Assay Buffer
 0.05M Phosphosaline pH 7.4 containing 0.025M EDTA, 0.08% Sodium Azide, and 1% RIA Grade BSA
 Quantity: 40 mL/vial
 Preparation: Ready to use

B. Human Insulin Antibody
 Guinea Pig anti-Human Insulin Specific antibody in Assay Buffer
 Quantity: 20 mL/vial
 Preparation: Ready to use

Hi-14K-Rev. 25-FEB-2011 2 MILLIPORE
III. REAGENTS SUPPLIED (continued)

C. 131I-Insulin
131I-Insulin Label, HPLC purified (specific activity 387 \mu Ci/\mu g).
Lysylated for stability. Freshly iodinated label contains <5 \mu Ci (185 kBq), calibrated to the 1st Monday of each month.
Quantity: 27 mL/vial upon hydration
Preparation: Contents Lysylated. Hydrate with entire contents of Label Hydrating Buffer. Allow to set at room temperature for 30 minutes, with occasional gentle mixing.

D. Label Hydrating Buffer
Assay Buffer containing Normal Guinea Pig Serum as a carrier. Used to hydrate 131I-Insulin.
Quantity: 27 mL/vial
Preparation: Ready to use

E. Human Insulin Standards
Purified Recombinant Human Insulin in Assay Buffer at the following concentrations:
200 \mu IU/mL
Quantity: 2 mL/vial
Preparation: Ready to use

F. Quality Controls 1 & 2
Purified Recombinant Human Insulin in Assay Buffer
Quantity: 1 mL/vial
Preparation: Ready to use

G. Precipitating Reagent
Goat anti-Guinea Pig IgG serum, 3\% PEG and 0.05\% Triton X-100 in 0.05M Phosphate saline,
0.025M EDTA,
0.08\% Sodium Azide
Quantity: 260 mL/vial
Preparation: Ready to use; chill to 4°C.

IV. STORAGE AND STABILITY
Refrigerate all reagents between 2 and 8°C for short-term storage. For prolonged storage (>2 weeks), freeze at ≤ -20°C. Avoid multiple (>5) freeze-thaw cycles. Refer to date on bottle for expiration when stored at ≤ -20°C. Do not mix reagents from different kits unless they have the same lot number.

V. REAGENT PRECAUTIONS

A. Radioactive Materials
This radioactive material may be received, acquired, possessed and used only by research personnel or clinical laboratories for in-vitro research tests not involving internal or external administration of the material, or the radiation there from, to human beings or animals. Its receipt, acquisition, possession, use and transfer are subject to the regulations of the U. S. Nuclear Regulatory Commission (NRC) or of a State with which the Commission has entered into an agreement for the exercise of regulatory authority.

The following are suggested general rules for the safe use of radioactive material. The customer's Radiation Safety Officer is ultimately responsible for the safe handling and use of radioactive material.
V. REAGENT PRECAUTIONS (continued)
1. Wear appropriate personal devices at all times while in areas where radioactive materials are used or stored.
2. Wear laboratory coats, disposable gloves, and other protective clothing at all times.
3. Monitor hands, shoes, and clothing and immediate area surrounding the workstation for contamination after each procedure and before leaving the area.
4. Do not eat, drink, or smoke in any area where radioactive materials are stored or used.
5. Never pipette radioactive material by mouth.
6. Dispose of radioactive waste in accordance with NRC rules and regulations.
7. Avoid contaminating objects such as telephones, light switches, doorknobs, etc.
8. Use absorbent pads for containing and easily disposing of small amounts of contamination.
9. Wipe up all spills immediately and thoroughly and dispose of the contaminated materials as radioactive waste. Inform Radiation Safety Officer.

B. Sodium Azide
Sodium Azide has been added to all reagents as a preservative at a concentration of 0.08%. Although it is at a minimum concentration, Sodium Azide may react with lead and copper plumbing to form highly explosive metal azides. On disposal, flush with a large volume of water to prevent azide build up.

VI. MATERIALS REQUIRED BUT NOT PROVIDED
1. Borosilicate glass tubes, 12 x 75 mm. (NOTE: Polypropylene or polystyrene tubes may be used if the investigator finds that the pellet formation is acceptably stable in their system.)
2. 100 µL pipet with disposable tips
3. 100 µL & 1.0 mL repeting dispenser
4. Refrigerated swing bucket centrifuge capable of developing 2,000 - 3,000 xg. (Use of fixed-angle buckets is not recommended.)
5. Absorbent paper
6. Vortex mixer
7. Refrigerator
8. Gamma Counter

VII. SPECIMEN COLLECTION AND STORAGE
1. A maximum of 100 µL per assay tube of serum or plasma can be used, although, 50 µL per assay tube is adequate for most applications. Tissue culture and other media may also be used.
2. Care must be taken when using heparin as an anticoagulant, since an excess will provide falsely high values². Use no more than 10 IU heparin per mL of blood collected.
3. Specimens can be stored at 4°C if they will be tested within 24 hours of collection. For longer storage, specimens should be stored at ± -20°C. Avoid multiple (>5) freeze/thaw cycles.
4. Avoid using samples with gross hemolysis or lipemia.
VII. ASSAY PROCEDURE

Standard Preparation

Use care in opening the Standard vial.

Label six glass tubes 1, 2, 3, 4, 5, and 6. Add 1.0 ml Assay Buffer to each of the six tubes. Prepare serial dilutions by adding 1.0 ml of the 200 uU/ml standard to tube 1, mix well and transfer 1.0 ml of tube 1 to tube 2, mix well and transfer 1.0 ml of tube 2 to tube 3, mix well and transfer 1.0 ml of tube 3 to tube 4, mix well and transfer 1.0 ml of tube 4 to tube 5, mix well and transfer 1.0 ml of tube 5 to tube 6, mix well.

Note: Do not use a Repeater pipette. Change tip for every dilution. Wet tip with Standard before dispensing. Unused portions of standard should be stored at ≤-20°C. Avoid multiple freeze/thaw cycles.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>Standard Concentration</th>
<th>Volume of Assay Buffer to Add</th>
<th>Volume of Standard to Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 200 uU/ml</td>
</tr>
<tr>
<td>2</td>
<td>50 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 100 uU/ml</td>
</tr>
<tr>
<td>3</td>
<td>25 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 50 uU/ml</td>
</tr>
<tr>
<td>4</td>
<td>12.5 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 25 uU/ml</td>
</tr>
<tr>
<td>5</td>
<td>6.25 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 12.5 uU/ml</td>
</tr>
<tr>
<td>6</td>
<td>3.125 uU/ml</td>
<td>1.0 ml</td>
<td>1.0 ml of 6.25 uU/ml</td>
</tr>
</tbody>
</table>

For optimal results, accurate pipetting and adherence to the protocol are recommended.

Assay Set-Up, Day One

1. Pipet 300 µl of Assay Buffer to the Non-Specific Binding (NSB) tubes (3-4), 200 µl to Reference (Rf) tubes (5-6), and 100 µl to tubes 7 through the end of the assay.
2. Pipet 100 µl of Standards and Quality Controls in duplicate (see flow chart).
3. Pipet 100 µl of each Sample in duplicate. (NOTE: Smaller volumes of sample may be used when insulin concentrations are anticipated to be elevated or when sample size is limited. Additional Assay Buffer should be added to compensate for the difference so that the volume is equivalent to 100 µl, e.g., when using 50 µl of sample, add 50 µl of Assay Buffer). Refer to Section IX for calculation modification.
4. Pipet 100 µl of hydrated ²⁵¹²I-insulin to all tubes. Important: For preparation, see Section III, Part C.
5. Pipet 100 µl of Human Insulin antibody to all tubes except Total Count tubes (1-2) and NSB tubes (3-4).
6. Vortex, cover, and incubate overnight (20-24 hours) at room temperature (22-25°C).
Day Two

7. Add 1.8 ml of cold (4°C) Precipitating Reagent to all tubes (except Total Count tubes).
8. Vortex and incubate 20 minutes at 4°C.
9. Centrifuge, 4°C, all tubes [except Total Count tubes (1-2)] for 20 minutes at 2,000-3,000 xg.

NOTE: If less than 2,000 xg is used or if slipped pellets have been observed in previous runs, the time of centrifugation must be increased to obtain a firm pellet (e.g., 40 minutes). Multiple centrifuge runs within an assay must be consistent.

Conversion of rpm to xg:

\[xg = (1.12 \times 10^{-3}) (r) (rpm)^2 \]

r = radial distance in cm (from axis of rotation to the bottom of the tube)

rpm = revolutions per minute

10. Immediately decant the supernate of all tubes except Total Count tubes (1-2), drain tubes for at least 15-60 seconds (be consistent between racks) and blot excess liquid from lip of tubes. NOTE: Invert tubes only one time. Pellets are fragile and slipping may occur.

11. Count all tubes in a gamma counter for 1 minute. Calculate the pM/ml, of Human Insulin in unknown samples using automated data reduction procedures.
Assay Procedure Flow Chart

<table>
<thead>
<tr>
<th>Tube Number</th>
<th>Day One</th>
<th></th>
<th>Day Two</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set-up</td>
<td>Step 1</td>
<td></td>
<td>Step 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add Assay Buffer</td>
<td></td>
<td>Add Precipitating</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>300 µl</td>
<td></td>
<td>Reagent</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>100 µl</td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>100 µl</td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>100 µl</td>
<td>1.0 mL</td>
</tr>
</tbody>
</table>
IX. CALCULATIONS

A. Explanation
The calculations for Human Insulin can be automatically performed by most gamma counters possessing data reduction capabilities or by independent treatment of the raw data using a commercially available software package. Choose weighted 4-parameter or weighted logit/log for the mathematical treatment of the data.

NOTE: Be certain the procedure used subtracts the NSB counts from each average count, except Total Counts, prior to final data reduction.

B. Manual Calculation
1. Average duplicate counts for Total Count tubes (1-2), NSB tubes (3-4), Total Binding tubes (reference, Bo) (5-6), and all duplicate tubes for standards and samples to the end of the assay.

2. Subtract the average NSB counts from each average count (except for Total Counts). These counts are used in the following calculations.

3. Calculate the percentage of tracer bound:
\[
\text{Binding Counts/Total Counts} \times 100
\]
This should be 35-50%.

4. Calculate the percentage of total binding (%B/Bo) for each standard and sample:
\[
\%B/Bo = \frac{\text{Sample or Standard/Total Binding}}{\text{Total Binding}} \times 100
\]

5. Plot the % B/Bo for each standard on the y-axis and the known concentration of the standard on the x-axis using log-log graph paper.

6. Construct the reference curve by joining the points with a smooth curve.

7. Determine the pU/mL of Human Insulin in the unknown samples and controls by interpolation of the reference curve.

NOTE: When sample volumes assayed differ from 100 µL, an appropriate mathematical adjustment must be made to accommodate for the dilution factor (e.g., if 50 µL of sample is used, then calculated data must be multiplied by 2).

Conversion to SI units
1 µU Insulin / mL = 6 pM
X. INTERPRETATION

Acceptance Criteria
1. The run will be considered accepted when all Quality Control values fall within the calculated Quality Control Range; if any QC’s fall outside the control range, review results with supervisor.
2. If the difference between duplicate results of a sample is >10% CV, repeat the sample.
3. The limit of sensitivity for the Human Insulin assay is 2.715 μU/mL (100 μL sample size).
4. The limit of linearity for the Human insulin assay is 200 μU/mL (100 μL sample size). Any result greater than 200 μU/mL should be repeated on dilution using Assay Buffer as a diluent.

XI. NORMAL FASTING RANGE

5-15 μU/mL

This range was determined from the analysis of blood drawn from 25 people after an 18 hour fast.

XII. ASSAY CHARACTERISTICS

A. Sensitivity

The lowest level of insulin that can be detected by this assay is 2.715 μU/mL when using a 100 μL sample size.

B. Performance

The following parameters of assay performance are expressed as Mean ± Standard Deviation.

\[ED_{25} = 7 \pm 1 \mu U/mL \]
\[ED_{50} = 20 \pm 3 \mu U/mL \]
\[ED_{75} = 102 \pm 10 \mu U/mL \]

C. Specificity

The specificity (also known as selectivity) of an analytical test is its ability to selectively measure the analyte in the presence of other like components in the sample matrix.

<table>
<thead>
<tr>
<th>Component</th>
<th>% Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Insulin</td>
<td>100%</td>
</tr>
<tr>
<td>Human Proinsulin (HPI)</td>
<td><0.2%</td>
</tr>
<tr>
<td>Des 31,32 HPI</td>
<td><0.2%</td>
</tr>
<tr>
<td>Des 64,65 HPI</td>
<td>76%</td>
</tr>
<tr>
<td>Canine Insulin</td>
<td>100%</td>
</tr>
<tr>
<td>Porcine Insulin</td>
<td>100%</td>
</tr>
<tr>
<td>Rhesus Insulin</td>
<td>67%</td>
</tr>
<tr>
<td>Rat Insulin</td>
<td>0.1%</td>
</tr>
<tr>
<td>IGF</td>
<td>ND</td>
</tr>
<tr>
<td>Glucagon</td>
<td>ND</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>ND</td>
</tr>
<tr>
<td>Pancreatic Polypeptide</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND—not detectable
XII. ASSAY CHARACTERISTICS (continued)

D. Precision
Within and Between Assay Variation

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean μU/mL</th>
<th>Within % CV</th>
<th>Between % CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>3.1</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>2.2</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>3.8</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>4.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Within and between assays variations were performed on five human serum samples containing varying concentrations of Human Insulin. Data (mean and % CV) shown are from five duplicate determinations of each serum sample in five separate assays.

E. Recovery
Spike & Recovery of Insulin in Human Serum

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Insulin Added μU/mL</th>
<th>Observed μU/mL</th>
<th>Expected μU/mL</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>13</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>17</td>
<td>18</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>26</td>
<td>28</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>97</td>
</tr>
</tbody>
</table>

Varying concentrations of Human Insulin were added to five human serum samples and RIA determined the insulin content. Mean of the observed levels from five duplicate determinations in five separate assays are shown. Percent recovery was calculated on the observed vs. expected.
XII. ASSAY CHARACTERISTICS (continued)

F. Linearity

Effect of Serum Dilution

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Volume Sampled (μl)</th>
<th>Observed (μU/mL)</th>
<th>Expected (μU/mL)</th>
<th>% Of Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>17</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>15</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>42</td>
<td>42</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>40</td>
<td>40</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>39</td>
<td>39</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>36</td>
<td>36</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>62</td>
<td>62</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>59</td>
<td>59</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>57</td>
<td>57</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>55</td>
<td>55</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>83</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>86</td>
<td>86</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>87</td>
<td>87</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>90</td>
<td>90</td>
<td>108</td>
</tr>
</tbody>
</table>

Aliquots of pooled Human Serum containing varying concentrations of insulin were analyzed in the volumes indicated. Dilution factors of 1, 1.33, 2 and 4 representing 100 μL, 75 μL, 50 μL and 25 μL, respectively, were applied in calculating observed concentrations. Mean insulin levels and percent of expected for five separate assays are shown.
XII. ASSAY CHARACTERISTICS (continued)

G. Example of Assay Results

This data is presented as an example only and should not be used in lieu of a standard curve prepared with each assay.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>ID</th>
<th>CPM</th>
<th>Ave CPM</th>
<th>Ave Net CPM</th>
<th>%</th>
<th>μU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>14679</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15738</td>
<td>15309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NSB</td>
<td>683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>664</td>
<td>644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bo</td>
<td>5836</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5808</td>
<td>5822</td>
<td>5179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Tube #</th>
<th>CPM</th>
<th>Ave CPM</th>
<th>Ave Net CPM</th>
<th>%</th>
<th>μU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3.125</td>
<td>5282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.25</td>
<td>5039</td>
<td>5151</td>
<td>4507</td>
<td>87.0</td>
</tr>
<tr>
<td>9</td>
<td>12.5</td>
<td>4930</td>
<td>4598</td>
<td>3955</td>
<td>76.4</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>4866</td>
<td>3862</td>
<td>3219</td>
<td>62.2</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>3775</td>
<td>3087</td>
<td>2450</td>
<td>47.3</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>3100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>3100</td>
<td>2066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>2100</td>
<td>2053</td>
<td>1410</td>
<td>27.2</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>1477</td>
<td>1452</td>
<td>908</td>
<td>15.6</td>
</tr>
<tr>
<td>16</td>
<td>200</td>
<td>1053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>997</td>
<td>1025</td>
<td>382</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Controls/Unknown

<table>
<thead>
<tr>
<th>Tube #</th>
<th>QC 1</th>
<th>QC 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>4033</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3999</td>
<td>4016</td>
</tr>
<tr>
<td>23</td>
<td>2075</td>
<td></td>
</tr>
</tbody>
</table>

25-n Unknown
XII. QUALITY CONTROLS

Good Laboratory Practice (GLP) requires that Quality Control (QC) specimens be run with each standard curve to check the assay performance. Two levels of controls are provided for this purpose. Quality control data is provided on an insert sheet within the protocol booklet. These quality controls and any other control materials should be assayed repeatedly to establish mean values and acceptable ranges. Each individual laboratory is responsible for defining their system for quality control decisions and is also responsible for making this system a written part of their laboratory manual. The ranges for Quality Control 1 and 2 are provided on the card insert or can be located at the Millipore website www.millipore.com/bmia.

Recommended batch analysis decision using two controls (Westgard Rules):

1. When both controls are within ±2 SD.
 Decision: Approve batch and release analyte results.

2. When one control is outside ±2 SD and the second control is within ±2 SD.
 Decision: Hold results, check with supervisor. If no obvious source of error is identified by the below mentioned check of systems, the supervisor may decide to release the results.

 Technician check of systems:
 1. Check for calculation errors
 2. Repeat standards and controls
 3. Check reagent solutions
 4. Check instrument

XIV. REPLACEMENT REAGENTS

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Cat#</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹²⁵I-Insulin (<5 μCi, 185 kBq)</td>
<td>9011</td>
</tr>
<tr>
<td>Label Hydrating Buffer (27 mL)</td>
<td>LHB-P</td>
</tr>
<tr>
<td>Human Insulin Standards (2 mL each)</td>
<td>8014-K</td>
</tr>
<tr>
<td>Human Insulin Antibody (20 mL)</td>
<td>1014-K</td>
</tr>
<tr>
<td>Precipitating Reagent (280 mL)</td>
<td>PR-UV</td>
</tr>
<tr>
<td>QC 1 & 2 (1 mL each)</td>
<td>6000-K</td>
</tr>
<tr>
<td>Assay Buffer (40 mL)</td>
<td>AS-P</td>
</tr>
</tbody>
</table>
XV. ORDERING INFORMATION

A. To place an order:

For USA Customers:

Please provide the following information to our customer service department to expedite your telephone, fax or mail order:

1. Your name, telephone and/or fax number
2. Customer account number
3. Shipping and billing address
4. Purchase order number
5. Catalog number and description of product
6. Quantity and product size

NOTE: Appropriate license from NRC (or equivalent) must be on file at Millipore before radioactive orders can be shipped.

TELEPHONE ORDERS:
Toll Free US (800) MILLIPORE
FAX ORDERS: (636) 441-8050
MAIL ORDERS: Millipore
6 Research Park Drive
St. Charles, Missouri 63304 U.S.A.

For International Customers:
To best serve our international customers, it is Millipore’s policy to sell our products through a network of distributors. To place an order or to obtain additional information about Millipore products, please contact your local distributor.

B. Conditions of Sale
All products are for research or manufacturing use only. They are not intended for use in clinical diagnosis or for administration to humans or animals. All products are intended for in vitro use only.

C. Material Safety Data Sheets (MSDS)
Material safety data sheets for Millipore products may be ordered by fax or phone. See Section A above for details on ordering.

XVI. REFERENCES

APPENDIX R

TIMELINE
Initial Interview (n=30)
Completed Health History Questionnaire
Signed Informed Consent,
Anthropometric Measures Taken,
ASA24 Instructions

Randomized Group Assignment
(n=10 in CON, PIC, PIC-RD)

CON

Week 0
Assigned Group
Completed ASA24
Physical Activity Questionnaire
Trained on MyPlate App
Anthropometric Measure
Fasting Blood Sample
(n=10)

Week 4
Anthropometric Measure
Physical Activity Questionnaire
Fasting Blood Sample
$15 Target Gift Card
(n=10)

Week 8
Anthropometric Measure
Physical Activity Questionnaire
Exit Survey
Fasting Blood Sample
$15 Target Gift Card
(n=10)

PIC

Week 0
Assigned Group
Completed ASA24
Physical Activity Questionnaire
Trained on MyDietitian App
Anthropometric Measure
Fasting Blood Sample
(n=9)

Week 4
Anthropometric Measure
Physical Activity Questionnaire
Fasting Blood Sample
$15 Target Gift Card
(n=8)

Week 8
Anthropometric Measure
Physical Activity Questionnaire
Exit Survey
Fasting Blood Sample
$15 Target Gift Card
(n=7)

PIC-RD

Week 0
Assigned Group
Completed ASA24
Physical Activity Questionnaire
Trained on MyDietitian App
Anthropometric Measure
Fasting Blood Sample
(n=9)

Week 4
Anthropometric Measure
Physical Activity Questionnaire
Fasting Blood Sample
$15 Target Gift Card
(n=8)

Week 8
Anthropometric Measure
Physical Activity Questionnaire
Exit Survey
Fasting Blood Sample
$15 Target Gift Card
(n=7)