Electronic Supplementary information:

Improving lipid recovery from *Scenedesmus* wet biomass by surfactant-assisted disruption

YenJung Sean Lai¹*, Federica De Francesco², Alyssa Aguinaga¹, Prathap Parameswaran³*, Bruce E Rittmann¹

¹Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.

²Department of Applied Science and Technology, Politecnico di torino, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy.

³Department of Civil Engineering, Kansas State University, 2123 Fiedler Hall, Manhattan, KS 66506, USA

*Corresponding authors:

YenJung Sean Lai: ylai30@asu.edu

Prathap Parameswaran: prathapp@ksu.edu

The supporting information contains 6 pages, including Table S1 for the character of different growth type of biomass, Fig S1 for the quantity of FAME under the two different solvents, Fig S2 FAME profile via Folch and isopropanol extraction under different surfactant treatments, Fig S3 Cell structures of protein-rich *Scenedesmus* biomass under 3_DAPS, MTMA and SDS treatments, Fig S4 Cell structures of intermediate-lipid *Scenedesmus* biomass under 3_DAPS, MTMA and SDS treatments, and Fig S5 for the flow cytometer assay with SYTOX green emission.
Table S1 Summary of characteristic parameters of *Scenedesmus* biomass for the different growth conditions

<table>
<thead>
<tr>
<th>Types</th>
<th>TSS (g/L)</th>
<th>VSS (g/L)</th>
<th>Elemental composition (%)</th>
<th>Total FAME* (% of dried biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein-rich biomass</td>
<td>20</td>
<td>20</td>
<td>53</td>
<td>9 9 5 ± 1</td>
</tr>
<tr>
<td>Intermediate-lipid biomass</td>
<td>23</td>
<td>23</td>
<td>53</td>
<td>9 7 6 ± 1</td>
</tr>
<tr>
<td>High-lipid biomass</td>
<td>20</td>
<td>20</td>
<td>56</td>
<td>10 2 22 ± 3</td>
</tr>
</tbody>
</table>

Total FAME obtained via direct transesterification
Figure S1. FAME recovery from dried biomass extraction via Folch and isopropanol for different surfactant treatments and their respective total FAME obtained from direct transesterification.
Figure S2. FAME profiles obtained via (a) Folch solvent (b) isopropanol solvent extraction for the different surfactant treatments.
Figure S3. TEM images of protein-rich *Scenedesmus* biomass for (a, b) control, (c, d) 3_DAPS-, (e, f) MTAB-, and (g, h) SDS-treated biomass. a, c, e and g belonged to the large-field images and b, d, f and h belonged to local area images.
Figure S4. TEM images of intermediate-lipid Scenedesmus biomass for (a, b) control, (c, d) 3_DAPS-, (e, f) MTAB-, and (g, h) SDS-treated biomass. a, c, e and g belonged to the large-field images and b, d, f and h belonged to local area images.
Figure S5. Efficiency of cell lysis by surfactants as evaluated by flow cytometry for high-lipid *Scenedesmus* biomass amended with SYTOX. Samples are (a) control (red line); (b) 3_DAPS (green line); (c) MTAB (purple line), and (d) SDS (light blue) surfactant.