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ABSTRACT  
   

Ion exchange sorbents embedded with metal oxide nanoparticles can have high 

affinity and high capacity to simultaneously remove multiple oxygenated anion 

contaminants from drinking water. This research pursued answering the question, “Can 

synthesis methods of nano-composite sorbents be improved to increase sustainability and 

feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater 

compared to existing sorbents?” Preliminary nano-composite sorbents outperformed 

existing sorbents in equilibrium tests, but struggled in packed bed applications and at low 

influent concentrations. The synthesis process was then tailored for weak base anion 

exchange (WBAX) while comparing titanium dioxide against iron hydroxide 

nanoparticles (Ti-WBAX and Fe-WBAX, respectively). Increasing metal precursor 

concentration increased the metal content of the created sorbents, but pollutant removal 

performance and usable surface area declined due to pore blockage and nanoparticle 

agglomeration. An acid-post rinse was required for Fe-WBAX to restore chromium 

removal capacity. Anticipatory life cycle assessment identified critical design constraints 

to improve environmental and human health performance like minimizing oven heating 

time, improving pollutant removal capacity, and efficiently reusing metal precursor 

solution. The life cycle environmental impact of Ti-WBAX was lower than Fe-WBAX as 

well as a mixed bed of WBAX and granular ferric hydroxide for all studied categories. A 

separate life cycle assessment found the total number of cancer and non-cancer cases 

prevented by drinking safer water outweighed those created by manufacture and use of 

water treatment materials and energy. However, treatment relocated who bore the health 

risk, concentrated it in a sub-population, and changed the primary manifestation from 
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cancer to non-cancer disease. This tradeoff was partially mitigated by avoiding use of pH 

control chemicals. When properly synthesized, Fe-WBAX and Ti-WBAX sorbents 

maintained chromium removal capacity while significantly increasing arsenic removal 

capacity compared to the parent resin. The hybrid sorbent performance was demonstrated 

in packed beds using a challenging water matrix and low pollutant influent conditions. 

Breakthrough curves hint that the hexavalent chromium is removed by anion exchange 

and the arsenic is removed by metal oxide sorption. Overall, the hybrid nano-sorbent 

synthesis methods increased sustainability, improved sorbent characteristics, and 

increased simultaneous removal of chromium and arsenic for drinking water. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

IDENTIFYING THE NEED FOR SIMULTANEOUS TREATMENT 

An easily overseen dirt road lined with saguaro cactus and sage brush cuts 

through the Sonoran Desert about an hour south of Phoenix. It ends in a small, quiet 

community that has about 10 sporadically placed houses. The community water comes 

from a single well that pumps into a pneumatic tank for storage and pressure. 

Hypochlorite is added for disinfection, but no further treatment is provided before 

distribution. This town is typical of many very small drinking water systems throughout 

the state of Arizona and the nation. The Environmental Protection Agency (EPA) defines 

very small drinking water systems as serving between 25 and 500 people, and estimates 

that 84% of water utilities fall into this category.  These systems face unique challenges 

due to their size, which is why they account for 79% of all maximum contaminant level 

(MCL) violations, including 87% of all arsenic MCL violations (Impellitteri et al. 2007). 

Despite the challenges, they serve people who are still equally entitled to a clean water 

supply. 

Challenges for water treatment in small systems. Small systems face 

challenges that current treatment technologies do not address because of limited access to 

resources such as capital and operational expertise.  Communities must therefore try to 

meet multiple treatment goals with only few resources available. Few customers means 

there is limited capital and therefore difficult to afford installation of multiple treatment 

processes to address multiple treatment goals.  Access to water must be less than 2.5% of 

total income to be considered affordable (Baird 2010) and significant capital expenditure 
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by the utility may cause rates to exceed this threshold.  For example, 500 people with an 

American average income of $52,250 per year (Noss 2014) could therefore only afford a 

maximum utility operational cost of $653,000 per year, including amortized capital 

spending.  Without economy of scale resultant from large-scale equipment purchases, this 

is very difficult to attain.  Additionally, with low operational budget comes limited access 

to and ability to pay for expert operators. 

Traditional approaches to simultaneous pollutant removal are limited in their 

applicability for small systems, indicating new technologies need to be developed.  

Sorption vessels with beds of mixed media or different media in series are limited in their 

pollutant removal capacity as only a fraction of the sorbent material is working for any 

given pollutant.  Regeneration of such a system requires cost and operational effort to 

separate the media, apply a mixed regeneration solution, and to remix the bed.  Reverse 

osmosis is effective at removing multiple contaminants, but is extremely energy 

intensive, often involves pre-treatment, and fouls quickly requiring operator attention.  

Coagulation processes require precise dosing, creates many residuals that may be difficult 

to handle in remote locations, and is operationally intensive.  It is clear that current 

technology does not address the needs of small systems for simultaneous removal of 

drinking water pollutants. 

The main water quality concern for small systems is inorganic contaminants that 

pose chronic exposure problems such as chromium, arsenic, nitrate, fluoride, and 

perchlorate. This is because 95% of very small systems operate on groundwater, 60% of 

which have no additional treatment beyond disinfection (Impellitteri et al. 2007). The 

disinfection mitigates acute health risks stemming from bacterial and viral contaminants, 
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but does not address inorganic contaminants.  This research focuses on two prevalent 

inorganic groundwater pollutants: hexavalent chromium (Cr(VI)) and  arsenic (As). 

Cr(VI) is an oxidized metal that is under enhanced monitoring and toxicology review by 

the EPA (USEPA 2010a, Register 2012). California recently enacted a public health goal 

of 0.02 µg/L for Cr(VI), treating it as a possible ingested human carcinogen, with an 

enforceable MCL of 10 µg/L (CCR 2014). Cr(VI) is more soluble and more toxic than its 

trivalent form, and one of the leading treatment technologies is anion exchange 

(Brandhuber et al. 2004b). As went through similar regulation when its MCL was 

lowered to 10 µg/L in 2006. It has a variety of human ailments including cancer of the 

bladder, lungs, and skin (USEPA 2010b). Treatment processes including adsorption to 

iron (Westerhoff et al. 2005) have been extensively studied but many small systems still 

struggle to comply. For example, one utility authority serving small systems in Arizona 

reported 36% of service locations averaged 10 to 32 µg/L of As in 2010 (TOUA 2010). 

These two inorganic contaminants are the focus of this study due to current regulatory 

relevance, MCL violation frequency by small systems, common occurrence in 

groundwater, and similar divalent oxygenated anionic state in pH ranges relevant to 

drinking water. 

Opportunities to improve water treatment technology for small systems. The 

solution to providing small communities safe drinking water is not to downsize 

traditional water treatment methods, but create novel paradigms specifically designed to 

meet their needs. Instead of multiple processes optimized for individual pollutant 

removal, a single process that removes multiple pollutants concurrently would be simple 

to operate, as illustrated in Figure 1.1. This approach can reduce cost and complexity, 
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which is necessary due to lack of specialized personnel and a small funding base. Such a 

process may not be concerned with optimizing the removal of each pollutant as much as 

having a single step treatment that can meet multiple treatment goals.  
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Figure 1.1. A single process that can remove multiple pollutants concurrently 
may be more simple to operate for small drinking water systems, and use less material 
with a smaller environmental footprint compared to multiple processes optimized for 
individual pollutant removal. 
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Sorption processes have potential to remove each of the identified inorganic 

contaminants and may be delivered in simple to use and replace cartridges. The cost of 

sorbent is lower than the salary required for an expert operator with a complicated 

process.  Regeneration may not be necessary if the utility prefers to simply replace a 

single sorbent cartridge when indicated.  Sorbents do not require sensitive chemical 

dosing or mixing.  They do not generate continuous waste streams.  Sorbents such as 

weak base anion exchange resins (WBAX) and metal oxides  (MOx) have shown high 

capacity and affinity for the target pollutants (McGuire et al. 2007, Westerhoff et al. 

2005). Hybrids of the other materials have shown promise for simultaneous removal of 

multiple pollutants (Elton et al. 2013, Hristovski et al. 2008b). An opportunity now exists 

to develop a new nano-enabled hybrid sorbent using MOx and WBAX (MOx-WBAX) 

for the simultaneous treatment of the target pollutants. 

This research develops the science and technology of sorption processes for 

simultaneous removal of inorganic pollutants by nano-enabled hybrid sorbents. The focus 

is on inorganic pollutants due to their occurrence and toxicity in groundwater. The 

context is small drinking water systems due to the disproportional health risk people 

served by these systems face. It is novel since it develops simultaneous removal of 

multiple pollutants instead of viewing multiple constituents as competitive. The broader 

impact is to develop water treatment technology and scientific understanding to influence 

how decision makers and technology developers carry out their work, and disseminate 

the research results for widespread benefit to human health.  This impetus is illustrated in 

Figure 1.2. 
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Figure 1.2. The impetus for developing sustainable hybrid nano-sorbents is to 
address the barriers and take advantage of the opportunities that exist for treating 
drinking water in small systems.  
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RESEARCH OBJECTIVE 

The objective of the research was to address the overarching question: Can 

synthesis methods of hybrid nano-sorbents be improved to increase sustainability and 

feasibility to remove multiple inorganic contaminants simultaneously from groundwater 

compared to existing sorbents? 

Answers to the overarching question were sought through conducting a literature 

review, performing extensive original research, and synthesizing the findings.  The 

literature review is included in chapter 2.  Original research addressing the hypotheses is 

in chapters 3-8.  Chapter 9 synthesizes the findings to address the overarching question.   

 

RESEARCH QUESTIONS AND HYPOTHESES 

This research addressed five research questions that encompassed seven research 

hypotheses.  Each question and the correlated hypotheses are illustrated in Figure 1.3.  

Each box represents a research question and the contents show the associated hypotheses 

with each question. The arrows demonstrate how the answers to the questions help 

inform other answers, and the interconnectedness of them all. The justification and 

approach to testing each one are then briefly described.  Subsequently, each question then 

has a dedicated chapter (chapters 3-8) presenting research intended to test the associated 

hypotheses, and the important findings.  Each research chapter is ultimately intended to 

become a journal manuscript.  
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Figure 1.3. Each heading is a research project, correlating to one dissertation 
chapter and a future journal manuscript.  Subheadings are research hypotheses that are 
explored within that project.  Arrows indicate how each project informs the others. 
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Question 1: Can hybrid sorbents recover phosphate from microbial biofuel 

residual? The initial work investigated if a hybrid sorbent is better employed in a 

removal or a recovery paradigm compared to a traditional sorbent. It studied whether the 

hybrid sorbent can remove a target oxygenated anion and how well it can subsequently 

release it for reuse. The target oxyanion was phosphate since it is a limited nutrient that 

can be beneficially reused for microbial biostock growth.  It was hypothesized that: 

1. A hybrid iron nanoparticle embedded strong base anion exchange resin 

has higher sorption capacity for phosphate from microbial biofuel 

residual compared to a strong base anion exchange resin, but releases 

less for reuse. 

Column testing was conducted for the nano-iron embedded strong base anion 

exchange resin and a traditional strong base anion exchange resin, both of which had 

been used for phosphate removal.  Both deionized water and challenging oxidized 

organic matrix were tested to compare the mass of phosphate sorbed and released by 

regeneration.  This demonstrated that hybrid sorbents are in fact good sorbents for 

removal of oxygenated anions from challenging water matrices.  

This question and a preliminary form of the associated chapter were used as a 

masters thesis. After further collaboration and refinement it was published in a peer 

reviewed scientific journal (Gifford et al. 2015). It is presented in this dissertation as 

chapter 3 to document its development and present it in light of the other research 

projects and how it supports the overarching research question. 

Question 2: Can Existing Sorbents Simultaneously Remove Arsenic and 

Chromium? Using sorbents that are already commercially available, chapter 4 identified 
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if multiple goal treatment was already feasible or if new technologies needed to be 

developed.  It was hypothesized:  

2. Current market-available drinking water treatment sorbents have a 

high affinity and capacity to remove either arsenate or hexavalent 

chromium, but very low capacity to remove both oxo-anions 

simultaneously. 

Multiple commercially available sorbents were selected, such as metal oxides that 

are currently considered leading technologies for As treatment, and weak base anion 

exchange resins that are considered leading technology for Cr removal. The sorption 

capacity and affinity to remove both pollutants simultaneously was tested.  The effects of 

water testing matrix and pollutant concentration were identified, which enables 

development of an equilibrium testing protocol to screen many sorbents.  Further 

verification was obtained through column testing.  In order to compare quantitatively the 

performance of the various sorbents, a novel ranking system was developed that weighs 

sorption capacity for simultaneous removal.  This quantitative index was used throughout 

the research to compare sorbents. 

Question 3: Can Hybrid Synthesis be Tailored for WBAX? Iron hydroxide 

and titanium dioxide nanoparticles have been formed in-situ within strong base anion 

exchange and granular activated carbon for simultaneous removal of various pollutants 

(Sarkar et al. 2012, Zhao et al. 2011).  This is usually accomplished by soaking the 

sorbent in strong metal precursor solution, then forming the metal nanoparticle with heat 

hydrolysis or a strong base precipitation.  Hybridization with metal nanoparticles has 

been only sparsely employed in WBAX.  WBAX is a leading treatment for hexavalent 
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chromium due to its selectivity for the chromate molecule in low concentrations and very 

long run life in column operation (Brandhuber et al. 2004b).  WBAX differs from strong 

base anion exchange because the functional group is a ternary amine instead of a 

quartenary amine, it typically has a smaller average pore diameter, and has highest 

pollutant removal efficiency in a lower pH range. It was hypothesized that: 

3. Increasing metal precursor concentration increases the pollutant 

removal performance of hybrid MOx-WBAX. 

4. Embedding WBAX resins with iron or titanium oxide nanoparticles 

adds the ability to sorb arsenate with only small (<10%) decrease in the 

ion exchange capacity for chromate. 

Chapter 5 explored tailoring the hybridization process for WBAX. The 

concentration of the metal precursor solution was important to the characteristics of the 

final sorbent.  A high metal content provided a higher concentration gradient to drive the 

metal deeper into the parent resin pores, as well as provided a higher mass of metal 

available for precipitation.  However, excess metal content may have blocked access to 

ion exchange sites through surface coating or pore clogging, thus reducing both surface 

area and removal capacity. It was sought to maximize hybrid sorbent pollutant removal 

capacity by identifying the precursor concentration that balanced having metal available 

and avoided clogging pores. It also established a basis for conducting sustainability 

analysis, making them more accessible for small drinking water systems.   

Three different weak base anion exchange resins that are commonly used for 

treatment of groundwater pollutants were used in the metal nanoparticle impregnation in 

conjunction with various metal precursor concentrations. The impregnated resins were 
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then characterized for surface area and pore size distribution using nitrogen gas 

deposition, metal content using acid digestion and gravimetric analysis, and metal 

hydroxide form using XRD.  Surface area analysis of ion exchange resins required 

developing a new protocol because the resin could melt and collapse the pores during 

heat drying.  The same impregnation and characterization methods were employed on a 

macroporous strong base anion exchange resin as a control to compare results of 

impregnation efficacy to existing literature.  This impregnation and characterization 

determined if pollutants targeted by weak base anion exchange resins could be included 

in simultaneous treatment, if the weak base anion exchange resins could withstand the 

synthesis protocol, and how/if the synthesis protocol must have been adapted.   

Basic performance testing was evaluated to establish if simultaneous removal was 

additive or competitive.  This as done by developing full isotherms at the relevant 

contaminant/foulant/sorbent ratios under conditions relevant to groundwater treatment. It 

was tested in lab synthesized groundwater and also in a real world well water to 

demonstrate to utilities the real world application. Short bed adsorber tests and packed 

bed column tests were conducted to capture the sorption kinetics and bed life duration.  

These determined if the synthesis indeed augmented removal capacity for a second 

pollutant or diminished the original target pollutant removal capacity.  Results established 

if simultaneous removal of pollutants must be competitive or if co-treatment may be 

additive or even synergistic. 

Question 4: Can the life cycle impacts of using hybrid sorbents be reduced? 

If metal nanoparticle impregnated resins are to become widely adopted, the 

environmental and human health impacts of their manufacture, use, and disposal should 
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be considered.  Chapters 6 presents life cycle assessment of the iron impregnated and the 

titanium impregnated sorbents to determine impacts including embodied energy, carbon 

footprint, and human toxicity.  The system boundary included resin synthesis (including 

raw material extraction and chemical production), resin use (normalized to removal 

capacity and ability to be regenerated), and resin disposal (including hazardous waste 

handling).  This was benchmarked to the environmental impacts of the current 

technology and to not treating the water at all. Chapter 7 presents a life cycle assessment 

focusing specifically on the human health impacts associated with wellhead treatment by 

comparing the embedded risks associated with producing and using treatment materials 

to the benefits of drinking treated water. It was hypothesized that: 

5. The life cycle environmental impact of titanium impregnated WBAX is 

lower than iron impregnated WBAX. 

6. Removal of hexavalent chromium and arsenic from groundwater 

reduces the total public health risk, justifying the risk assumed during 

sorbent synthesis and disposal. 

Testing was accomplished following LCA methods, using impact assessment data 

from EcoInvent database, and present results in terms of TRACI environmental impact 

categories.  The results of these analyses justified if the produced resins could be 

employed in a single use cartridge or needed to be regenerated and reused multiple times 

to justify the environmental impact of synthesis.  Opportunities to decrease the 

environmental impact of their life cycle were identified, increasing the overall 

sustainability of the nano-enabled sorbents.  Conducting this analysis before and during 
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the development of the synthesis protocol maximized the opportunity to incorporate the 

results into the final product. 

Question 5: Can MOx-WBAX remove hexavalent chromium and arsenic 

from water in challenging flow through conditions, and if so what is the removal 

mechanism? The next question addressed in Chapter 8 focused on verifying the pollutant 

removal performance of the created hybrid sorbent. The culminating test was to 

demonstrate the ability of the new sorbents to meet the challenge previously identified, 

including removing pollutant from a challenging water matrix in packed bed flow 

through mode with minimal operational intervention. This column testing also hoped to 

elucidate mechanistic understanding of how the hybrid sorbents remove pollutants, which 

in turn perhaps informed how they may be regenerated.  Previous studies speculate that 

Cr(VI) is reduced to Cr(III) on the surface of WBAX because visual observations show 

the spent resin takes on a green color characteristic of solid Cr(III) (McGuire et al. 2007).  

The mechanism of removal for arsenic removal and for chromium removal is important 

to understand in order to maximize performance and inform overcoming limitations 

hybrid resins may have.  One limitation with WBAX and MOx-WBAX is that it 

unknown how they can be regenerated. This research hypothesized:  

7. During treatment of co-occuring pollutants using MOx-WBAX, the 

hexavalent chromium is removed by anion exchange and the arsenic is 

removed by metal oxide sorption. 

Understanding the pollutant removal mechanism and unlocking the ability to 

regenerate the sorbents built upon knowledge gained from testing in previous chapters, 
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since observing competitive removal capacity could indicate the same mechanism is at 

work for the two pollutants but additive removal would indicate different mechanisms.  
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CHAPTER 2 

LITERATURE REVIEW 

An ongoing critical review of published literature and patent applications is vital 

to the proposed research endeavor.  Its purpose is to place the proposed research in the 

context of other work being conducted, and to identify gaps in knowledge that will aid in 

developing the research hypotheses.   

 

1.0 POLLUTANTS OF CONCERN 

1.1 Hexavalent chromium. Chromium (Cr) is a metallic element that is tasteless 

and odorless.  It occurs naturally in rocks and dirt.  It is used industrially for making steel 

and alloys, chrome plating, pigments, and leather and wood preservatives.(USEPA 2013) 

Cr in water is found primarily in two oxidation states (Schweitzer and Pesterfield 

2010).  Under oxidized conditions it exists as hexavalent chromium (Cr(VI)).  Cr (VI) 

can be a monovalent anion, HCrO4
1-, or a divalent anion, CrO4

2-, with predominance 

switching at the pKa of 6.4.  These forms have a yellow or orange color. Under reduced 

conditions, Cr exists in a trivalent form (Cr(III)).  It can be cationic, Cr3+, or uncharged as 

Cr2O3 with pKa of 4.0. The Cr2O3 form is only sparingly soluble. Cr(III) forms have a 

green color.  

Cr(VI) has long been known to be a human carcinogen and non-carcinogenic 

toxin through inhalation exposure (USEPA 1998a).  The current USEPA toxicology 

report also reported a non-carcinogenic health hazard by oral exposure reference dose 

(RfD) of 3x10-3 mg/kg-day. However it reports “no data suggested that Cr(VI) is 

carcinogenic by the oral route of exposure.”  The carcinogenic and non-carcinogenic 
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toxicology associated with oral exposure are currently being revised and the updated 

report has been released for public comment (USEPA 2010a).  This draft version 

generally finds increased health risk.  The non-carcinogenic RfD is reduced to 9x10-4 

mg/kg-day.  Chronic oral exposure to Cr(VI) is connected to gastrointestinal effects 

including oral ulcers, diarrhea, abdominal pain, and vomiting. It is identified as “likely to 

be carcinogenic to humans” by chronic oral exposure.  The proposed slope factor is 0.5 

(mg/kg-day)-1, which is equivalent to a unit risk of 1.4x10-5 (ppb)-1 using standard 

assumptions for body mass, water intake, and lifespan.  This is due to observations of 

neoplasms in the small intestines of mice and tumors in the oral cavity of rats exposed to 

high doses of Cr(VI).  The mutagenicity of Cr(VI) is thought to be mediated through the 

generation of highly reactive chromium intermediates, like Cr(IV) and Cr(V), formed 

during the intracellular reduction of Cr(VI) to Cr(III).  

National occurrence of Cr(VI) is being investigated as part of the USEPA 

Unregulated Contaminant Monitoring Rule (UCMR) 3 (USEPA 2015c).  This monitoring 

will take place through 2016, but results reported as of August 2015 were downloaded 

and analyzed to produce Figure 2.1.  It shows that 19% of the nationwide utilities 

participating in UCMR3 have greater than 1 ppb Cr(VI) in the raw water source, and 30% 

have total Cr above 1 ppb.  Nationally, 2% of utilities have greater than 10 ppb Cr(VI).  If 

only systems that use groundwater are considered, 4% of them exceed 10 ppb Cr(VI) 

influent.  This is consistent with findings that generally Cr(VI) is more prevalent in 

groundwater sources, and Cr(III) is more prevalent in surface water sources where it has 

been reduced by natural organic matter (Frey et al. 2004, McNeill et al. 2012).  If only 

small systems that serve less than 10,000 people are included, very similar occurrence 
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patterns are observed as the total occurrence.  For instance, 1% have greater than 10ppb 

Cr(VI).  However most small systems are exempt from UCMR3 monitoring (as 

evidenced by the fact that small systems comprise 4% of the total reporting systems, but 

nationally comprise 93% of all systems (Impellitteri et al. 2007)) and thus the sample size 

is much smaller and may not be representative.  It is noted that Cr(III) can be oxidized to 

Cr(VI) in water distribution from interaction with disinfectants (Lindsay et al. 2012).  A 

previous occurrence survey found the highest level of Cr(VI) in source water was 53 ppb 

(Frey et al. 2004).  
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Figure 2.1. UCMR3 Chromium Occurrence.  Percent of water utilities that report 
a raw water level of total Cr (hollow boxes) and Cr(VI) (patterned boxes) greater than 
certain thresholds. Total data is further split out by primarily use groundwater sources, 
and by systems that serve less than 10,000 people.  Data analyzed August 2015, but 
UCMR3 monitoring will be continued through 2016. 
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Cr is federally regulated in drinking water at a maximum contaminant level 

(MCL) of 100 ppb of total Cr (USEPA 2013).  This regulation is being reviewed and may 

possibly be lowered in the near future after UCMR3 monitoring and updated toxicology 

reporting are finalized. The state of California has recently adopted an MCL of 10 ppb 

Cr(VI) (CCR 2014).  This regulation was issued in April 2014 and compliance 

monitoring started in July 2014.  

Multiple analysis methods to determine total Cr or Cr(VI) exist (McNeill et al. 

2012). Two primary methods will be used in this research that are available at ASU.  The 

first is by inductively coupled plasma mass spectrometry following EPA standard method 

200.8 (USEPA 1994).  This method has method detection limit of 0.08 µg/L for total Cr. 

Second, Cr(VI) is determined using ion chromatography to isolate the anion then 

measured spectrally by reacting with 1,5-diphenylcarbazide to produce a pink color 

following EPA standard method 218.7 (USEPA). This method has a method detection 

limit of 0.018 µg/L Cr(VI). 

There are three primary methods of treating chromium in water: sorption with 

weak base anion exchange (WBAX), sorption with strong base anion exchange (SBAX), 

and reducing Cr(VI) to Cr(III) followed by coagulation and filtration (RCF).  Many 

extensive reviews of these treatment options have been published (Blute et al. 2012, 

Brandhuber et al. 2004b, Malaviya and Singh 2011, McGuire et al. 2007, Mohan and 

Pittman 2006, Najm et al. 2014, Owlad et al. 2009).  

WBAX has a very high affinity for Cr(VI) and a very high removal capacity.  

Both bench scale and pilot scale column tests have demonstrated long run times up to 

100,000 to 300,000 bed volumes before breakthrough (McGuire et al. 2007, Najm et al. 
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2014).  In order to achieve maximum sorption capacity with WBAX, the influent water 

must be acidified to pH 6 (Brandhuber et al. 2004b, McGuire et al. 2007).  WBAX is a 

single pass sorbent, meaning it is unknown how to regenerate it and is disposed of after a 

single exhaustion.  Hazardous waste classifications of spent sorbent indicate it is not 

TCLP or RCRA waste, but may be STLC and TTLC waste (Najm et al. 2014).  Uranium 

is often sorbed by WBAX with one study indicating it may classify as TENORM (Najm 

et al. 2014) and another indicating it would not (McGuire et al. 2007).  The difficulty in 

regenerating the spent sorbent is because Cr(VI) is reduced to Cr(III) after sorption to 

WBAX as confirmed by XANES (McGuire et al. 2007), causing it to take on a green 

color. 

Treatment of Cr(VI) using SBAX is another common technology.  Compared to 

WBAX, the SBAX resins generally have much lower affinity for Cr(VI) showing greater 

competition from nitrate and sulfate.  Generally, SBAX also has a much lower capacity 

than WBAX, with bench scale and pilot scale column tests only lasting 10,000 to 15,000 

bed volumes (Brandhuber et al. 2004b, Najm et al. 2014).  It can be regenerated and 

reused multiple times by a strong salt solution (Najm et al. 2014).  It is generally the 

cheapest treatment option for Cr(VI) compared to WBAX or RCF, with possible costs 

ranging from $0.66-0.81 per 1,000 gallons for large systems and $6.8-6.9 per 1,000 

gallons for small systems (Najm et al. 2014). 

Several other novel methods of Cr(VI) treatment have been proposed.  Removal 

can be achieved by sorption to carbon-based sorbents such as activated carbon (Mohan 

and Pittman 2006), wheat bran (Nameni et al. 2008), and iron-modified biochar (Liu et al. 

2010).  Removal by sorption to natural materials is reported including weathered basalt 
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andesite (Shah et al. 2009) or clino-pyrrhotite (Lu et al. 2006).  Reduction of Cr(VI) to 

Cr(III) can also be achieved by zero-valent iron followed by sorption to iron coated sand 

(Mak et al. 2011a), by zero-valent magnesium (Lee et al. 2013), by zero-valent iron 

nanoparticles (Singh et al. 2012), and by glow discharge plasma generated by a platinum 

anode (Wang and Jiang 2008). 

1.2 Arsenic. Arsenic (As) is a naturally occurring element in rocks, soil, water, 

air, animals, and plants (USEPA 2012).  Industrially it is used for hardening copper and 

lead alloys, glass manufacturing to decolorize, leather preservative, pesticides, and in 

wood preservative. Over 90% of domestic use is for the wood preservative chromate 

copper arsenate (USEPA 2010b), but use is being phased out. 

As in water is colorless, tasteless, and odorless in environmental aqueous 

conditions.  It can be found primarily in one of two oxidation states. It is most often 

pentavalent arsenic (As(V)), but under very reduced acqueous conditions can be trivalent 

(As(III)).  As(V) can be associated with the divalent anion HAsO4
2- or the monovalent 

anion H2AsO4
1- .  The pKa between these two species is 6.8 (Schweitzer and Pesterfield 

2010). 

Inorganic As is classified as “carcinogenic to humans”.  There is vast 

epidemiological evidence associating it with cancer of skin, bladder, kidney, lung, liver, 

and prostate.  Mode of Action has not been established, but does involve mutagenisis, 

and is thought to be connected to the highly reactive metabolite monomethylarsonous 

acid (MMA(III))  (USEPA 2010b).  The EPA IRIS toxicological study reports a drinking 

water Unit Risk of 0.00005 (ppb)-1, equivalent to an oral slope factor of 1.5 (mg/kg/day)-1 

(29).  An updated draft of the IRIS study was released in 2010 and generally found 
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increased cancer risk.  Drinking water unit risk increased to 0.00073 (ppb)-1, equivalent to 

oral slope factor of 25.7 (mg/kg/day)-1 (USEPA 2010b). 

As is also associated with a variety of non-cancer human health maladies.  

Chronic exposure symptoms include hyperpigmentation, keratosis, burning eyes, leg 

swelling, liver fibrosis, and lung disease (30). Acute exposure leads to dry mouth, 

dysphasia, projectile vomiting, profuse diarrhea (Choong et al. 2007).  This is why As has 

historically been used as a poison, tied to 237 murders in England during the 19th century 

(Hempel 2013).  Even Napoleon Bonaparte’s death has been speculated to be the result of 

accidental or intentional arsenic poisoning (Parascandola 2012).  For these reasons the 

EPA IRIS study from 1998 reported human non-cancer toxicity at reference dose of 

0.0003 mg/kg/day. The non-cancer toxicity reference dose was unchanged in the 2010 

update (USEPA 2010b). 

Food is typically the highest exposure to As.  Many common foods contain 20-

140 ppb As (USEPA 2010b).  The predominant dietary source of As is seafood, followed 

by rice, mushrooms, and cereal (ATSDR 2007).  High levels of aqueous arsenic exposure 

are typically associated with groundwater (USEPA 2012).  As is found naturally in soil, 

particularly in the western US (USEPA 2010b).  12% of surface water sources in the 

central US and 12% of groundwater sources in the western US contain >20ppb As.  

(USEPA 2010b).  Globally, the highest exposures are in West Bengal, Bangladesh, and 

Chile, where up to 12% of the population manifests adverse effects.  Other countries with 

high exposures include Taiwan, Mexico, China, and the USA (Choong et al. 2007). 

Due to its frequent occurrence and toxicity, As has a regulatory limit by USEPA 

and recommended limit by WHO of 10 ppb.  The compliance deadline for this total As 
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USEPA limit was January 2006 (USEPA 2012).  However, many systems are still non-

compliant, with 67% of noncompliant systems serving less than 500 people (McGavisk et 

al. 2013). 

The most common treatment technology for removing As(V) from water is 

sorption, which works well at low ppb levels.  The most common adsorbents include are 

hydrous ferrous oxide and granular ferric hydroxide.  Reported sorption capacity includes 

280 (Westerhoff et al. 2005), 402 (Lipps et al. 2010), 2362 (Bang et al. 2011), and 3902 

µgAs/g (Speitel Jr. et al. 2010).  No pretreatment is required, and the packed bed has 

simple operation.  Other less common sorbents that have been tested include activated 

carbon, activated alumna, and zeolites.  Novel, low cost adsorbents that may have 

application in the developing world include coconut husk, rice husk, and sawdust 

(Choong et al. 2007).  All of these adsorbents exhibit considerable competition from 

silica and sulfate.  They are generally considered single use, but periodic backwashing to 

restore flow rate from filtered particulates can account for 2-10% of production water.  

Solid resin can be disposed in a hazardous waste landfill.  Activated alumina (AA) can be 

regenerated using caustic and neutralization by acid.  This regeneration process produces 

a dissolved AA/As sludge. 

Other As treatment methods include coagulation/flocculation, membranes, and 

precipitation.  For coagulation/flocculation, the most common coagulant is alum followed 

by chlorine disinfection.  This requires a 6-8:1 ratio of Al/As (Choong et al. 2007). 

Sulfate or chloride followed by sand filtration can also be used. Membranes must be 

nanofiltration (0.001-0.003 µm pores) or reverse osmosis (0.0005 um pores) for arsenic 

removal.  Pre-oxidation or pre-coagulation must be used for membranes with larger 
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pores.  This technology exhibits little interference from source water composition and no 

preference for As(III) or As(V), indicating removal is through size exclusion and not 

charge interaction (Choong et al. 2007).  As with all membrane processes, it exhibits very 

high energy and cost demand, has high water loss, and produce a challenging residual.  

Reject water containing high As and high TDS is often subject to disposal requirements.  

These challenges can be mitigated if co-treatment of other pollutants is needed.  Removal 

using precipitation can be achieved.  Alum requires the As to be oxidized and at a low 

pH, with the residuals remaining in the clarifier.  Ferric chloride or ferric sulfate is simple 

and versatile, but works best at high As (ppm) As levels.  Lime softening can contribute 

to some As removal, but also requires oxidized As and low pH such that it is only viable 

if soft water is required anyway (Choong et al. 2007).  In any case, the precipitated solids 

require hazardous waste disposal. 

1.3 Co-Occurrence of hexavalent chromium and arsenic.  This dissertation 

seeks to develop the science and understanding of simultaneous treatment of both 

chromium and arsenic, and verification that co-occurrence exists is vital to the possible 

implementation of the findings.  These two contaminants are found to co-occur in at least 

three places: natural groundwater, anthropogenically polluted groundwater, and within 

distribution system scale. 

Groundwater to serve as a drinking water source is a possible scenario for co-

occurrence of As and Cr. Data from a co-occurrence study (Brandhuber et al. 2004b) has 

been plotted and included as Figure 2.2.  The bar-and-whisker chart shows, for a given 

total Cr or Cr(VI) level, the minimum, lower quartile, median, upper quartile and 

maximum level of As.  It shows that the quality of groundwater supplies containing 
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elevated levels of total Cr is not appreciably different from that of supplies containing 

little or no total chromium (Brandhuber et al. 2004b).  Therefore, given that one pollutant 

is present in groundwater, co-occurrence is no more or less likely to occur than in any 

other source. However, there is higher levels of As found in groundwaters that contain 

high levels of Cr(VI).  The median concentration of As (14 µg/L) in waters with more 

than 5 µg/L of Cr(VI) is significantly higher than the upper quartile concentration of As 

(8.6 µg/L) for waters with less than 5 µg/L of Cr(VI).   
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Figure 2.2. Co-Occurrence of As and Cr. The minimum, lower quartile, median, 
upper quartile and maximum level of As are grouped according to the total Cr or Cr(VI) 
level for groundwaters. New graphic from published data (Brandhuber et al. 2004b).  
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In contrast, a separate study conducted by a utility company in southern 

California found that high As levels were not correlated with or against high Cr(VI) 

levels (ARCADIS 2013). Of 106 wells maintained by the Coachella Valley Water 

District, 39 have Cr(VI) between 5-10 µg/L.  Of those, 3 (8%) also have high levels of As 

(7.9-15.8 µg/L).  Of the 37 wells with more than 10 µg/L of Cr(VI), 3 (8%) wells have 

high levels of As (2.5-11.9 µg/L).  When the two studies are taken together, occurrence 

of As may or may not be more likely to co-occur with As(V), but it may be concluded 

that presence of one contaminant does not preclude presence of the other. 

Another location where co-occurrence can occur is in anthropogenically 

contaminated groundwaters.  After lead, Cr and As are the two most common metals 

found at superfund sites (USEPA 1996).  The two pollutants have been found together in 

over 200 of the 1,000 federally designated contaminant areas.  Treatment in such a 

scenario would likely be pump-and treat with high levels of both contaminant and very 

amenable to packed bed reactors that have high throughput and little energy demand. 

A third scenario with observed co-occurrence is from distribution pipe corrosion.  

Scale sampled from inside many water distribution pipes was found to contain 13 µg/g of 

As and 7.3 µg/g of Cr on average (0.7 to 206 µg/g As, 1.4 to 118 µg/g Cr, 10th and 90th 

percentiles respectively) (Peng 2012).  Such solids can be released into water with such 

events as change in water alkalinity, or flow reversal due to pipe looping, demand 

changes, or fire hydrant flow.  Systems that change water sources, or small systems 

where small demand changes can drastically alter flow patterns are at particular risk. 
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2.0 HYBRID SORBENTS  

For the purposes of this review, hybrid sorbents are defined as media composed of 

two materials that each adsorb pollutants from water.  Literature also refers to them as 

nano-composite sorbents. Hybrid sorbents in which one material is present as 

nanoparticles within the porous structure of the other macro-material are of particular 

interest.  The two materials may have different affinities for different pollutants, and 

therefore give the hybrid sorbent unique properties and abilities.   

These unique properties make hybrid sorbents preferable over standard sorbents 

for simultaneous removal of pollutants.  Standard inorganic granular sorbents like MO 

exhibit a number of operational challenges including low physical strength of aggregates 

leading to pressure increases, channeling, and poor hydraulic flow (Moller 2008).  

Standard anion exchange sorbents can exhibit high competition from other anions such as 

nitrate (Smith 2010) or sulfate (Cumbal and Sengupta 2005). Nanoparticles themselves 

can have high sorption capacity due to high surface area, but are very difficult to remove 

from water after dosing.   

Hybrid sorbents overcome many of these challenges.  The polymeric parent resin 

provides high mechanical strength for use in packed beds.  It provides a fixed surface to 

which the nanoparticles may attach, taking advantage of their high sorption capacity 

without being lost into the bulk solution.  This is actually a synergistic relationship as 

Donnan exclusion provides a higher pollutant concentration within the pores and hybrid 

resin therefore has higher capacity than the parent resin (Cumbal and Sengupta 2005).  

The hybrid resin can exhibit high removal capacity for two pollutants on a single sorbent 

(Cumbal and Sengupta 2005, Elton et al. 2013, Hristovski et al. 2008b), maintaining the 
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ability to remove the same pollutant as the parent macro-sorbent and adding ability to 

also remove another. 

Anion exchange resin will be reviewed as a potential macro-material, then iron 

hydroxides and titanium dioxide will be reviewed as potential nanoparticle material. 

2.1 Ion exchange sorbents.  A variety of porous materials can be used as the 

macromaterial for a hybrid sorbent.  Ion exchange resin is of particular interest as it has 

been widely applied for treatment of both As and Cr. A rich body of literature exists for 

ion exchange resin, and only a basic review for fundamental understanding is presented 

here. 

An ion exchange sorbent is characterized by an electrostatic charge than is 

neutralized by a weakly held ion of the opposite charge by an ionic bond. This ion can be 

displaced by another ion that is more preferable due to either material or aqueous 

properties.  The two broad classes of ion exchange are anion exchange, that have a 

positive surface charge and exchange anions, and cation exchange, that has a negative 

surface charge to exchange cations (MWH 2005). This review focuses on anion exchange 

as both As and Cr exist as anions in the aqueous conditions of interest. 

A number of natural materials exhibit ion exchange properties, including some 

clays such as clinoptilolite.  It has been speculated (Kunin 1958) that this phenomenon 

contributed to the miracle of making salt water fresh after being stored in clay jugs as 

recorded in the Bible.  Modern day ion exchange sorbents are synthetic, composed of 

polymer backbone that is held together by a cross-linking agent and then functionalized.  

The polymer is often polystyrene or polysulphone, either of which create straight chains 

of inert material.  The most common cross-linking agent is divinylbenzene (DVB).  The 
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cross-linker makes connections between different chains and in different parts of the 

chain, giving it three-dimensional structural rigidity.  The amount of cross-linking agent 

used therefore strongly influences properties of the resulting resin including pore 

structure, surface area, and degree of hydration.  Resin with high cross linking creates a 

gel-type resin with very small pores.  Less cross linking creates microreticular resin, and 

even less creates a macroreticular resin (Kunin 1958).  The pore structure in turn 

influences final charge density and molecular size exclusion, and therefore can be 

optimized for selectivity/affinity for specific adsorbate. 

Recipes for synthesizing resin are as numerous as the number of commercial 

resins available.  Most follow the pattern of creating a cross-linked skeleton, then adding 

functional groups. One is reviewed here as an example of anion exchanger (Kunin 1958).  

Styrene-DVB copolymer is made with 400 mL water and a dispersing agent like 

carboxymethyl cellulose, 90 g of styrene, 10g of DVB, and 1 g of benzoyl peroxide. The 

mixture is heated at 90°C for one to two hours, the resin is removed from solution, and 

dried at 125°C for 2 hours.  The copolymer is next chloromethylated.  50 g of copolymer 

is mixed with 100 g of chloromethyl ether in 115 mL petroleum ether and 30 g of 

anhydrous aluminum chloride to catalyze. It is then dried at 125°C for 2 hours.  

Functionalization is then accomplished by immersing in 115 mL benzene, saturating with 

either trimethylamine or dimethylamine gas, and drying at 50°C for 4 hours (Kunin 

1958). 

The two main types of anion exchange resin are strong base anion exchange 

(SBAX) and weak base anion exchange (WBAX).  SBAX is synthesized using the 

trimethylamine gas, which produces a quarternary amine functional group.  This 
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counterion held by this functional group easily dissociates at a broad range of pH.  

WBAX is synthesized using dimethylamine gas that produces a ternary amine functional 

group.  The electron pair associated with the nitrogen in the amine group is more tightly 

held, and only takes on a positive charge at a depressed pH (<6).   

2.2 Iron hydroxide nanoparticles in hybrid sorbents.  Two synthesis methods 

and one patent for creating iron nanoparticles inside the pores structure of anion 

exchange resin are reviewed.  First, permanganate oxidizes ferrous which then 

precipitates as iron (hydr)oxide (Hristovski et al. 2008b). 67 g of a perchlorate-selective 

SBAX resin are soaked in 800 mL of either 1.3% or 2.5% KMnO4 solution.  The soaked 

resin is rinsed then reacted with 800 mL of either 11% or 17% FeSO4 for 15 or 45 

minutes. It is then rinsed to remove excess protons and precipitate.  Iron nanoparticles are 

amorphous ferric (hydr)oxide.  The hybrid sorbent is found to be able to remove both 

perchlorate and arsenic from water.  The formulations using higher permanganate and 

higher iron precursor solutions were found to produce higher final metal content 

(Hristovski et al. 2008b). 

In the second method, ferric is precipitated under alkaline conditions (Hristovski 

et al. 2008b).  50 mL of SBAX resin is soaked in 200 mL of FeCl3, then rinsed.  It is then 

soaked in a 10% NaOH solution for 30 minutes.  It is rinsed to neutralize pH and remove 

excess precipitate, then the entire process is repeated.  The hybrid sorbent is found to be 

able to remove both the anion originally targeted by the parent SBAX resin as well as 

arsenic.  This method resulted in high metal content that were evenly distributed across 

the resin cross section.  It is concluded that parent SBAX characterized by high porosity 

is more amenable to being embedded with iron nanoparticles (Hristovski et al. 2008b). 
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Comparing these two methods, the permanganate method is unique in that the 

resin is soaked in the precipitation solution first and the metal solution second.  This 

might have the effect of precipitating the nanoparticles more superficially since the metal 

would not have time to permeate deep into the pores before reacting.  That could be why 

the nanoparticles were more evenly distributed through the resin depth via the hydroxide 

methods.  The hydroxide method is unique in that the synthesis process is repeated, likely 

giving more opportunity for precipitation.  The second contact with metal solution would 

be able to use the nanoparticles formed in the first contact as seeds, and may therefore 

form larger particles than would otherwise be possible.  

A patent for synthesizing iron nanoparticles inside anion exchange resin is 

reviewed (Moller 2008).  It claims to apply to any type of any type of anion exchange 

sorbent, including gel or macroporous, as well as Type 1 SBAX or Type 2 SBAX or 

WBAX.  The resin is soaked in 7 to 50% weight by volume iron salt solution for 0.5 to 8 

hours, then rinsed and filtered.  It is then exposed to a 1% to 20% base solution for 15 to 

60 minutes and rinsed.  This process can be repeated as needed, then finally rinsed with 

5% NaCl and sparged with CO2 to reduce pH.  It is found that increased precursor 

concentration increased resultant metal content of resin. Two cycles of 21% precursor 

made a final hybrid sorbent with 128 mgFe/g, whereas two cycles of 28.5% precursor 

made 206 mgFe/g. Shortening precursor contact time from 60 minutes to 45 or 30 

minutes did not reduce final metal content.  It is claimed that As removal capacity 

increases with iron content (Moller 2008). 

Three critiques of this patent are offered.  It is claimed that the process works on 

any type of anion exchange material, however it was not performed nor tested on WBAX.  
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Functional groups on WBAX are fundamentally different that those of SBAX and may 

react differently to the process, meaning that broad claims across all types of anion 

exchange should be verified.  Next, the patent claims to apply to any type of metal for 

creating nanoparticles including iron, titanium, and others.  While the use of iron is 

demonstrated, no attempt to demonstrate other metals is made.  Titanium does not 

precipitate when exposed to a strong base the same way iron does, indicating a different 

synthesis process would be preferred.  Last, it is concluded that As capacity increases 

with increased metal content.  However this is only explored up to a 50% precursor 

solution concentration, and it is unknown if this trend continues indefinitely. 

Various studies have shed light on important operational conditions for iron 

nanoparticle embedded hybrid sorbents.  It is found that even for a hybrid sorbent, the 

adsorption of Cr, As, and phosphorus could be inhibited by presence of bicarbonate, 

silicon, nitrate (Smith 2010), and sulfate (Cumbal and Sengupta 2005).  In packed bed 

column configuration, longer hybrid sorbent life is observed at lower pH (Cumbal and 

Sengupta 2005).  Comparing the As removal capacity of the parent anion exchange resin 

to the iron hybrid sorbent it was used to make, the parent sorbent had only small amounts 

of As removal capacity (Cumbal and Sengupta 2005).  Even this small capacity was 

limited by competition with sulfate, and the As effluent concentration exceeded the 

influent concentration after breakthrough as new sulfate displaces previously sorbed As. 

Important insights to the removal mechanism for iron embedded hybrid resin have 

been made.  One study has observed that double and triple layer equilibrium surface 

complexation models for iron hydroxide adsorption do not accurately predict pollutant 

removal by nanocomposite sorbents at high counterion concentrations (Smith 2010).  
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This suggests that more than only sorption to the metal nanoparticles contributes to As 

removal.  A model that could accurately predict removal would need to include anion 

exchange as well as metal oxide sorption. Another study noted that hybrid sorbent in 

packed bed column tests showed an increased capacity for As removal after operational 

interruption (Cumbal and Sengupta 2005).  This suggests that sorption is limited by 

intraparticle diffusion.  Adequate contact time is therefore required to fully access the 

sorbent capacity found on nanoparticles deep inside pores.  This study also quantified the 

benefits of the Donnan co-ion exclusion effect for hybrid sorbents.  The parent anion 

exchange sorbent has fixed positive charges on the surface  that cannot diffuse into the 

bulk solution. This draws increased negative charges to it, resulting in 100-times higher 

concentration of anions within the resin than in the bulk solution (Cumbal and Sengupta 

2005).  This applies to both the original counter-anion and the target anion.  This high 

concentration provides a high energy gradient that leads to high sorption capacity of both 

the anion exchange and metal nanoparticle sorbents.  It further excludes other positive 

charges from entering, resulting in 100-times lower concentration of cations in the water 

within the pores than in the bulk. That is why no competition from cationic species is 

observed.  

2.3 Titanium dioxide nanoparticles in hybrid sorbents.  Titanium materials can 

be used in a number of applications for the treatment of drinking water.  For instance, 

titanium dioxide can photocatalyze organic-As and As(III) to As(V), which is much then 

much easier to treat (Guan et al. 2012).  This review focuses on the use of titanium 

dioxide as a sorbent, and particularly as a nanoparticle embedded inside an ion exchange 

resin.  It has previously been observed that sorption and removal of As by TiO2 is 
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enhanced when combined with other sorbents like GAC, activated alumina, rare earth 

oxides, or even polyethylene terephthalate bottles (Guan et al. 2012).  Combination with 

WBAX seems to be unexplored. 

Titanium dioxide can be found in one of three mineral forms: anatase, brookite, 

and rutile.  Amorphous TiO2 is the absence of a clearly abundant form.  Rutile is the most 

abundant TiO2 polymorph in nature (Dadachov 2006).  If being obtained commercially, 

Hombikat TiO2 is an anatase form with a point of zero charge of 6.2.  These have a 

smaller particle size with higher surface area compared to Degussa TiO2, which contains 

a combination of both anatase and rutile and a higher point of zero charge of 6.9 PZC. 

(Dutta et al. 2004) At pH 9, sorption of As(V) onto Hombicat had Fruendlich isotherm 

parameters of K=16±3, n=3.1±0.4, with R2=0.94.  Sorption onto Degussa was 

K=1.8±0.7, n=2.5±0.4, with R2=0.90. (Dutta et al. 2004)  This infers a higher sorption 

capacity by the purely anatase Hombikat. 

When synthesizing TiO2 nanoparticles, conditions can be controlled to prefer one 

mineral form over another.  Generally anatase and brookite can be formed at lower 

hydrolysis temperatures, and rutile is formed with higher temperatures and longer heating 

times.  In fact, anatase was formed after 10 minutes of heating in 250°C, but transitioned 

to rutile after 6 hours. (Kolen'ko et al. 2003).  Another study found that hydrolysis 

temperatures below 600°C result in porous anatase.  Higher temperatures result in solid 

rutile with concomitant drop in pore volume and surface area. (Ismagilov et al. 2009).  

However, an increase in temperature and heating duration has also resulted in increased 

anatase crystal size (Guan et al. 2012, Kolen'ko et al. 2003).  Therefore, if large anatase 
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particles are desired, the heating time and temperature must be balanced to grow the 

crystals but avoid transformation to solid rutile. 

Synthesis methods to create hydrous titanium dioxide nanoparticles usually 

involve the hydrolysis and/or precipitations of salts via heating or addition of sodium 

hydroxides. For example, a solution of TiOSO4 can be thermostated at 120°C for 8 hours 

to create a TiO2 powder (Kolen'ko et al. 2003).  Many methods exist for forming these 

particles inside other sorbents using various precursor compositions and hydrolysis 

conditions exist and can be found elsewhere (Ismagilov et al. 2009).  Two methods are 

reviewed as examples of temperature hydrolysis and chemical hydrolysis.  One patent 

will also be reviewed. 

As an example of a heating hydrolysis method, one study soaks 100 mL of SBAX 

in a 100% w/v solution of TiOSO4 for either 5 or 60 minutes.  The soaked resin was or 

was not decanted, then heated for 24 hours at 80°C.  After synthesis it was regenerated 

with 5% sodium chloride and repeatedly rinsed (Elton et al. 2013).  Decanting was found 

to lower the final sorbent metal content by 1 – 3%.  Little difference was observed 

between the contact times.  Nanoparticles were between 50 and 90 nanometers in 

diameter and largely amorphous, but tend toward anatase (Elton et al. 2013). 

In another study used as an example of chemical hydrolysis method, 21 grams of 

resin were soaked in a solution of titanium ethoxide Ti(OC2H5)4 for 15 minutes.  It was 

then refluxed in a 200 mL solution of 1M ammonium hydroxide at 70°C for 5 hours.  It 

was then rinsed and dried at 65°C (Balaji and Matsunaga 2002).  It was found that this 

process increased the Ti content from 0 to 3.5%.  However it also reduced the surface 

area from 574 to 209 m2/g.  This is attributed to pore blockage for pores 300-600 Å in 
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diameter (Balaji and Matsunaga 2002).  XPS analysis shows that the Ti is present in a +4 

oxidation state consistent with TiO2.  In column testing, 1 g of hybrid sorbent with 1 

mgAs/L influent a flowrate of 0.5 mL/min broke through for As(V) nearly immediately.  

The poor performance is attributed to short contact time (Balaji and Matsunaga 2002).   

Comparing the two hydrolysis methods, it is interpreted that the chemical 

hydrolysis largely takes place on the superficial resin structure and not down into the 

pores, leading to low metal content, pore blockage, and ergo low pollutant removal 

capacity.  This lends preference to temperature driven hydrolysis procedures. 

At least one very general patent exists in this realm.  It claims to cover making 

TiO2 as a powder, grain, or coating for the purpose of sorbing any inorganic water 

contaminant in a vessel of any size (Dadachov 2006).  The process soaks GAC in a 

precursor solution, filters, then heats at 110°C for several hours. The process can possibly 

be repeated if desired (Dadachov 2006).  It claims to produce a powder precipitated in 

aqueous solution.  This powder is stated to have a surface area of 290 m2/g, a pore 

volume of 0.36 cm3/g, and use 30% of the Ti provided in the precursor solution 

(Dadachov 2006).  Though the patent broadly claims to work for any sorbent, it does not 

mention and does not demonstrate applicability to embedding inside WBAX.  It broadly 

claims to work for removal of any pollutant but does not demonstrate effectiveness for As 

or for Cr removal, let alone both pollutants at once. 

In almost all studies of TiO2 nanoparticles, higher surface area leads to higher 

pollutant sorption capacity (Dutta et al. 2004, Guan et al. 2012).  Increased sorption 

capacity is also coordinated with decreased crystallinity (Guan et al. 2012).  Arsenic 

forms bidentate inner sphere complexes when sorbed to TiO2 surfaces (Guan et al. 2012).   
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Low pH is preferred for sorption of As onto TiO2.  Sorption capacity of TiO2 

nanoparticles decreases with increasing pH (Guan et al. 2012).  The isoelectric point of 

TiO2 is between 6 and 6.7, so at low pH it takes on a positive surface charge.  This is 

favorable to attract anionic As (Balaji and Matsunaga 2002, Dutta et al. 2004).  In 

contrast, As(III) sorbs better at high pH (Dutta et al. 2004).  As(V) is removed best at pH 

below 5, and  As(III) is removed preferentially at pH between 5 and 10 (Balaji and 

Matsunaga 2002).  However, in the presence of competing anions like silicate, phosphate, 

sulfate, bicarbonate, and NOM, most sorbents exhibit the highest As sorption capacity 

near neutral pH.  Competing constituents inevitably reduce the overall capacity though 

(Guan et al. 2012).  Non-competing cations such as Ca2+ and Mg2+ may enhance As 

sorption onto TiO2 (Guan et al. 2012).  In bottle testing, equilibrium is observed within 4 

hours (Balaji and Matsunaga 2002). 

 

3.0 LIFE CYCLE ASSESSMENT 

Life cycle assessment is a critical tool for this dissertation in exploring the human 

health impacts of Cr and As water treatment as well as maximizing the environmental 

performance of the developed hybrid sorbent.  This section explores previous 

sustainability analysis of drinking water in order to establish critical assumptions and 

comparative results. 

3.1 Energy embedded in water supply.  Water related energy use in the United 

States is at least 521 million MWh annually.  This equates to 13% of national electricity 

demand.  Over 85% of this demand is for pumping into the pressurized distribution 

system (Plappally and Lienhard 2012).  This energy use results in carbon footprint of 290 
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million metric tons annually, which is 5% of all national carbon emissions (Griffiths-

Sattenspiel and Wilson 2009).  This is higher than the global average, for which 7% of 

electricity is used for production and distribution of drinking water and treating 

wastewater (Plappally and Lienhard 2012).  This speaks to the higher per capita use of 

water by residents of the United States.  In fact, WHO defines the average water 

requirement for human survival to be 0.0025 m3/day/capita (0.66 gal/day/capita), but 

residential areas in the US use 0.35 m3/day/capita (92 gal/day/capita) (Plappally and 

Lienhard 2012).   

Nationally, 63% of drinking water is supplied from surface water sources (Hutson 

et al. 2004).  Embedded energy in drinking water from surface water sources varies 

widely according to plant size and the required treatment processes.  The national average 

energy consumption for surface water treatment and supply is 0.079 kWh/m3 (Plappally 

and Lienhard 2012), but this average includes many small systems with minimal 

treatment and small distribution areas.  More standard treatment plants have been 

observed to use 0.37 kWh/m3 (Burton 1996), or 0.11 to 0.66 kWh/m3 (Arpke and Hutzler 

2006).  Complex drinking water treatment might have embedded up to 1 kWh/m3 

(Crettaz et al. 1999).  For a large surface water utility serving 1 million people producing 

250 billion liters per year (180 MGD), embedded energy of 1.5 kWh/m3 was observed 

which produces 390 kg CO2-eq (Stokes and Horvath 2011).   

Groundwater is the primary water source for 37% of public water systems 

(Hutson et al. 2004).  One study of a 20 MGD groundwater plant uses 0.48 kWh/m3 for 

well pumping, chlorination, and distribution pumping (Elliott et al. 2003).  Similar 

variability observed in surface water’s embedded energy depending on plant size and 
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treatment would also be expected for groundwater treatment. Groundwater pumping 

energy required to lift, provide outlet pressure, overcome pipe friction, and account for 

pump efficiency can be estimated as 0.004 to 0.006 kWh/m3 per meter of well depth 

(Plappally and Lienhard 2012). 

For comparison, wastewater treatment can vary from 0.21 kWh/m3 for lagoons to 

0.77 kWh/m3 for extended aeration (Arpke and Hutzler 2006, Cantwell et al. 2002).  A 

biological filter WWTP use 56% less energy and produces 35% fewer airborn toxins than 

an activated sludge WWTP (Emmerson et al. 1995). 

Desalination uses twice as much energy and produces twice as much emissions 

than importing water.  It uses five times more energy with 18 times more emissions than 

recycling water (Stokes and Horvath 2006). 

3.2 Critical processes in water supply.  Energy is the main resource expended 

during each stage of water use, and assumptions about energy mix are critical to 

assessing environmental impacts (Arpke and Hutzler 2006).  That is why nearly all water 

related life cycle assessments report results in terms of embodied energy. 

The largest amount of energy spent in the domestic urban water cycle is in the use 

phase, nearly all of which is associated with water heating (Plappally and Lienhard 

2012).  Energy demand during the use phase is 6.3 to 36 kWh/m3, which is 93% to 97% 

of energy compared to treatment and disposal (Arpke and Hutzler 2006).  Reducing hot 

water use by 20% would save 4.4 billion gallons of water, 41 million MWh of energy, 

and 38.3 million metric tons of emitted CO2 per year in heating energy.  It would also 

reduce energy use in water supply and treatment by 9.1 million MWh and 5.6 million 

metric tons CO2 per year (Griffiths-Sattenspiel and Wilson 2009). 
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When only looking at the water supply, studies found that the energy demand is 

dominated (85%) by pumping to pressurize the distribution system (Burton 1996, 

Plappally and Lienhard 2012) but may be as low as 37% (Stokes and Horvath 2011).  

System operation used 56% to 90% (Stokes and Horvath 2006) or 94% (Racoviceanu et 

al. 2007) of total energy demand and production. On-site pumping is responsible for 60% 

of the operational burden (Racoviceanu et al. 2007).   

Comparatively, treatment may contribute 42% (Stokes and Horvath 2011) or 44% 

(Crettaz et al. 1999).  Water supply contributes 21% (Stokes and Horvath 2011) to 38% 

(Crettaz et al. 1999).  

Consumption of treatment products and chemical production is generally found to 

be small, contributing 6% to 10% of total impacts (Arpke and Hutzler 2006, Crettaz et al. 

1999, Racoviceanu et al. 2007, Tarantini and Federica 2001).  However, one study found 

energy used by material production for treatment chemicals to be as high as 37%.  

Manufacturing treatment chemicals is the largest part (73%) of that material production 

(Stokes and Horvath 2011). 

The construction and disposal phases of water treatment facilities are found to 

range from negligible when compared to the operational stage (Raluy et al. 2005), up to 

4% to 9% of total environmental impact (Stokes and Horvath 2006).  When only looking 

at the construction materials, the materials used (such as the iron) contributed more 

impact than the manufacture (such as processing into a pipe) (Dennison et al. 1999).  

Maintenance may cause 5-36% of total environmental impacts (Stokes and Horvath 

2006) 
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3.3 Energy demand of individual treatment processes.  Environmental impact 

studies of individual treatment processes, products, and chemicals are sparse, but some 

exist.  Studies that do exist report results in terms of embedded energy in the finished 

water.  This has the fallacy of hiding variation based on dosage. 

Ozone uses 0.03 to 0.15 kWh/m3 (Elliott et al. 2003). 

Microfiltration uses 0.18 kWh/m3 (Elliott et al. 2003). 

Surface water chlorination uses 0.000021 to 0.00053 kWh/m3. Groundwater 

chlorination uses 0.002 kWh/m3 (Burton 1996). Another study found chlorine treatment 

has an average embedded energy of 0.003 kWh/m3 (Kroschwitz 1995). 

Alum treatment has an average embedded energy of 0.04 kWh/m3 (Kroschwitz 

1995). Alum (aluminum sulfate) is made by reacting bauxite with sulfuric acid, 

producing very low toxicity and little waste products. 

Lime treatment has an average embedded energy of 0.42 kWh/m3 (Kroschwitz 

1995).  Lime (CaO) is produced by heating limestone to drive off CO2.  

Energy consumption associated with utilization of polymers for coagulation 

ranges from 0.4 to 0.7 kWh/m3 (Tripathi 2007). 

Energy associated with removal of industrial pollutants and anthropogenic 

materials, which require advanced treatment processes, has not been evaluated (Plappally 

and Lienhard 2012). 

 

4.0 RESEARCH NEEDS 

After detailed review of the existing body of knowledge regarding this topic, a 

few knowledge gaps and research needs can be identified. 
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Metal (hydr)oxide nanoparticle precipitation into weak base anion exchange resin 

has not been explored.  This has been done on many other parent materials, including 

strong base anion exchange, activated carbon, and natural minerals.  WBAX differs from 

other sorbents in that its tertiary amine is a unique functional group, it has different pore 

structure and pore size distribution, is functional in a unique pH range, and has high 

selectivity with high capacity for Cr(VI).  

A clear correlation between synthesis procedures for a metal oxide nanoparticle 

embedded WBAX and the resultant sorbent characteristics has therefore not been 

explored either.  The effects of variables such as metal precursor concentration and 

hydrolysis time on resultant metal content and surface area and pollutant removal 

efficiency is unknown. 

It has not been proven what the mechanism for removal of Cr(VI) on the surface 

of WBAX is.  It has been shown that Cr(VI) is ultimately reduced to Cr(III), but it is 

unknown how this happens, whether it happens before or after sorption, what the electron 

donor/reducing agent is, and whether the ion exchange functional group becomes 

available again after the Cr(III) precipitates. 

No studies were found that use life cycle assessment to inform treatment 

technology selection.  Only few use LCA to describe the treatment technology at all, with 

most focusing on the water supply or distribution.  Almost all studies use energy demand 

as the final reported result, meaning there is opportunity to evaluate environmental 

impacts of water treatment beyond just energy use.  No studies were found that evaluate 

ion exchange resins, and only few that include other sorbents such as activated carbon.  

There is a good understanding of other chemicals like alum.  Further opportunity exists to 
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explore the embodied energy in a groundwater use if treatment beyond only chlorination 

is required. 
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CHAPTER 3 

PHOSPHORUS RECOVERY FROM MICROBIAL BIOFUEL RESIDUAL USING 

MICROWAVE PEROXIDE DIGESTION AND ANION EXCHANGE 

ABSTRACT 

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) 

utilization, which is a limited resource and vital for global food security.  This research 

tracks the fate of P through biofuel production and investigates P recovery from the 

biomass using the cyanobacterium Synechocystis sp. PCC 6803.  Our results show that 

Synechocystis contained 1.4% P dry weight.  After crude lipids were extracted (e.g., for 

biofuel processing), 92% of the intracellular P remained in the residual biomass, 

indicating phospholipids comprised only a small percentage of cellular P.  We estimate a 

majority of the P is primarily associated with nucleic acids.  Advanced oxidation using 

hydrogen peroxide and microwave heating released 92% of the cellular P into 

orthophosphate.  We then recovered the orthophosphate from the digestion matrix using 

two different types of anion exchange resins.  One resin impregnated with iron 

nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 

23% during regeneration.  A strong-base anion exchange resin adsorbed 87% of the 

influent P through 20 bed volumes and released 50% of it upon regeneration.  This 

recovered P subsequently supported growth of Synechocystis.  This proof-of-concept 

recovery process reduced P demand of biofuel microalgae by 54%. 
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1. INTRODUCTION 

There is an urgent need to find energy replacements for fossil fuels, whose 

combustion releases known and suspected human carcinogens and greenhouse gases into 

the atmosphere.  One promising alternative is biofuel, which provides renewable energy 

with net greenhouse gas emissions significantly lower than fossil fuel (Batan et al. 2010).  

Biofuel derived from microalgae offers several advantages over biofuel from terrestrial 

plants: it does not compete with food crops for arable land, it can be continuously 

harvested, and it provides a much higher areal yield (Rittmann 2008, Schenk et al. 2008). 

Microalgae biofuel production requires several inputs, including water, sunlight, 

carbon dioxide, and nutrients – particularly nitrogen (N) and phosphorus (P).  During 

lipid extraction from microalgae biomass for liquid fuels, most of the N and P are 

discarded, requiring new nutrients for subsequent growth.  Should microalgae become a 

significant replacement for fossil fuel in the future, the requirements for biomass growth 

would create a huge nutrient demand, rivaling that of agriculture (Erisman et al. 2010).  

Thus, capturing and recycling nutrients represents a significant opportunity for making 

large-scale cultivation of microalgae more sustainable (Clarens et al. 2010).  

Nutrient recycling is particularly essential for P.  Unlike N, which can be fixed 

from the atmosphere through the Haber-Bosch method (Huo et al. 2012), P is mined from 

                                                
  Abbreviations: ATP, adenosine triphosphate, DI, deionized water; EBCT, empty bed 

contact time; FAME, fatty acid methyl esters; HAX, hybrid anion exchange; ortho-PO4
3-, 

orthophosphate; P, phosphorus; PG, phosphatidylglycerol; SBAX, strong base anion 

exchange. 
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ore that has finite stocks.  World reserves of accessible P are estimated as 65,000 million 

metric tons (USGS 2011), and these are non-renewable and  not substitutable.  Depletion 

of economically affordable P may bring about international crises due to the essential role 

of P fertilizer for global food production (Cordell et al. 2009).  Farmers in developing 

countries could be disproportionately harmed (Childers et al. 2011).  Sustainable 

microbial biofuel production demands efficient nutrient recycling to prevent biofuel from 

becoming an enormous P demand competing with food production. 

This research develops a proof-of-concept process for P-recovery from 

microalgae after extraction of lipids.  The research objective is to track P through biofuel 

production and then recover P from residual biomass in a reusable form by using 

advanced oxidation to release the P for efficient ion exchange capture.  The reusable form 

provides bioavailable P that supports microalgae growth. 

We selected the cyanobacteria for this work because it is an excellent candidate 

for future utilization in large-scale biomass cultivation, particularly when energy 

efficiency in biosynthesis of fatty acids is crucial (Wijffels et al. 2013).  Specifically we 

use Synechocystis sp. PCC 6803, which is a prokaryotic autotroph, Gram negative and 

able to withstand a wide range of environmental conditions.  Lipids in the form of 

diacylglycerols are available in an extensive network of thylakoid membranes (van de 

Meene et al. 2006, Vermaas 2001).    It may be genetically manipulated for specific traits 

favorable for biofuel production such as high lipid content (Vermaas 1996) because the 

entire genome has been sequenced (Kaneko et al. 1996). 
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1.1. P Recovery 

To recover P from microbial biomass we first release organic-bound P as 

inorganic orthophosphate (ortho-PO4
3-).  This is necessary to improve the efficiency of 

the subsequent capture since ortho-PO4
3- is more reactive.  It also mitigates heterotrophic 

contamination of the biomass culture, which can occur after long run periods or with 

accumulation of inactive cells (Mata et al. 2010).  Subsequently, we selectively capture 

the ortho-PO4
3- from the liquid in a usable form.  This is necessary to isolate and purify 

the ortho-PO4
3-, allowing accurate and controlled dosing into the aqueous growth media 

during reuse.  It also concentrates the ortho-PO4
3- solution to minimize handling or 

hauling.  This subsection gives the impetus for the technologies we selected to 

accomplish those goals. 

Many P-recovery methods are available (de-Bashan and Bashan 2004, Morse et 

al. 1998, Rittmann et al. 2011).  We selected an advanced oxidation process using 

hydrogen peroxide and microwave heating to release organic P from the residual 

biomass.  Advanced oxidation creates hydroxyl free radicals that are highly effective for 

attacking organic matter to release ortho-PO4
3- (Liao et al. 2005).  This transformation 

may involve oxidation and hydrolysis reactions.  While it may be possible to find 

technologies that are less energy-intensive, such as enzymatic hydrolysis or microbial 

fuel cells (Rittmann et al. 2011), or that do not dilute the biomass with additional liquid 

such as supercritical carbon dioxide (Blocher et al. 2012, Soh and Zimmerman 2011), 

advanced oxidation demonstrates the principle for releasing PO4
3-. 

We capture ortho-PO4
3- using ion exchange since it recovers a liquid concentrate 

that is preferable for nutrient reuse during aquatic microalgae production.  Other common 
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recovery techniques such as aluminum adsorption or struvite precipitation (de-Bashan 

and Bashan 2004) produce complex or low solubility solids which may be better suited 

for agricultural application. We evaluated two anion-exchange resins having distinctly 

different properties.  The first was a hybrid anion exchange resin (HAX) impregnated 

with iron (hydr)oxide nanoparticles (Layne RT, Layne Christensen).  It is reported to 

have a high sorption capacity and selectivity for ortho-PO4
3- (Sengupta 2013) and the 

ability to release a high concentration ortho-PO4
3- solution upon regeneration (Blaney et 

al. 2007, Midorikawa et al. 2008).  The second was a type-1 strong-base anion exchange 

resin (SBAX) with quaternary amine functional groups in chloride ion form (21K-XLT, 

Dowex).  It has a general anion-exchange capacity of 1.4 equivalents/L.  It has previously 

been used for uranium (Stucker et al. 2011) and chromium (Rees-Nowak et al. 2005) 

removal, but has yet to be tested for phosphate recovery.   

While the individual P recovery technologies employed in this study are not novel 

by themselves, their usage together such that the P completes an entire use and reuse 

cycle is.  It is also the first study we know of to apply these technologies in the context of 

microbial biofuel production.  Thus this study serves as a proof-of-concept that proposes 

an approach and can inform future optimization. 

 

1.2. Microbial P 

To focus the recovery efforts properly, this subsection estimates where P in 

Synechocystis is located based on literature review.  Others have done this for several 

marine microalgae (Geider and La Roche 2002, Sterner and Elser 2002) but not 

specifically for Synechocystis.  Biochemical fractions in cells can vary based on growth 
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conditions (Sheng et al. 2011a) but this provides clues for understanding the fate of P 

after lipid processing.  Figure 3.1 summarizes the expected location of P in a 

Synechocystis cell.  P may be located within adenosine triphosphate (ATP), lipids, and 

nucleic acid.  The following three paragraphs individually analyze them. 

ATP contains over 18% P by weight (C10H16N5O13P3), but comprises less than 30 

µg per g of cell mass.  P associated with ATP is therefore 5 µg per g of the cell mass, 

which is a negligible contributor of the total cell P.  The diphosphate form ADP and 

monophosphate form AMP are smaller fractions of the cell mass with less incorporated P 

and are also negligible contributors of cellular P storage. 

The P content associated with lipid is a function of the fraction of lipid that is 

phospholipid and the fraction of phospholipid that is P.  The predominant phospholipid 

head within cyanobacteria is phosphatidylglycerol (PG), which is the only phospholipid 

associated with thylakoid membranes in Synechocystis sp. PCC 6803 (Hajime and Murata 

2007).  PG has an elemental composition of C8H12O10P.  The most prevalent fatty acid 

chain in Synechocystis is C16:0, or palmitic acid (Sheng et al. 2011b), which has an 

elemental composition of C16H32O2.  Assuming that all phospholipids within 

Synechocystis are the diacylglycerol PG with two palmitic acid molecules, the overall 

elemental formula for a phospholipid molecule is C40H76O14P.  That means phospholipid 

is approximately 3.8% P by weight.  PG-based lipids comprise approximately 14% of all 

lipids in Synechocystis (Sakurai et al. 2006), and lipids represent approximately 10% of 

the biological makeup of the overall cell (Shastri and Morgan 2005).  Combining these 

estimates gives the theoretical amount of P associated with lipid in Synechocystis sp. PCC 

6803 as 0.05% of the total cell weight, or 2% of the total cell P.  A genetically altered 
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high lipid strain containing 50% crude lipids could then have as high as 0.3% of the total 

cell weight be P associated with lipid.  For this reason, we do not expect much P in the 

lipids. 

We estimate the P content associated with DNA and RNA by comparing its 

biological composition with its elemental composition.  Synechocystis sp. PCC 6803 is 

approximately 3% DNA and 17% RNA by weight (Shastri and Morgan 2005).  DNA and 

RNA are 10% P by weight (Sterner and Elser 2002).  Therefore, P associated with DNA 

comprises 0.3% of the total cell weight, and P associated with RNA is 1.7% of the total 

cell weight.  This is respectively 15% and 83% of the total cellular P.  We consequently 

expect that most of the cellular P will be in nucleic acid.  This was also observed in other 

studies on lake bacteria where P associated with RNA comprised a majority of the total 

cell P (Elser et al. 2003, Geider and La Roche 2002).   

 

2. MATERIALS AND METHODS 

2.1. Strain, Growth Conditions, and Biomass Production 

We grew Synechocystis sp. PCC 6803  in BG-11 growth media (Rippka et al. 

1979) modified to have five times the normal amount of phosphate (added as K2HPO4) 

(Kim et al. 2010) in a bench-top photobioreactor in semi-continuous growth mode.  We 

separated biomass from the growth medium by means of centrifugation at 1,500 g for 20 

min in 50-mL plastic tubes.  We resuspended the cell pellet in 1 mM sodium bicarbonate 

(Sigma-Aldrich) to rinse away residual medium.  We repeated centrifuging and rinsing 

two times before freeze-drying the final pellet (Labconco Freezone 6) for 2 days at 0.013 

mbar and -50ºC in order to obtain an accurate starting dry weight (Sheng et al. 2011b).  
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We collected enough biomass to perform all lipid extraction and P recovery experiments 

at least in duplicate. 

 

2.2. Lipid Extraction and Transesterification 

We extracted lipids from the freeze-dried biomass using the Folch Method (Folch 

et al. 1957) using a 2:1 (V:V) mixture of chloroform (Mallinckrodt) and methanol (Fisher 

Scientific), since it has a high extraction efficiency for Synechocystis lipids (Sheng et al. 

2011b).  We ground a 300-mg (all weights given as dry weight) sample with agate mortar 

and pestle, suspended it in 60 mL of Folch solvent, and placed it on a shaker table at 175 

rpm for 2 days.  We filtered the suspension with a glass fiber filter (Whatman GF/B) and 

then a 0.2-µm polytetrafluoroethylene filter (Whatman).  The biomass retained on both 

filters was the primary residual, and the filtrate contained the extracted crude lipid.  For 

samples undergoing transesterification, we evaporated the solvent from the crude lipid 

under N2 gas to avoid oxidation of lipids.  For samples where no further lipid processing 

was necessary, we evaporated the solvent by heating on hot plate. 

We transesterified the crude lipid (Sheng et al. 2011b)  by adding 1 mL of 

methanolic hydrochloric acid (Supelco) and heating the mixture in an 85ºC water bath for 

2 h.  After cooling the mixture to room temperature, we added 0.5 mL of deionized (DI) 

water and 1 mL of hexane, shook the mixture by hand for 30 s, and allowed the phases to 

separate.  We repeated all transesterification steps two additional times, and then pooled 

all the hexane.  The extracted hexane contained the fatty acid methyl esters (FAME), and 

the remaining water contained the secondary residual. 
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For experiments tracking the fate of P, we analyzed total P for each biomass, 

primary residual, crude lipid, secondary residual, and transesterified FAME (at least 

duplicate samples).   

 

2.3. Advanced Oxidation 

We scraped primary residual from the dried filters and added it to 60 mL (giving 

3.6 gVSS/L) of 30% ultrapure H2O2 solution (JT Baker Ultrex II) diluted 1:10.  We let 

this mixture stand for 1 hr of pre-digestion under fume-hood ventilation.  We digested the 

mixtures in a microwave (CEM MARS XPress) at 400 W by ramping the temperature up 

to 170ºC over 10 min and then holding at 170ºC for 10 min per method SW846-3015 

(USEPA 2008).  Others have observed the highest fraction of P release by this peroxide 

dose and microwave heating temperature (Liao et al. 2005, Wong et al. 2006), and future 

work may explore varying other conditions to optimize P release.  We employed high-

pressure microwave vessels to avoid breakage that the high rate of gas evolution could 

cause.  We analyzed duplicate samples before and after oxidation for total P and ortho-

PO4
3-. 

 

2.4. Phosphate Separation 

We did preliminary investigation of the P separation capacity of each of the two 

anion exchange resins by placing 3.5 g of fresh resin in a 1.5-cm inner diameter glass 

column, giving a bed depth of 3.0 cm.  We supported the resin with glass beads to ensure 

even flow distribution.  We flushed 100 mL of DI water through the column and allowed 

air bubbles to escape.  Then, we pumped a solution of monobasic sodium phosphate 
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(Mallinkrodt ACS grade) in DI water (concentration 80 mgP/L) through the column at 

3.2 mL/min to give an empty bed contact time (EBCT) of approximately 2 min (loading 

rate of 4.4 mgP/s/g resin).  We periodically took effluent samples for P analysis, and 

continued the experiment until the effluent P concentration stabilized near the influent P 

concentration.  We then desorbed the P using a strong regeneration solution at a pump 

rate of 0.5 mL/min (EBCT of approximately 10 min) until the effluent P concentration 

stabilized at nearly zero.  The strong regeneration solution used for the HAX resin was 

0.1 N potassium hydroxide (EMD), and for the SBAX resin was 0.1 N sodium chloride 

(Sigma Aldrich).  We later varied influent P concentration, EBCT, P loading rate, 

influent pH, and elute contact time in order to optimize column operation. 

We then tested each resin with biomass after advanced oxidation by pumping the 

60 mL of digested sample through 2.0 g of fresh resin having a bed depth of 1.7 cm.  The 

flow rate was 1.4 mL/min, giving an EBCT of approximately 2 min.  We collected the 

effluent and pumped it through the column two more times to ensure complete capture of 

phosphate onto the resin.  We then recovered retained ortho-PO4
3- by removing the resin 

from the column and placing it in 33 mL (11 bed volumes) of strong regeneration 

solution, which was heated on a 95ºC hot plate, shaken for 24 h, and then decanted.  

Elution and decanting were repeated two times, and the elution solutions were pooled so 

that the serial batch elution mimicked a continually stirred tank mixer (CSTM) in series 

(n = 3).  We analyzed the total volume of 100 mL (33 bed volumes) for pH, total P, and 

ortho-PO4
3-. 

We obtained the total mass of P sorbed to each resin by summing the difference 

between the influent concentration and the effluent concentration for each sample 
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multiplied by the volume treated in the time segment (area above the curve times flow 

rate).   

 

2.5. Phosphorus Reuse 

As a confirmatory experiment, recovered P solution was used to culture wild-type 

Synechocystis sp. PCC 6803 cells.  We diluted the recovered P solution to P 

concentration prescribed by standard BG-11, spiked the other nutrients to standard levels, 

then added additional bicarbonate to compensate for low aeration in small samples.  We 

inoculated plastic tubes containing 20 mL of the growth media with fresh Synechocystis 

cells in duplicate.  We placed these on a shake table under constant light conditions for 

one week, and regularly monitored optical density by absorbance at 730 nm. 

 

2.6. Phosphorus Analysis 

We determined ortho-PO4
3-  colorimetrically with a spectrophotometer (HACH 

DR5000) using the PhosVer 3 Method (HACH), which is equivalent to Standard 

Methods 4500-P.E (Miner 2006).  It directs to add reagent powder to 5 mL of sample and 

give 2 min of reaction time, then measure results at 880 nm. 

We assayed total P by persulfate digestion (Standard Method 4500-P.B.5) (Miner 

2006) followed by inductively coupled plasma optical emission spectrometry (ICP-OES).  

To do this we suspended samples in 50 mL DI water plus 1 mL of concentrated sulfuric 

acid (JT Baker ultrapure).  We then added 0.4 mg of ammonium persulfate (Malinckrodt) 

to each sample.  We autoclaved the sample for 30 min at a pressure of 1.05 kg/cm2 and a 
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temperature of 122ºC.  We measured total P by ICP-OES (Thermo iCAP6300) at a 

wavelength of 213.6 nm. 

 

3. RESULTS & DISCUSSION 

3.1. Fate of P through lipid extraction 

Freeze dried Synechocystis sp. PCC 6803 biomass contained 1.39%±0.28% total 

P by dry mass.  (All weights given by dry weight.  ± indicates half standard deviation.)  

This is consistent with previous findings that P is 1.5% of dry cell mass (Kim et al. 2010).  

In lipid-extracted biomass samples, primary residual contained 1.50%±0.36% total P by 

dry mass.  Figure 3.2 summarizes the fate of P through lipid extraction normalized to 100 

mg of total P in the starting biomass.  The primary residual contained 92±4.3 mg total P.  

Crude lipid contained 7.3±4.2 mg total P.  For transesterified samples, total P in the 

FAME was 0.5±0.1 mg total P.  Total P in the secondary residual was 9.5±5.3 mg.  Thus, 

nearly all of the starting organic P was in the primary residual after lipid extraction.  Of 

the small amount in the crude lipids, nearly all of it was in the secondary residual.  

Essentially no P (<1% of the starting P) was in the transesterified FAME. 

These findings support our expectation that nucleic acid is the primary storage of 

total cell P, with only small amounts stored in phospholipids.  P associated with 

phospholipid partitions to the crude lipid during extraction, while P associated with 

nucleic acid remains in the primary residual.  This explains the large fraction of P found 

experimentally in the primary residual.  The observed increase in P content from dry cells 

to primary residual (1.39±0.28% to 1.50±0.36%) was not statistically significant, but any 

increase would demonstrate the disproportional storage of P in non-lipid structures.  The 
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92±4% of P found experimentally in the residual correlates with the expected 98% P 

associated with nucleic acid.  We attribute the small amount of P found in the fatty acids 

to impurities from incomplete partitioning and analytical margin of error. 

 

3.2. Oxidation of Organic P to Release Ortho-PO4
3- 

Since only small amounts of the starting P were in the crude lipid and subsequent 

lipid processing, the primary residual became the focus for P recovery.  Prior to treatment 

with H2O2 and microwave heating, this primary residual contained 82±1 mg total P with 

0.2 mg of it as ortho-PO4
3-.  After H2O2 and microwave treatment, samples contained 

90±12 mg total P, including 75±6 mg as ortho-PO4
3-.  Therefore, H2O2 oxidation 

recovered 106±17% of the total P (analytical error accounts for recovery over 100%) and 

released most of it as ortho-PO4
3-, which was the objective. 

 

3.3. Recovery of Ortho-PO4
3- by Resins from DI Water 

Figure 3.3A shows the ability of the two resins to absorb P in DI water.  Both 

resins were able to capture nearly all of the influent P up to 30 bed volumes.  At this 

point, the capacity of the resins was 5.0 mgP/g resin and 4.7 mgP/g resin for the HAX 

and SBAX resins, respectively.  The HAX resin then began a sharp breakthrough and 

reached complete saturation near 80 bed volumes.  The SBAX resin began a gradual 

breakthrough, reaching 50% saturation around 200 bed volumes and 80% saturation 

around 500 bed volumes.  At the end of the experiments, the HAX resin sorbed a total 

mass of 38 mg of P, giving a sorption capacity of 11 mgP/g resin, and the SBAX resin 

sorbed a total mass of 140 mg of P, giving a sorption capacity of 40 mgP/g resin. 
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Both resins released all of the P that would be eluted within the first 20 bed 

volumes of regeneration.  They did not release any additional P with 10 additional bed 

volumes of regeneration (Figure 3.3B).  The fastest rate of P elution for the SBAX resin 

occurred around 5 bed volumes, and around 8 bed volumes for the HAX resin.  A total of 

19 mg of P was eluted from the HAX resin, or 51% of the total sorbed P was recovered.  

A total of 167 mg of P was eluted from the SBAX resin, or 119% of the total sorbed was 

recovered (the lack of mass-balance closure was due to analytical error from high dilution 

required for analysis of concentrated elute).  The pH of the HAX elute containing the 

recovered P was 12, and of the SBAX elute it was 6. 

The HAX resin had higher selectivity for P as demonstrated by the lower amount 

of P in the column effluent, the sharp breakthrough curve showing a short saturation 

zone, and the higher sorption capacity.  We therefore expect it to have a higher rate of P 

capture in solutions with competing constituents like the oxidized biomass.  However, 0.1 

N KOH did not efficiently recover the sorbed P.  While the iron nanoparticles lead to 

higher sorption capacity than SBAX, they apparently made it more difficult to desorb the 

P.  Poor recovery might indicate that at least part of the sorbed P was irreversibly 

adsorbed by the impregnated iron (hydr)oxide nanoparticles instead of sorbed entirely by 

anion exchange.  Our result differs from previous studies that showed that 80-90% of the 

P could be released by elution from the HAX resin (Martin et al. 2009, Sengupta 2013) 

using 0.5-1.0 N NaOH plus 0.4 N NaCl.  Differences with these previous studies include 

different influent matrices, not using combined NaCl and NaOH elutes or in as strong 

doses, and lower resin contact time.  We avoided stronger eluent doses so the recaptured 

P would not be in such a high saline or high pH matrix that it would be unsuitable for 
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subsequent microbial growth.  Since elution of the SBAX resin with 0.1 N NaCl showed 

the best recovery, we focused our subsequent ion-exchange work on it. 

In order to improve performance with the SBAX resin, we varied column 

operation parameters to improve the P capture and release.  For P capture, a steep 

breakthrough curve is desired so that all of the P is captured until the inception of 

breakthrough, at which time the column is stopped and regenerated.  The SBAX 

breakthrough curve could be made steeper by lowering the hydraulic loading rate.  Figure 

3.4 shows results for a SBAX column receiving 100 mgP/L influent in DI water with an 

EBCT of 20 min (instead of 2 min) and a lower hydraulic loading rate of 3 BV/hr 

(instead of 30 BV/hr).  Consequently, the resin captured all ortho-PO4
3- for 200 BV 

before exhibiting a steep and desirable breakthrough curve.  This gave a sorption capacity 

of 35.6 mgP/g resin.  For P regeneration, slower elution (2 BV/hr) gave 99% recovery of 

the loaded P within 4 BVs.  This allowed us to achieve an 80-fold increase in P 

concentration in the regenerant.  Additional tests (data not shown) indicated greater 

ortho-PO4
3- exchange capacity at pH 5 instead of 8.  This effort aimed to show that each 

step in this proof-of-concept P-recovery sequence could be optimized to obtain desired 

performance outcomes.   

 

3.4. Recovery of Ortho-PO4
3- by Resins from Oxidized Biomass 

We pumped oxidized primary residual through the ion exchange columns with 

enough resin so the influent did not exceed 20 bed volumes to ensure complete capture of 

the P.  The HAX column effluent contained 1.7±0.3 mg of P out of the 72±0.9 mgP 

influent, indicating 98% P capture on the resin.  After elution, 16.7±0.0 mg P was in the 



  62 

100 mL elute.  Of this, 14.9±0.1 mg was ortho-PO4
3-.  The pH of the pooled elute was 

12.4±0.5.  Overall, the HAX resin recovered 23%±0.2% of the influent P to the 

regeneration solution. 

The SBAX column effluent contained 20.9±7.6 mg of P out of 108±7.6 mgP 

influent, indicating 81% of the P sorbed to the resin.  After elution, 54.4±8.9 mg of P was 

in the 100 mL elute.  Of this, 53.0±8.2 mg was ortho-PO4
3-.  The pH of the pooled elute 

was 6.6±0.1.  Overall, the SBAX resin recovered 50%±5% of the influent P to the 

regeneration solution. 

Both resins were only able to recover about half as much P when loaded from 

oxidized biomass as opposed to when loaded from DI water:  HAX went from 51% to 

23%, and SBAX went from 119% to 50%.  Previous studies have also observed lower 

recovery from complex solutions like sludge liquor than from synthetic solutions (Bottini 

and Rizzo 2012).  In addition to ortho-PO4
3-, the solutions from the oxidized biomass also 

contained residual organic matter (after oxidation 15 mg P out of 90 mg P was still 

organic-bound) and other anions (bicarbonate, carbonate, sulfate, and nitrate) that were 

probably also exchanged by the resins.  Additionally, the influent pH for DI tests was 5, 

but for influent oxidized biomass it was over 6.  Having the pH approach the second 

deprotonation for ortho-PO4
3- (pKa,2 = 7.2) during loading shifted a small fraction of its 

speciation away from the single charge H2PO4
- to the double charged HPO4

-2.  This may 

have reduced ortho-PO4
3- adsorption capacity because each HPO4

-2 takes up two anion-

exchange sites.  This effect would be even stronger during regeneration due to the higher 

pH (12 for the HAX) of the elute when almost all of the ortho-PO4
3- would be present as 

HPO4
-2.  In the case of the HAX resin, this competition for anion exchange sites may 
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have forced more ortho-PO4
3- to be sorbed to the iron (hydr)oxide nanoparticles which 

could form inner sphere complexes with stronger bonding and less elution. 

 

3.5. P Recovery and Reuse 

Figure 3.5 summarizes results for each process step in the overall recovery 

process using the SBAX resin.  The lipid extraction, cellular oxidation, and nutrient 

isolation steps were, respectively, able to recover 93%, 106%, and 50% (using SBAX) of 

the starting P.  The overall process recovered 54% of the starting intracellular P into a 

pure and concentrated nutrient solution.  This yield is similar to other systems designed 

for complete P recovery (Blocher et al. 2012) and shows that nutrient reuse in the context 

of microalgae biofuel production is viable. 

The recovered solution had an ortho-PO4
3- concentration of 10.6 mgP/L, 

compared to 5.4 mgP/L required in standard BG-11.  We also measured 0.95 mg NO3
--

N/L and 1.5 mg SO4
2--S/L, compared to 247 and 9.8 mg/L required for BG-11, 

respectively, demonstrating the selectivity of the resin for P.   

The P solution recovered from the SBAX supported cyanobacteria growth.  The 

optical density increased from 0.12 initially to 0.55 after one day and to 1.11 after one 

week.  This correlates to specific growth rates of 1.4 day-1 over one day and 0.7 day-1 

over one week.  For comparison, the optical density of the same cell culture grown in a 

BG-11 solution without any P went from 0.12 initially to 0.16 after one day and 0.10 

after one week, corresponding to specific growth rates of 0.26 day-1 after one day and -

0.06 day-1 after one week. The nearly ten-fold increase in cell density over one week in 

the solution containing recovered P confirms that the recovered P was available for 
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cyanobacteria uptake.  It also demonstrates that we did not co-recover any substances that 

would inhibit reuse, such as harmful heavy metals or residual oxidant.  These rates are 

comparable to growth rates previously observed for Synechocystis using BG-11 (Kim et 

al. 2010) albeit in a different reactor configuration.   

We recommend future work improving P release methods that can co-recover 

other valuable products produced by cyanobacteria, like other nutrients, proteins, or 

ethanol (Wijffels et al. 2013).  We further recommend improving P capture efficiency, 

reducing the overall cost, energy, and chemical footprint of the process, and 

demonstrating recovery on full-scale. Other future work could compare the effectiveness 

of growing microalgae on recovered P compared to other sources of P with complete 

controls. 

 

4. CONCLUSIONS 

Efficient P recycling in microbial biofuel production will be essential to 

preventing competition between food and energy systems.  This work demonstrates: 

·  After lipid processing, over 90% of the P remained in the residuals.  Most cellular 

P is in nucleic acids, with very little in phospholipids.   

·  Advanced oxidation transformed over 80% of that organic P into useful and 

recoverable ortho-PO4
3-. 

·  While HAX resin showed higher affinity for ortho-PO4
3-, the SBAX resin released 

the ortho-PO4
3- more completely.   

·  Both resins recovered less P from oxidized biomass than from P spiked DI water, 

likely due to interference with residual organics or competing oxyanions. 
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Figure 3.0. Graphical Abstract 
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Figure 3.1. The estimated location of P within Synechocystis sp. PCC 6803 
shown on the right determined by the elemental (Kim et al. 2010) and biological (Shastri 
and Morgan 2005) composition shown on the left.  All numbers given are percent by 
weight of the total biomass (left) or total P in the biomass (right).  A majority of cellular 
P is in RNA, and only small amounts are in lipids.  Thus, almost all P is in the primary 
residuals after lipid extraction, not in the lipid extract. 
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Figure 3.2. The fate of 100 mg of starting P through the lipid extraction process.  
Most of the P remained with the biomass in the primary residual, although some was 
associated with the crude lipid remains in the secondary residual.  The FAME only 
contained about 1% of the starting P. 
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Figure 3.3. Performance of an iron hydr(oxide) impregnated anion exchange 
(HAX) resin (squares) and a strong-base anion exchange (SBAX) resin (diamonds) for 
recovering phosphate from DI water.  (A) Uptake of phosphate by fresh resin in column 
test.  Uses hydraulic loading rate of 30 BV/hr, an initial P concentration of 80 mgP/L, and 
influent pH 5.  (B) Desorption of phosphate from resin by 0.1 N KOH for HAX or 0.1 N 
NaCl for SBAX with hydraulic loading rate of 6 BV/hr, normalized to mass of P sorbed.  
The HAX resin shows higher affinity for P during sorption, but the SBAX releases more 
P upon elution. 
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Figure 3.4. Enhanced P recovery from DI water on SBAX resin by improving 
operating conditions.  (A) Uptake of phosphate by fresh resin in column test.  Uses 
hydraulic loading rate of 3 BV/hr, an initial P concentration of 100 mgP/L, and influent 
pH 8.  (B) Desorption of phosphate from resin by 1 N NaCl at a hydraulic loading rate of 
2 BV/hr, normalized to mass P sorbed.  The steep breakthrough after a long bed run is 
optimal for P recovery, and subsequent elution in few bed volumes gives an 80-fold 
increase in P concentration. 
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Figure 3.5. Process step yields of total P and ortho-PO4
3- for 100 mg starting P 

through the P-recovery process using advanced oxidation and SBAX.  Nearly all cellular 
P was found in the primary residual after lipid extraction.  Advanced oxidation 
transformed a majority of the P to recoverable and beneficial ortho-PO4

3-.  SBAX resin 
could then sorb and elute a concentrated nutrient solution.  The overall tested P-recovery 
process could capture more than 50% of the starting P in a beneficial form. 
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CHAPTER 4 

NANO-ENABLED SORBENTS OUTPERFORM TRADITIONAL SORBENTS FOR 

SIMULTANEOUS HEXAVALENT CHROMIUM AND ARSENIC REMOVAL 

ABSTRACT 

This work demonstrated nanotechnology can reduce multiple contaminants of 

health concern, resulting in groundwater treated to drinking water standards. Many 

municipal and private well are treated to meet arsenic (As(V)) regulations, and new 

regulations for hexavalent chromium (Cr(VI)) are soon possible. Rather than adding 

costly capital infrastructure, we explored sorbents’ ability to remove both oxo-anions 

simultaneously. We compared removal efficiency of traditional metal (hydr)oxide 

sorbents and weak base anion exchange (WBAX) resins against nano-enabled sorbents 

with iron or titanium nanoparticles embedded inside the porous structure of an anion 

exchange resin. To our knowledge, this is the first use of metallic nanoparticles 

embedded in WBAX for simultaneous contaminant treatment. In laboratory batch and 

column tests, metal (hydr)oxide sorbents demonstrated high affinity for As(V) but 

exhibited low capacity to remove Cr(VI). WBAX resins had some ability to sorb both 

Cr(VI) and As(V), but competing anions lowered their sorption capacity. The nano-

enabled sorbents demonstrated high ability to remove Cr(VI) and As(V) simultaneously 

despite competition and were able to remove both pollutants for twice as long in column 

mode as the traditional sorbents. To quantitatively rank sorbents’ ability to remove 

multiple pollutants, we developed a Simultaneous Removal Capacity scoring tool.  
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1. INTRODUCTION 

Recent advancements in nanotechnology have enabled tremendous opportunities 

for environmental protection and pollution mitigation. Applications employing 

nanotechnology toward providing clean drinking water include sorption, disinfection, and 

photocatalytic reduction of pollutants that benefit from high surface area to mass ratio 

(Qu et al. 2013). The small size of nanoparticles allow them to be embedded inside of the 

porous structure of other materials, such as nano-sized zero-valent iron in polymers (Du 

et al. 2013), nano-scale metal (hydr)oxides inside of biochar (Hu et al. 2015), chitosan 

(Yamani et al. 2012), or activated carbon (Sandoval et al. 2011). The porous and 

composite nature of such hybrid sorbents may provide a dual functionality, which has a 

useful application in groundwater treatment. 

Groundwater serves as the primary water source for 95% of drinking water 

systems in the United States (US), over 60% of which provide no treatment beyond 

disinfection (Impellitteri et al. 2007). Groundwater often contains mixtures of inorganic 

pollutants including chromium, arsenic, nitrate, and fluoride. Anion exchange resins 

embedded with metallic nanoparticles may be able to simultaneously treat multiple 

inorganic pollutants, as has been demonstrated for arsenic and nitrate (Elton et al. 2013) 

as well as arsenic and perchlorate (Hristovski et al. 2008b). This study explored using 

these hybrid anion exchange (HAX) sorbents for simultaneous treatment of chromium 

(Cr(VI)) and arsenate (As(V)), which co-occur in oxidized groundwaters throughout the 

southwest US and elsewhere. 

Removing chromium from drinking water is becoming vital. Chromium in 

groundwater is primarily found in hexavalent form as a divalent anion (Schweitzer and 
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Pesterfield 2010) at concentrations of up to 50 µg/L (Frey et al. 2004). It is part of the 

Unregulated Contaminant Monitoring Rule 3 (Federal Register 2012) and is undergoing a 

Human Health and Carcinogenicity Risk Assessment (USEPA 2010a). The US 

Environmental Protection Agency (USEPA) regulates total chromium in drinking water 

at 100 µg/L, and California recently set a 10 µg/L maximum contaminant level (MCL) 

for Cr(VI) with only 11 weeks between regulatory notification and start of enforcement 

(CCR 2014). Compliance costs in one California system are expected to increase monthly 

water fees by $30 to $50 per household (CVWD 2014). 

Arsenic is a known human carcinogen in drinking water and underwent a similar 

review process in 2006 that lowered its federal MCL from 50 µg/L to 10 µg/L (USEPA 

2010b). However, many systems are still non-compliant for arsenic; 67% of the non-

compliant systems serve fewer than 500 people (McGavisk et al. 2013), indicating a 

disproportionate risk to customers served by small systems. Arsenic exists in a 

pentavalent oxidation state within a divalent anion in oxidized groundwater (Schweitzer 

and Pesterfield 2010) and is easily oxidized from As(III) to As(V) by free chlorine.  

As occurs in more than 27% of community groundwater sources nationally, and 

5% exceed 10 µg/L (USEPA 2000). Cr(VI) occurs in more than 31% of community 

groundwater sources nationally, and 4% exceed 10 µg/L (USEPA 2015b). Because 

Cr(VI) and As(V) are common groundwater pollutants, co-occurrence is possible. A 

national co-occurrence study found that groundwater containing total or hexavalent 

chromium was just as likely as any other groundwater to contain arsenic. Of 29 sampled 

groundwater sites with Cr(VI) above 5 µg/L, the mean and maximum levels of As(V) 

were 16.7 and 60 µg/L, respectively (Brandhuber et al. 2004b). 
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Leading treatment technologies for Cr(VI) include strong base anion exchange 

(SBAX) or weak base anion exchange (WBAX) resins and reduction to trivalent 

chromium followed by coagulation and filtration (Brandhuber et al. 2004b, McGuire et 

al. 2007). As(V) treatment technologies are well documented and include sorption to 

metal (hydr)oxide sorbents (MO), anion exchange, or aluminum and ferric hydroxide 

precipitates (Lin and Wu 2001, Mohan and Pittman 2007, Westerhoff et al. 2005). 

Treatment of each individual pollutant has been studied, but it remains ill-defined if any 

of these technologies can simultaneously treat for both As(V) and Cr(VI). This study 

focused on sorbents because they are common treatment techniques for both pollutants, 

can be delivered in a single easy to operate cartridge, and may be the cheapest treatment 

option if disposal is available (Najm 2013). Simultaneous treatment using these 

traditional sorbents was compared to the nano-enabled sorbents. 

There is a need to compare sorbents’ ability to remove multiple pollutants. 

Sorbent removal capacity is often expressed in terms of equilibrium sorption capacity (q), 

but this quantity only communicates the capacity for one pollutant. Comparative 

capacities for multiple pollutants are often expressed by a selectivity coefficient or 

separation factor (� ); however, this only communicates relative preference and not 

absolute capacity. Therefore this study proposed a new analysis tool that includes both 

absolute and relative capacity to be used to quantify sorbents having the highest ability to 

treat multiple pollutants. 

The goal of this study was to compare ability of currently available sorbents to 

nano-enabled hybrid sorbents to remove Cr(VI) and As(V) from drinking water. 

Performance was initially based on equilibrium batch testing. The effect of co-occurring 
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constituents was explored by comparing removal capacity in a simple lab grade water to a 

challenging groundwater matrix. A technique for quantitatively comparing sorbents for 

simultaneous removal was developed, and the best performing sorbents in equilibrium 

tests were evaluated in column tests. 

 

2. MATERIALS & METHODS  

2.1. Selection of Traditional and Nano-Enabled Sorbents. Seven traditional 

sorbents and three nano-enabled sorbents were included in this study as described in 

Table 4.1. The traditional sorbents included four commercially available MO sorbents 

that are widely used for As(V) treatment and three commercially available WBAX resins 

that are widely used for Cr(VI) treatment.   
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Table 4.1. Description of sorbents included in this study for evaluation of 
simultaneous Cr(VI) and As(V) removal capacity.   
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The three nano-enabled sorbents include a commercially available sorbent 

marketed for As(V) removal that is reported to have iron (hydr)oxide nanoparticles 

embedded inside a SBAX resin (HAX1). Two additional nano-enabled hybrid sorbents 

were synthesized for this study using protocols previously developed for SBAX and 

applied to chromate-selective WBAX. At the time of the study design, literature review 

showed that this study was the first to embed MO nanoparticles in WBAX for 

simultaneous treatment of Cr(VI) and As(V). Adding nanoparticles to another sorbent 

was intended to create a sorbent with dual functionality of As(V) and Cr(VI) removal 

capacity. HAX2 has iron (hydr)oxide nanoparticles precipitated in-situ within WBAX1 

(Hristovski et al. 2008b). Briefly, WBAX1 was soaked in a 10% FeCl3 solution, then the 

nanoparticles were precipitated in a 1N NaOH solution, and finally the anion exchange 

sites were converted to the Cl- form using 5% NaCl. HAX3 has titanium dioxide 

nanoparticles precipitated in-situ within WBAX3 (Elton et al. 2013). Briefly, the 

WBAX3 was soaked in a 10% TiOSO4 solution and decanted, then the nanoparticles 

were precipitated by oven hydrolysis at 80°C for 24 hours.  

Besides those synthesized for this study, all sorbents were used as received, and 

masses reported were not adjusted for water content. If dry weight had been used in this 

analysis, removal capacities (mass of pollutant removed per mass of sorbent) of sorbents 

with high water content would increase more drastically compared to those with low 

water content. 

2.2. Laboratory Pseudo-Equilibrium and Packed Bed Testing. Laboratory 

experiments were carried out in one of three water matrices. First, deionized water (DI) 

was fortified with 0.1 mM HCO3
- for pH buffering capacity. Second, simulated 
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groundwater (SG) (NSFI/AN 2007) was prepared including 20 mg/L SiO2, 180 mg/L 

HCO3
-, 50 mg/L SO4

2-, 8.8 mg/L NO3
-, 1.0 mg/L F-, 0.12 mg/L PO4

3-, and 71 mg/L Cl-. 

Third, a real groundwater (GW) from a southern California utility that operates primarily 

on groundwater was included to verify performance. The GW contained 15 mg/L Si, 2 

mg/L NO3
-, 24 mg/L SO4

2-, 200 mg/L total dissolved solids, and 130 mg/L HCO3
-. 

Experiments in each matrix were conducted at pH 7.5–8.5 with a mixture of equal molar 

concentrations of Cr(VI) and As(V). Sorbent performance in real groundwater was 

expected to fall somewhere between that demonstrated in DI and in SG.  

Initial screening of all sorbents was performed by pseudo-equilibrium batch 

testing. This was completed by spiking 50 mL of DI, SG, or GW with 0.2 mM, 0.04 mM, 

or 0.01 mM Cr(VI) and As(V). Samples were then dosed with between 375 and 1,500 

mg/L of sorbent. Samples were agitated on a shake table for 6 days before being filtered 

with a 0.45 µm nylon membrane, preserved with 1% nitric acid and refrigeration, and 

analyzed within 14 days. Kinetic sampling showed no change in aqueous concentration 

between four hours and one day, inferring that equilibrium should well be reached within 

six days. Batch data were fit with Fruendlich isotherms (Equation 1),  

 � � � � � � �
� �	  (1) 

where K ((mmol/g)(L/mmol)1/n) and 1/n (dimensionless) are fitted parameters based on 

best-fit lines through experimental data, Ce (mM) is the equilibrium pollutant 

concentration, and qe (mmol/g) is sorption capacity. 

Two sets of continuous flow column tests with select sorbents were conducted 

representing simple and challenging conditions. First, a 1 cm inner diameter glass column 

was packed with glass beads, glass wool, and 6 g of sorbent. Influent DI water was 
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spiked to 150 µM pollutant (8 mg/L Cr(VI) and 12 mg/L As(V)) at pH 7.9. It was 

pumped through the column at 4.3 mL/min, giving an empty bed contact time (EBCT) of 

2 minutes and hydraulic loading rate of 3.3 m/hr. High pollutant concentration and simple 

background matrix make this a favorable condition for sorbent performance. In the 

second condition, a 2.5 cm inner diameter glass column with 15 g of sorbent was used. 

Influent SG was spiked with 2 µM pollutant (100 µg/L Cr(VI) and 140 µg/L As(V)) at a 

pH of 7.7. It was pumped through the column at a rate of 45 mL/min, giving an EBCT of 

30 s and hydraulic loading rate of 5.5 m/hr. A complex background matrix and short 

EBCT make this condition more challenging for sorbent performance. In both cases, 

effluent samples were taken, preserved with 1% nitric acid and refrigeration, and 

analyzed within 14 days. 

2.3 Ranking Simultaneous Removal. A new method to quantify sorbents with 

the highest capacity to treat multiple pollutants was developed and shown in Equation 2. 

 
�� � � �
��������������� � � � ��������������
� �  (2) 

The Simultaneous Removal Capacity (SRC) is a quantitative tool used to assess and rank 

the capacity of sorbents to simultaneous remove multiple contaminants under the same 

experimental conditions. It has units equivalent to those used to express the removal 

capacity and a high score indicates high performance.  

The first term (Combined Capacity) is an average of the removal capacities for 

the individual pollutants as calculated in Equation 3, where q1 and q2 are the sorbent 

removal capacities for each pollutant. 

 �
��������������� �  ! � �
" # � "

" $ (3) 
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The mathematical form of Combined Capacity is equivalent to the Pythagorean Theorem 

and represents a ‘distance’ from zero capacity. This term assigns higher scores to 

sorbents with greater pollutant removal capacity. 

The second term is a weighting factor that is a function of removal capacity ratio 

for two pollutants. This term assigns higher scores to sorbents with similar removal 

capacity for both pollutants over sorbents with preferential removal capacity. It ranges 

from 1 to 0, giving 1 to sorbents with equal capacity for both pollutants and 0 to sorbents 

with zero capacity for either pollutant. This is shown in Equation 4. Its mathematical 

form was selected subject to the described constraints without empirical or mechanistic 

basis. 

 ��������������
� � %&'( %) � *+( ,� - .

- /
00 (4) 

For example, the weighting factor is 0.8 for a sorbent with two times the capacity for one 

pollutant over the other. It is 0.2 for a sorbent with ten times capacity for one over the 

other. The value of this weighting factor as a function of removal capacity ratio for each 

pollutant is illustrated in Figure 4.1. 
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Figure 4.1. Distribution of weighting factor for computing SRC. The factor gives 
full score to sorbents that remove both pollutants equally and penalizes the score for 
sorbents that preferentially remove only one pollutant. 
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Overall, sorbents with high capacity for one pollutant and low capacity for the 

other, or sorbents with an equal but low capacity for both pollutants, will result in a low 

SRC. Only sorbents with a high capacity for both pollutants will result in a high SRC.  

2.4. Contaminant Analysis. Total chromium and total arsenic were analyzed 

using inductively coupled plasma optical emission spectroscopy (Themo iCAP6300) with 

a quantification limit of 20 µg/L. Cr(VI) from pilot testing was analyzed using ion 

chromatography (Dionex ICS) with post column derivitization (USEPA 2011). Nitrate 

from pilot testing was analyzed using the dimethylphenol method for spectrophotometer 

(HACH DR5000). 

 

3. RESULTS & DISCUSSION 

3.1. Comparing Sorbents’ As(V) and Cr(VI) Removal Capacity. The goal of 

developing sorption isotherms from batch reactor data was to screen sorbents, select 

sorbents for column testing, and rank their ability to simultaneously remove both 

pollutants. Figure 4.2 illustrates typical results with fitted isotherms for three sorbents 

(MO1, WBAX1, and HAX1) to compare performance of traditional sorbents to a nano-

enabled sorbent. Figure 4.2 also shows results for each sorbent in DI and SG waters to 

represent best-case and worst-case scenarios. Table 4.2 reports isotherm parameters for 

all tested sorbents, pollutants, and water matrices. 

The MO sorbents all demonstrated a greater capacity for As(V) than for Cr(VI) in 

DI, SG, and GW. Low 1/n values (0.21–0.29) were determined for As(V) in MO1, MO2, 

and MO3, indicating favorable energetics and high removal ability at low concentrations. 

MO4 demonstrated the highest K value for As(V), but surface area may have contributed 
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to this since it was the only powdered sorbent. Very low K values (0.02–0.24 

(mmol/g)(L/mmol)1/n) were observed for Cr(VI) in all MOs, indicating almost negligible 

Cr(VI) removal at all concentrations. Unexpectedly, the removal capacity for As(V) 

increased for all MO sorbents in SG matrix over the DI water matrix. This demonstrates 

affinity for As(V) despite presence of competing constituents. This is likely because 

As(V) sorption is typically diffusion limited (Westerhoff et al. 2005), and the higher ionic 

strength of the SG compressed the stagnant double layer. The Cr(VI) removal capacity 

decreased in SG compared with DI. For example, MO2 in SG showed no statistically 

significant difference in Cr(VI) levels from raw water to treated water. 
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Figure 4.2. Equilibrium isotherms for arsenic (As(V), square symbols) and 
chromium (Cr(VI), diamond symbols) in buffered deionized water (DI, open symbols) or 
simulated groundwater (SG, filled symbols) for sorbents A) MO1, B) WBAX1, and C) 
HAX1. Initial pollutant concentration ranged from 0.01–0.2 mM, and final pH was 7.5–
8.5.   
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  Deionized Water 
Simulated 

Groundwater 

Real Ground 

Water 

Sorbent Pollutant K 1/n R2 K 1/n R2 K 1/n R2 

MO1 
Cr(VI) 0.021 0.218 0.863 0.017 0.574 <0.5 0 0 0 

As(V) 0.250 0.293 0.969 0.341 0.188 0.909 0.216 0.196 0.910 

MO2 
Cr(VI) 0.031 0.511 0.907 0 0 0    

As(V) 0.501 0.214 0.969 0.558 0.265 0.966    

MO3 
Cr(VI) 0.072 0.359 0.991 0.013 0.327 <0.5    

As(V) 0.149 0.224 0.874 0.405 0.320 0.948    

MO4 
Cr(VI) 0.245 0.510 0.867 0.315 0.647 0.853    

As(V) 235 0.827 0.671 1.38 0.335 <0.5    

WBAX1 
Cr(VI) 2.06 0.380 0.652 1.00 0.356 <0.5 6.38 0.574 0.526 

As(V) 2.40 0.475 0.661 2.07 0.974 0.819 0.833 0.442 0.953 

WBAX2 
Cr(VI) 1.80 0.576 0.941 2.27 1.06 0.993    

As(V) 0.320 0.487 0.904 0.165 0.937 0.979    

WBAX3 
Cr(VI) 1.39 0.461 <0.5 1.63 0.658 0.795    

As(V) 0.721 0.751 0.730 0.739 1.36 0.984    

HAX1 
Cr(VI) 0.594 0.394 0.927 0.526 0.738 0.998 0.568 0.598 0.999 

As(V) 0.168 0.096 0.610 0.120 0.157 0.895 0.123 0.153 0.992 

HAX2 
Cr(VI) 1.64 1.31 0.875 0.836 0.879 0.963    

As(V) 0.182 0.788 0.778 0.123 0.536 0.858    

HAX3 
Cr(VI)    0.233 0.347 0.696    

As(V)    0.039 0.185 <0.5    

 

Table 4.2. Fruendlich isotherm parameters. Equilibrium tests were performed for 
seven traditional sorbents (MO and WBAX) and three nano-enabled hybrid sorbents 
(HAX) in buffered deionized water, simulated groundwater, and a real groundwater from 
southern California. Each matrix was spiked with an initial equimolar concentration of 
0.01–0.2 mM chromium (Cr(VI)) and arsenic (As(V)). The Fruendlich isotherm fitting 
parameters 1/n and K (in (mmol/g)(L/mmol)1/n) are shown. Blank values were not tested. 
Zero values indicate no observable removal.  
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The WBAX resins all demonstrated a higher capacity for Cr(VI) than for As(V) in 

all water matrices (i.e., the Cr(VI) capacity calculated from Equation 1 was higher based 

on the observed K and 1/n values in the concentration range of interest). Generally, 

WBAX had lower K values for As(V) than those for Cr(VI) but did show some ability to 

remove both pollutants. The 1/n values (0.35–1.1) for Cr(VI) were higher for the WBAX 

resins than those observed in the MOs. The 1/n values (0.48–1.4) for As(V) were slightly 

higher than Cr(VI) indicating less favorable binding energetics and lower removal 

capacity at lower concentrations. Removal capacities for both Cr(VI) and As(V) 

decreased in SG compared to DI water matrices, indicating other ions (sulfate, nitrate, or 

carbonate, e.g.) compete for ion exchange binding sites despite affinity for Cr(VI). 

The hybrid sorbents show preliminary promise for simultaneous removal of both 

pollutants. The low 1/n values (0.10–0.54) for As(V) show favorable sorption, similar to 

the MO behavior for As(V). The 1/n values (0.35–1.3) for HAX removal of Cr(VI) are 

very close to those for WBAX. The removal capacity for hybrid sorbents remains similar 

to WBAX for Cr(VI) and similar to MO for As(V). This perhaps indicates that the 

removal mechanism includes both anion exchange and sorption to the nanoparticles.  

Scatter in isotherm data is expected for sorbents that have very little capacity for a 

pollutant, as demonstrated by MO1 for Cr(VI) in SG (Figure 4.2A, R2 < 0.5). This is an 

artifact of log scale exaggerating small differences at low capacities (e.g., below 0.01 

mmol/g), even if due only to normal analytical variability and not true pollutant removal. 

The observed scatter reinforces the conclusion of poor sorbent performance for that 

pollutant under those conditions. Scatter in data is also observed at low final pollutant 

concentrations that approach the method quantification limit of 0.15 µM, as demonstrated 
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by WBAX1 for Cr(VI) in DI (Figure 4.2B, R2 = 0.65). Although data are scattered, nearly 

all pollutant was removed, therefore reinforcing the strong sorbent performance for that 

pollutant under those conditions. 

Table 4.3 shows the SRCs and quantitatively compares the sorbents’ ability to 

remove both pollutants. HAX3 had the highest ability to treat both contaminants (SRC = 

23 µmol/g) followed by MO4 and HAX1 (SRC = 11 µmol/g). HAX3 does not have the 

highest absolute removal capacity for either pollutant, but scored the highest SRC 

because it had capacity for both pollutants and a similar capacity for both. WBAX1 had 

the highest capacity for Cr(VI) but received only a moderate SRC of 10 µmol/g because 

it has only a small capacity for As(V). This is also true for MO2, which had the highest 

As(V) capacity but very little for Cr(VI) and scored 3 µmol/g. WBAX3, MO1, and 

WBAX2 had the lowest SRC (less than 1 µmol/g) due to low absolute removal capacities 

and different capacities for the two pollutants.   
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qCr(VI)  

(µmol/g) 

qAs(V) 

(µmol/g) 

SRC 

(µmol/g) 

HAX3 27.0 12.4 22.5 

MO4 5.7 172.1 11.3 

HAX1 5.4 45.2 10.6 

WBAX1 109.4 4.9 9.7 

HAX2 3.5 4.4 5.5 

MO3 1.7 55.4 3.4 

MO2 1.4 107.5 2.8 

WBAX2 3.1 0.5 1.0 

MO1 0.5 106.0 1.0 

WBAX3 27.3 0.2 0.3 

 

Table 4.3. Sorbents ranking based on SRC from sorption capacity (q) for 
Ce=2µM. The Simultaneous Removal Capacity (SRC) quantitatively compares the 
simultaneous removal of two pollutants with a high score indicating a high capacity for 
both pollutants.  
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Figure 4.3 shows calculated removal capacity of each sorbent for Cr(VI) plotted 

against that for As(V). This was done using the isotherm parameters in SG at equilibrium 

concentration (Ce) of 2µM (100 µg/L Cr(VI) and 144 µg/L As(V)) using Equation 1. 

Sorbents plotted along the diagonal dashed line have equimolar capacity for removing 

both pollutants with those closest to the origin having little capacity to remove either 

pollutant in the conditions tested and those in the top right having high capacity for both 

pollutants. Sorbents in the top left have high capacity for As(V) with little capacity for 

Cr(VI), and visa-versa for the bottom right corner.   
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Figure 4.3. Sorbent equilibrium removal capacity. The equilibrium capacity for 
each sorbent and each pollutant is calculated from observed isotherm fitting parameters in 
SG at an equilibrium pollutant concentration of 2µM. Dashed line indicates equimolar 
capacity for both pollutants. Symbol size is proportional to SRC. Sorbents above the line 
demonstrate high arsenic capacity but little chromium capacity and the opposite for 
sorbents below the line. Sorbents closest to the line demonstrate high simultaneous 
pollutant removal capacity.  
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 Figure 4.3 illustrates that MO sorbents preferentially remove As(V) while 

WBAX resins preferentially sorb Cr(VI). MO4 demonstrates the highest As(V) removal 

capacity, and WBAX1 demonstrates the highest Cr(VI) removal capacity. The three 

nano-enabled HAX sorbents are the closest to the equimolar line, demonstrating the 

capacity to remove similar amounts of both oxo-anions. This suggests they employ 

different and non-competing sorption mechanisms.  

These examples illustrate how the SRC can be used to rank sorbents’ ability to 

remove multiple contaminants taking into account both absolute removal capacity as well 

as affinity for both pollutants. Visualizing the results in Figure 4.3 clarifies the purpose of 

the two terms in the SRC calculation (Equation 2). The first term is an average of the 

removal capacities for the individual pollutants calculated as a distance from the origin in 

Figure 4.3. The second term is a weighting that can be visualized as proximity to the 1:1 

line in Figure 4.3. 

3.2. Lab Column Testing of Sorbents with High SRC. The goal of packed bed 

tests was to validate batch testing results, screen simultaneous removal potential, and 

evaluate potential to run in more lengthy pilot tests.  

Figure 4.4 shows the first set of column testing results for HAX1. HAX1 was 

used in lieu of HAX3 since larger volumes of sorbent were available. The test conditions 

(high pollutant concentration, simple matrix, long EBCT) represent a best-case scenario 

to verify simultaneous removal by nano-enabled sorbents. Complete removal of both 

pollutants occurred during the first 350 BV, verifying the simultaneous removal potential. 

At 725 BV, the column had removed 474 µmol of Cr(VI) and 368 µmol of As(V), as 

calculated from the area above the respective breakthrough curves. This is equivalent to a 
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removal capacity of 155 µmol/g for Cr(VI) and 120 µmol/g for As(V). The As(V) broke 

through first even though equilibrium testing predicted a higher capacity for As(V). This 

was observed previously for other sorbates (Sandoval et al. 2011) and demonstrates mass 

transport plays an important role in sorbent performance. Sorbent removal capacity can 

therefore be controlled by proper selection of contact time to avoid preferential sorption 

of solutes with higher diffusivity (liquid diffusivity of H2AsO4
- is 0.905*10-5 cm2/s, and 

of CrO4
2- is 1.132*10-5 cm2/s (Haynes et al. 2015-2016)). 

These HAX1 column test results demonstrated that simultaneous removal is 

possible as this nano-enabled sorbent demonstrated high capacity to remove both 

pollutants. Based on the pH and equimolar concentrations, both pollutants are expected to 

exist in aqueous solution as divalent oxyanions in equal numbers. On a sorbent with 

equal affinity for both sorbates the pollutants would occupy the same number of ion 

exchange sites and would break through simultaneously. However, the dissimilar 

breakthrough curves indicate different sorbate affinities, mass transport, or sorption 

mechanisms (ion exchange and sorption to iron nanoparticles) were in effect.  
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Figure 4.4. Pollutant breakthrough curves for As(V) and Cr(VI) by iron 
nanoparticle embedded HAX1 in packed bed column test in buffered deionized water 
(DI) water matrix at pH 7.9 with 2 min EBCT and influent pollutant concentrations of 
150 mM (8 mg/L Cr(VI) and 12 mg/L As(V)).  
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Figure 4.5 shows dynamic column testing results for MO1, WBAX1, and iron 

nanoparticle embedded HAX1 under more challenging conditions (lower pollutant 

concentration, more complex matrix, and shorter EBCT). These sorbents were selected 

due to their high SRC in batch mode. MO1 was used in lieu of other MO sorbents despite 

a lower SRC because pelletized sorbents are easier to work with in packed bed columns. 

This short contact time demonstrates sorbent preference for one or both pollutants and 

confirms the SRC is an indicator for column performance.  
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Figure 4.5. Pollutant breakthrough curves for sorbents in fixed bed. A) MO1, B) 
WBAX1, and C) iron nanoparticle embedded HAX1 were tested in simulated 
groundwater (SG) at pH 7.7 and 30 sec EBCT and an initial pollutant concentration of 2 
µM (100 µg/L Cr(VI) and 140 µg/L As(V)).   
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HAX1 and WBAX1 were able to remove some of both pollutants through 2000 

bed volumes (BV), while Cr(VI) broke through for MO1 almost immediately. MO1 and 

HAX1 both demonstrated a slow lagging removal of As(V). HAX1 and WBAX1 both 

had a sharply shaped breakthroughs for Cr(VI), with HAX1 reaching exhaustion around 

2,000 BV and WBAX1 reaching exhaustion around 6,000 BV. Therefore, the nano-

enabled sorbent did not have the same affinity for Cr(VI) and its removal capacity was 

limited by competition with other constituents. The apparent loss in capacity from HAX1 

to WBAX1 is because the parent resin for HAX1 is a nitrate selective SBAX, which is 

much more sensitive to influent nitrate and sulfate compared to the chromium selective 

WBAX. However the fact that the HAX1 breakthrough curve for As(V) was similar to 

that of MO1 for As(V), and its curve for Cr(VI) was similar shape to that of WBAX1 for 

Cr(VI) demonstrates that separate and non-competing adsorption mechanisms are 

present. We hypothesized that the hybrid nano-enabled sorbent continued to remove 

Cr(VI) by anion exchange, and removed As(V) by sorption to the metal nanoparticles. 

This verfies the potential for nano-enabled hybrid sorbents to remove both pollutants 

simultaneously. 

WBAX1 had a removal capacity of 6.2 µmol/g for Cr(VI) and 3.8 µmol/g for 

As(V) calculated from the area above the curve normalized to sorbent mass. HAX1 had a 

removal capacity of 1.6 µmol/g for Cr(VI) and 20 µmol/g for As(V). MO1 had a removal 

capacity of 0.23 µmol/g for Cr(VI) and 18 µmol/g for As(V). These column capacities 

are all smaller (6%–78%) than those observed in batch equilibrium testing, but are 

consistent with the preferences shown between the two pollutants. Inserting the column 

capacities into Equation 2 gives an SRC of 6.5 µmol/g for WBAX1, 3.2 µmol/g for 
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HAX1, and 0.46 µmol/g for MO1. While HAX1 SRC ranked slightly higher than 

WBAX1 in batch tests, the WBAX1 ranked higher in this column test that had lower 

pollutant concentration.  

This change in rank demonstrates the necessity to perform column testing to 

determine sorbent performance. However, batch testing is a valid way to screen through 

many sorbents given the decreased time, monitoring, and sorbent mass often required to 

perform it compared to column testing. Using the SRC is a quantitative and justifiable 

way to screen which sorbents to advance to column testing, understanding it does not 

predict column performance. Furthermore, these column results demonstrate that though 

nano-enabled sorbents have great potential to remove multiple pollutants simultaneously, 

perhaps more development is called for to outperform traditional sorbents in challenging 

conditions. 

Next it was briefly explored if the iron (hydr)oxide nanoparticles in the hybrid 

sorbents could leach into the finished water, thereby posing possible health risks. Effluent 

samples from the HAX1 packed bed column test were analyzed for total Fe using ICP-

OES. All samples were below detection limit (20 µg/L). This suggested that high iron 

leaching did not occur in the conditions described over this operation period. 

 

4. CONCLUSIONS 

Traditional MO and WBAX sorbents have more favorable binding energy and 

higher removal capacity for one pollutant with little capacity to treat another pollutant for 

an extended duration.  
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Metal nanoparticle embedded ion exchange media showed potential for 

simultaneous removal, especially at elevated pollutant concentrations. These hybrid 

sorbents demonstrated a higher total pollutant removal capacity than traditional sorbents 

even though they had lower capacity for each individual pollutant. Breakthrough curves 

of these nano-enabled sorbents suggest Cr(VI) removal capacity similar to WBAX and 

As(V) removal capacity similar to MO. This indicates multiple removal mechanisms are 

present and that they do not interfere with each other. This is likely Cr(VI) removal by 

anion exchange and As(V) removal by metal nanoparticle sorption.  

However, because some ability to remove both pollutants was lost in challenging 

column conditions, further development of nano-enabled sorbents is still required. Their 

potential for high removal capacity of multiple pollutants indicates that they should 

continue to be developed and may eventually outperform traditional sorbents in even the 

most challenging water matrix conditions. 

Because As(V) sorption is typically diffusion limited, providing circumstances 

that compress the stagnant double layer (for example, a higher ionic strength matrix) may 

increase As(V) removal. However, the competition from other ions will reduce Cr(VI) 

removal.  

When treating both Cr(VI) and As(V) by packed bed treatment, adequate contact 

time must be selected such that both pollutants have access to binding sites. Because 

As(V) has a lower diffusivity than Cr(VI), inadequate time will favor Cr(VI) removal. 

The proposed SRC equation can be used as a tool to quantitatively rank the ability 

of various sorbents to co-treat mixtures of pollutants, taking into account both removal 

capacity and pollutant affinity. Because performance in batch and column mode may 
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differ, it quantitatively screens many sorbents to select the highest performing to advance 

to more time-intensive testing.  
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CHAPTER 5 

SYNTHESIS OF IRON HYDROXIDE OR TITANIUM DIOXIDE NANOPARTICLES 

IN WEAK BASE ANION EXCHANGE RESINS FOR THE SIMULTANEOUS 

REMOVAL OF HEXAVALENT CHROMIUM AND ARSENIC 

ABSTRACT 

Nano-composite sorbents have metal nanoparticles inside the porous structure of 

larger sorbents, giving a dual functionality to remove multiple pollutants from drinking 

water. Previous studies have developed synthesis processes using a single metal with 

strong base anion exchange, sand, or activated carbon. This is among the first papers to 

tailor the nano-composite synthesis procedure for weak base anion exchange, which has 

superior selectivity for some oxo-anions like hexavalent chromium. We demonstrate that 

selection of variables during the synthesis process influences subsequent characteristics 

and sorption capacity of the final sorbent, and require consideration of the unique 

properties of weak base anion exchange resin. This is among the first papers to directly 

synthesize and compare iron and titanium nanoparticles on the same parent resin, either 

of which add arsenic removal capacity to the sorbent. We explore a concentration of 

metal precursor solution that leads to sorbent with high pollutant removal performance, 

and find that excessive metal content is detrimental to sorbent pore size distribution and 

pollutant removal performance. We find that an acid rinse is required to re-functionalize 

tertiary amine functional groups on the weak base anion exchange resin after exposure to 

a basic solution during creation of iron nanoparticles. We find that oven heating time 

during titanium nano-composite synthesis may be significantly reduced from that 
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proposed by previous studies without severe impacts to characteristics or pollutant 

removal capacity. 

 

1. INTRODUCTION 

Metallic nanoparticles made of sorptive material have high capacity for pollutant 

removal from water due to high surface area, but dispersed nanoparticle slurries are 

energy intensive to remove from water after use (Dutta et al. 2004). Instead, the 

nanoparticles can be enmeshed in porous scaffolding structures such as sand (Yamani et 

al. 2012), non-polar resin (Balaji and Matsunaga 2002), ion exchange (Cumbal and 

Sengupta 2005), or activated carbon (Guan et al. 2012). The macrostructure provides 

structural support for use in packed beds while limiting diffusive transport concerns, 

reduces risk of entering finished waters, and provides favorable sorption conditions by 

increasing intra-porous pollutant concentration through Donnan equilibrium mechanisms 

(Cumbal and Sengupta 2005, Sarkar et al. 2012, Shahadat et al. 2015, Zhao et al. 2011). 

These nano-composite sorbents are of particular interest in drinking water treatment 

when both the parent media and the nanoparticles actively provide pollutant removal 

capacity, allowing removal of multiple pollutants by a single process (Elton et al. 2013, 

Hristovski et al. 2008b, Mak et al. 2011b, Sandoval et al. 2011).  

Here we synthesized and tested nano-composite sorbents with weak base anion 

exchange (WBAX) parent material, which has unique chemistry and high selectivity for 

oxo-anions such as hexavalent chromium (Cr(VI)). Most studies use strong base anion 

exchange (SBAX), granular activated carbon (GAC), sand, or non-ionic porous polymer, 

but very few study WBAX which have affinity for a different set of pollutants. We 
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further compared embedding iron and titanium nanoparticles, both of which have high 

affinity for pentavalent arsenic (As(V)). Most nano-composite sorbents are synthesized 

using iron nanoparticles. Rarely do they directly compare synthesis or performance of 

two different nanomaterials.  

In this study, the in-situ synthesis of iron or titanium nanoparticles was tailored 

for weak base anion exchange resins, the nano-composite sorbent was characterized, and 

the simultaneous removal of Cr(VI) and As(V) was tested. Three different WBAX resins 

with unique characteristics that are commonly used for treatment of groundwater 

pollutants were tested and embedded with either iron or titanium nanoparticles. The metal 

precursor concentration was varied, which influences the nanoparticle formation, 

characteristics of the final sorbent, and pollutant removal performance.  

Remarkably few studies explore in-situ synthesis of metal nanoparticles inside of 

WBAX resins. Those that do apply a synthesis method developed for GAC or SBAX 

macrostructures without tailoring it to WBAX (Vatutsina et al. 2007). WBAX differs 

chemically from SBAX because it has a tertiary amine functional group instead of 

quaternary amine. WBAX typically has a smaller average pore size distribution, and high 

selectivity for a different set of pollutants. It is a preferred treatment method for Cr(VI) 

due to its selectivity for the chromate molecule in low concentrations and very long run 

life in column operation (Najm et al. 2014). It is typically considered a single use media 

for disposal after exhaustion as opposed to being regenerated (McGuire et al. 2007). The 

high capacity and single use of a WBAX nano-composite sorbent is thus more robust 

than one with SBAX which would require frequent regeneration with high solutions of 

mixed regenerant (Chaudhary and Farrell 2015). 
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An application of this WBAX-metal nano-composite sorbent is simultaneous 

removal of Cr(VI) and As(V) from groundwater. Cr(VI) removal from drinking water 

may become increasingly important in the next few years. It is currently under enhanced 

monitoring and toxicology review by the United States Environmental Protection Agency 

(USEPA 2010a, 2015b) for possible new federal regulation. California recently enacted 

regulation treating it as a possible ingested human carcinogen, with an enforceable 

maximum contaminant level (MCL) of 10 parts per billion (CCR 2014). One of the 

leading treatment technologies is anion exchange (Blute et al. 2012, Malaviya and Singh 

2011). Arsenic went through a similar regulation process when its MCL was lowered to 

10 parts per billion in 2006. It has a variety of human ailments including cancer of the 

bladder, lungs, and skin (USEPA 2010b). Targeted treatment processes including 

adsorption to zero valent iron and metal hydroxide sorbents have been widely 

investigated (Bang et al. 2011, Speitel Jr. et al. 2010, Westerhoff et al. 2005). These two 

inorganic contaminants were the focus of this study due to current regulatory relevance, 

common occurrence in groundwater, and similar divalent oxygenated anionic state in pH 

ranges relevant to drinking water. 

During synthesis of the nano-composite sorbent, a high metal content provides a 

higher concentration gradient to drive the metal deeper into the parent resin pores, and 

provides a higher mass of metal available for precipitation (Guan et al. 2012, Hristovski 

et al. 2008b). However, excess metal content can block ion exchange sites through 

surface coating or pore clogging, thus reducing both surface area and removal capacity 

(Balaji and Matsunaga 2002). Few studies vary the precursor concentration to explore 

this tradeoff. By identifying the metal precursor concentration that balances metal 
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available without clogging pores, this study aims to improve the nano-composite sorbent 

pollutant removal capacity.  

The nano-composite resins are characterized for surface area and pore size 

distribution, metal content, and metal hydroxide form. We developed a new surface area 

analysis sample preparation method, which is traditionally very difficult due to the low 

melting point of polymeric resins. The performance of the various synthesized nano-

composite sorbents was explored by equilibrium isotherms conducted at ratios of 

contaminants, foulants, and sorbents relevant to drinking water.  

Through performing this synthesis and characterization, this study aimed to 

determine if the nano-composite synthesis indeed augmented removal capacity for a 

second pollutant or diminished the original target pollutant removal capacity. This 

evaluated if simultaneous removal is additive or must be competitive, if pollutants 

targeted by weak base anion exchange resins can be included in simultaneous treatment, 

if the weak base anion exchange resins can withstand the synthesis protocol, and how the 

synthesis protocol must be adapted.  

 

2. METHODOLOGY  

2.1 Nano-composite Sorbent Synthesis. 

Nano-composite sorbents are synthesized by precipitating titanium or iron 

nanoparticles in-situ within the porous structure of WBAX resin. Previous methods for 

embedding titanium (Elton et al. 2013) and iron (Hristovski et al. 2008b) have been 

developed for SBAX resins. Briefly, this involves soaking the parent resin in a high 

concentration metal precursor solution, then precipitating the metal with strong base or 
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oven heating. Here, we adapt the process for WBAX by varying the parent resin, the 

embedding metal (ie. Ti or Fe), the metal precursor concentration, oven hydrolysis time, 

and post treatment method. All resins were stored in deionized water until use and 

characterization. 

Three WBAX resins are used for this study. They each have unique structure, 

composition, and pore size distribution, as well as each being leading commercially 

available products for Cr(VI) removal. Each has tertiary amine functional groups. The 

first resin was denoted as WBAX1 (Dow Amberlite PWA7). It is a cross-linked phenol-

formaldehyde polycondensate matrix with a microporous structure. It is angular, 0.3 to 

1.2 mm in diameter, and orange, cream, or grey color. It can be seen in the inset of Figure 

5.1A. WBAX2 (ResinTech SIR700) is yellow, spherical granules made of microporous 

polyamine epoxy. WBAX3 (Purolite S106) is a translucent epoxy polyamine with a 

spherical shape and gel type pore structure. Additionally, one SBAX (ResinTech SIR100) 

with quaternary amine functional groups is also included for comparison to previous 

studies. 

Fe-WBAX was synthesized by first, making metal precursor solution by 

dissolving FeCl3 in methanol. To explore the effect of metal precursor the concentration 

of FeCl3 in methanol was 0%, 2%, 10%, or 20% (mass per mass). Second, 25 mL of 

parent WBAX resin was soaked in 100 mL precursor solution for 1 hour then the 

precursor was decanted. Herein the nano-composite sorbent synthesized with 10% 

precursor solution is called FeWBAX-10%. Third, 75 mL of 7.5% NaOH was added and 

shaken for 1 hour to precipitate iron (hydr)oxide nanoparticles. Forth, the base was 

decanted and the sorbent was rinsed with 1 L of deionized water in 100 milliliter aliquots. 
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Fifth, the entire process was repeated for a second cycle. Last, the sorbent was soaked in 

5% solution of NaCl for 1 day, then rinsed with an additional 1 liter of deionized water. 

In situ precipitation of the iron hydroxide nanoparticles follows Equation 1:  

 ���1 2 # 34�56 7 ��556 �8� # 6 " 5 # 34� 9 # 3�1 ,  (1) 

Ti-WBAX was synthesized by first, making metal precursor solution of TiOSO4 

dissolved in deionized water warmed to 80°C with continuous mixing. The concentration 

of TiOSO4 in this solution was 10%, 50%, or 100%. Second, 5 mL of parent WBAX 

resin was soaked in 10 mL of metal precursor solution for 5 minutes then the precursor 

was decanted. Third, the soaked WBAX was heated in an oven at 80°C to hydrolyze the 

metal to amorphous TiO2 nanoparticles. Previous synthesis protocol uses 24 hours of 

heating time, but does not explore if this time can be reduced. Here, the oven heating 

time was 4, 8, 16, or 24 hours. The TiWBAX synthesized with 24 hours of oven heating 

time is denoted as TiWBAX-24hr. Last, the resin was cooled and rinsed with 500 mL of 

deionized water, soaked in a 5% solution of NaCl for 1 day, then rinsed with an 

additional 500 mL of deionized water. Hydrolysis of titanium dioxide nanoparticles 

follows Equation 2: 

 :';<; = # > " ; 7 :'; "�?� # <; =
", # )> 9  (2) 

An optional post-treatment step was explored for the nano-composite sorbents to 

re-functionalize the tertiary amine functional groups of the WBAX. Ten mL of FeWBAX 

or TiWBAX was soaked in 25 mL of a 5% sulfuric acid solution for 10 minutes. The acid 

was decanted and the sorbent was rinsed with 1 liter of deionized water in 50 mL 

aliquots. Herein, samples that underwent this acid wash post-treatment are denoted 

FeWBAX-acid or TiWBAX-acid.  
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2.2 Nano-composite Sorbent Characterization. 

We developed a new sample preparation method for pore size distribution and 

surface area analysis. Analytical systems require samples with very low water content, 

but polymeric resins often have very high water content. Neither the parent resins nor the 

nano-composite resins can be dried by oven heating because the polymeric structure 

would melt and collapse the pore structure. To overcome this, we soaked samples in 

methanol for 1 day to displace the water. We then allowed the methanol to volatilize by 

placing the sample in a vacuum desiccator for 1 day. We could then analyze pore size 

distribution and Brunauer, Emmett and Teller (BET) surface area (TriStar II 3020). 

Water content of the nano-composite sorbents was quantified by soaking samples 

in nanopure water for 1 day, decanting, then measuring mass to determine wet weight. 

Samples were then dried at 105°C for 1 day, and mass was measured to determine dry 

weight. Water content was calculated as the difference between wet weight and dry 

weight normalized to wet weight. 

Iron content of the Fe-WBAX was determined by acid digestion. A 50 milligram 

sample of dried sorbent was placed in 9 mL of nitric acid plus 1 mL of hydrochloric acid 

in a covered but uncapped vessel (MARS XPRESS) and allowed to pre-digest for 1 day. 

The vessel was then capped and heated in a microwave (CEM MARS) with carousel at 

1600 watts by ramping temperature to 175°C for 15 minutes then holding at 175°C for 10 

minutes. The sample was volumized using nanopure water, then analyzed for total iron 

using ICPOES. Iron content was calculated as the mass of iron normalized to sorbent dry 

weight.  
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Titanium content of the Ti-WBAX was determined gravimetrically. Dry samples 

were heated in a furnace at 550°C for 6 hours, allowed to cool in a desiccator, then mass 

was measured. Remaining ash was assumed to be TiO2 comprised of 59.9% Ti. Metal 

content was calculated as the titanium mass normalized to sorbent dry weight. Titanium 

content was not determined by acid digestion due to insolubility in nitric acid. Split 

samples determining iron content of sorbents gravimetrically (assuming the remaining 

ash is FeO(OH) comprised of 62.9% Fe) and by acid digestion were performed to verify 

comparability of the results. This is seen in the Supplemental Information Table 5.1. A 

FeWBAX sample had only 6% relative error, indicating good correlation between the 

two metal content determination methods.  

Imaging of the nano-composite sorbents was completed by first, allowing a small 

sample to air dry for 1 day. Second, it was fixed in conductive silver epoxy to avoid static 

charging of the ion exchange resin during imaging. This slurry was sandwiched between 

two small silicon wafers for structural support. Third, after the epoxy set, the sample was 

cut with a diamond blade to expose the inner surface of the nano-composite sorbent. The 

sample was not gold sputtered to avoid misinterpreting gold colloids as synthesized iron 

or titanium nanoparticles. Elemental mapping was performed by energy dispersive x-ray 

spectroscopy (EDX) and focused ion beam (FIB), and imaging by scanning electron 

microscope (SEM) (Nova 200 NanoLab UHR FEG-SEM/FIB). 

 

2.3 Nano-composite Sorbent Performance Testing. 

Equilibrium isotherms were performed in 500 mL amber bottles filled with 

synthetic groundwater spiked to 2 µM of both Cr(VI) and As(V) (100 µg/L Cr(VI) and 
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140 µg/L As(V)). Synthetic groundwater was prepared as described (NSFI/AN 2007) 

including 20 mg/L SiO2, 180 mg/L HCO3
-, 50 mg/L SO4

2-, 2.0 mg/L NO3
--N, 1.0 mg/L 

F1-, 0.04 mg/L PO4
3--P, and 71 mg/L Cl1-. This challenging water matrix was used so that 

performance in most real groundwaters would exceed results shown here. Previous work 

has compared sorbent performance in deionized water and this synthetic groundwater 

(Chapter 4). At least five bottles were dosed for each sorbent with 45 to 450 mg/L 

sorbent (all sorbent weights given as dry weight). The bottles were shaken and allowed to 

equilibrate for 7 days. Total Cr and total As were analyzed by inductively coupled plasma 

optical emission spectroscopy (ICPOES, Thermo iCAP6300). Other anions were 

analyzed by ion chromatography (Dionex ICS 2000). Isotherm data was analyzed by the 

Fruendlich isotherm model (qe = K * Ce
1/n) with best-fit lines through experimental data 

for the equilibrium oxyanion concentration, Ce, and sorption capacity, qe. 

 

3. RESULTS & DISCUSSION 

3.1 Physical & Chemical Characterization of Nano-Composite Sorbents 

All nano-composite synthesis methods yielded sorbents with solidified metal 

attached to the anion exchange resins. None visually demonstrated any obvious changes 

to angularity or granular size distribution from the parent resin. Titanium dioxide infused 

resins took on a white color with opacity that increased proportionally to metal precursor 

concentration. Iron hydroxide infused resins took on a black opaque color for all 

synthesis methods. Representative photographs of two nano-composite resins are 

included inset in Figure 5.1. 
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3.1.1 Imaging of Nano-Composite Sorbents. EDX imaging of cross sections of the 

synthesized sorbents located the precipitated metal. In all cases the Ti was dispersed 

across the exposed TiWBAX face, as also Fe across FeWBAX. This is consistent with 

previous findings (Hristovski et al. 2008b). Figure 5.1A shows a photograph of raw 

WBAX2 to demonstrate the status of the analyzed sorbents. The dark surrounding area is 

the silver epoxy and the light angular shape is the exposed internal face of the sliced 

WBAX. There is a small gap between the resin and the silver epoxy that we attribute to 

slight melting and shrinking of the resin resulting from frictional heat during sawing. 

Figure 5.1B shows the EDX mapping of Ti in the TiWBAX2-100%. The Ti appears to be 

distributed throughout the sorbent and not only coated to exterior surfaces. The slight 

concentration increase around the bottom edges is attributed to the slight sorbent melting 

and contraction. Figure 5.1C shows the EDX mapping of Fe in FeWBAX2-10%, which 

also appears to be distributed across the sorbent depth. These images are typical of the 

other TiWBAX and FeWBAX sorbents synthesized under different conditions.  

Figure 5.2 includes SEM images of titanium dioxide-infused WBAX synthesized 

with varying metal precursor concentrations and the parent WBAX for comparison. The 

WBAX1 demonstrates a rough inner surface with many nodular protrusions. The 

TiWBAX1-10% and TiWBAX1-50% demonstrate a similar morphology, but have an 

even higher number of these small protrusions contributing to an even rougher surface. 

The synthesized metal hydroxide may be present as additional protuberances and/or as a 

nano-thick coating. Either adds surface area and functionality to the sorbent. The 

TiWBAX1-100% is visually dissimilar than the other three resins. The surface is 

smoothed over and wavy without any of the high surface area projections characteristic 
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of the other three sorbents. The resin surface appears to be coated by the precipitated 

metal, which could block access to the anion exchange functional sites and much of the 

porous structure having a negative effect on surface area. 

3.1.2 Metal Content and Water Content of Synthesized Sorbents. Table 5.1 

displays the metal content of the synthesized nano-composite sorbents, and SI Table 5.2 

displays the water content. All tested parent sorbents had nearly zero metal content and a 

sharp increase after the nano-composite synthesis process. This confirms that metal found 

in the synthesized nano-composite sorbents was from the synthesis process and not native 

to the parent resin. The small amounts of titanium reported in the parent resins are likely 

due to incombustible ash in the resin rather than actual titanium, putting bounds of the 

magnitude of analytical error associated with the metal content analysis method (average 

of 0.3%, always less than 0.8%).  

The iron nano-composite sorbents had higher metal content than the titanium 

nano-composite sorbents.  For any of the parent sorbents, the FeWBAX-10% had nearly 

double the iron content (2% – 20% Fe) compared to the corresponding TiWBAX-10% 

(0.4% - 8% Ti). The atomic mass of Fe is only 16% higher than Ti and cannot fully 

account for that difference, indicating that Fe atoms are more abundant in the FeWBAX-

10% compared to the Ti in the TiWBAX-10%. This could be because the Fe synthesis 

method calls for repeating the metal precursor soak – precipitation step, whereas the Ti 

synthesis method only exposes the parent sorbent to the metal precursor a single time. 

Of the three tested WBAX resins, the highest metal uptake was in WBAX1 (8% – 

23%), and the lowest was WBAX3 (1% – 8%). This appears to be related to pore size 

distribution as the gel-type (WBAX3) would require a much higher concentration 
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gradient to drive metal precursor into the tight pores. The macroporous structure of 

WBAX1 would lower the required energy to allow the cationic metal precursor past the 

cationic surface functional groups of the anion exchange resin, allowing deeper 

penetration and higher uptake. 

In all cases, increasing the metal precursor concentration resulted in an increase in 

final metal content. Here, the titanium content of TiWBAX sorbents rose by a factor of 

nearly three or more by increasing the precursor concentration from 10% to 100%. For 

example, TiWBAX1 rose from 7.9% to 23%, while the water content correspondingly 

decreased from 81% to 67%. The iron content of FeWBAX sorbents rose by a factor of 2 

or more by increasing the metal precursor concentration from 2% to 20%. For example 

the metal content of FeWBAX2 rose from 1.1% to 2.6%, while the water content 

correspondingly changed from 71% to 75%.  

The acid post rinse reduced metal content slightly. Iron content of FeWBAX-10% 

reduced from 20% to 17%, and the titanium content of TiWBAX-10% reduced from 15% 

to 12%. Both resins demonstrated a 3% loss in metal content due to the acid rinse, 

presumable due to metal solubility in acid that caused slight dissolution of the 

nanoparticles and/or some detachment. 

The hydrolysis time did not produce a consistent effect on resulting titanium or 

water content of TiWBAX. The metal content of TiWBAX1-10% given 24, 16, 8, or 4 

hours of hydrolysis time was 9.0%, 7.0%, 7.5%, and 8.1% respectively. The water 

content was 66%, 66%, 73%, and 75%, respectively. No clear correlation is observed, 

concluding that hydrolysis time is not a critical variable in controlling final titanium 

content. 
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Generally, the tested resins exhibited a decrease in water content after nano-

composite synthesis. For example, the water content decreased from 78% in WBAX1 to 

70% in FeWBAX1-10% and 74% in TiWBAX1-10%. This is expected since metal 

nanoparticles have little entrained water, and the highly saturated polymer resin now 

comprises a smaller portion of the overall sorbent. Interestingly, the decrease in water 

content seems to be directly proportional to the increase in metal content. A loose 

correlation of approximately 2% increase in metal content resulted in a 1% drop in water 

content as shown in SI Figure 5.1. 

The synthesis procedure was carried out on SBAX to compare results to previous 

studies. Here the titanium content of TiSBAX-100% was 9.6%, which compared well to 

the previously reported (Elton et al. 2013) titanium content of 9.8%.  Here, the iron 

content of FeSBAX-10% was 19%, which compared well to the previous study 

(Hristovski et al. 2008b) which resulted in iron content of 16-24% for various parent 

SBAX resins. The good correlation with previous results validates the nano-composite 

synthesis procedure conducted in this study. 

3.1.3 Surface area and pore size distribution. Pore size distribution and surface 

area analysis requires samples be dry in order to create a vacuum. This is very difficult 

for polymeric resins with high water content, especially since heating to evaporate the 

water would melt the resin structure and result in artificially low surface area. The new 

sample preparation method proposed here uses methanol to displace the water, then a 

vacuum desiccator to volatilize the methanol at a low temperature. It sufficiently dried 

WBAX1, WBAX2, and SBAX samples to allow for successful pore size and surface area 
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analysis, which was otherwise not possible. WBAX3 samples were still not dry enough to 

analyze, possibly owing to the tight gel-type structure and high initial water content. 

The BET surface area rose from 28.2 m2/g for WBAX1 to 84.3 m2/g, 84.7 m2/g, 

and 90.2 m2/g for TiWBAX made with 10%, 50%, and 100% precursor concentration, 

respectively. The addition of the titanium nanoparticles tripled the total surface area for 

any of the synthesis conditions over the parent resin. Figure 5.3 shows the correlated pore 

size distributions. The TiWBAX1-10% and TiWBAX1-50% maintained extremely 

similar pore size distributions to each other and followed the same trend as the raw resin, 

with all three peaking around 60 Å. The TiWBAX1-100% solution did exhibit a slight 

additional increase in total surface area, but had a very different pore size distribution. 

Most all of the pore surface area was available as micropores less than 40 Å in diameter 

with significantly less surface area available in pores between 100 Å and 1,000 Å in 

diameter compared to the other nano-composite sorbents. The high metal precursor 

concentration seems to result in a nano-composite sorbent with excess metal content that 

clogged pores.  

The hydrolysis time produced an unclear effect on the BET surface area of 

TiWBAX1-10%. Given 24, 16, 8, or 4 hours of heating time, the final sorbents had 60.6, 

53.2, 56.3, and 83.4 m2/g surface area, respectively. If anything, it appears that excess 

precipitation and heating reduced the total surface area, showing preference to shorter 

hydrolysis time. Future work will more clearly identify the relationship between 

hydrolysis time and nanoparticle morphology 

The BET surface area rose to 104.3 m2/g and 177.6 m2/g for FeWBAX1-10% and 

FeWBAX1-10%-acid, respectively. The Fe nano-composite sorbents had higher surface 
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area compared to the Ti nano-composite sorbents. This is consistent with having higher 

metal content also. The increase in surface area due to the acid post treatment, despite a 

slight drop in metal content, likely indicates that pores were created within the iron 

hydroxide nanoparticles themselves. 

Combined with metal content data, the surface area data offers a glimpse at the 

morphology of the synthesized nanoparticles. For Ti sorbents, the three metal precursor 

concentrations produced sorbents with nearly identical total surface areas, but with a two 

or three-fold difference in metal content. In order for TiWBAX1-100% to have had the 

same surface area with three times as much incorporated metal as the TiWBAX1-10%, 

the metal nanoparticles must have been larger on average. Assuming nanoparticles were 

solid TiO2 spheres with a density of 4.2 g/cm3, the average radius of the nanoparticles in 

TiWBAX1-100% is 4.5 nm, and in TiWBAX1-10% is 1.7 nm. 

Similarly for the Fe sorbents, the FeWBAX1-10% had a smaller surface area with 

higher metal content compared to FeWBAX1-10%-Acid, indicating the synthesized 

nanoparticles must be larger on average. Assuming nanoparticles are solid FeOOH 

spheres with a density of 3.8 g/cm3, the average radius of the nanoparticles is 1.5 nm with 

the acid post treatment and 3.3 nm without. The alternate interpretation of the data is that 

the acid post treatment did not change the size of the nanoparticles, but opened pores 

within the iron nanoparticles. 

 

3.2 Simultaneous Pollutant Removal Ability 

Psuedo-equilibrium batch tests conducted in simulated groundwater spiked with 2 

µM Cr(VI) and As(V) demonstrated that all synthesized sorbents were able to remove 
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one or both of the pollutants. Comprehensive results of all tests including Fruendlich 

isotherm parameters and pollutant removal capacities are included in SI Table 5.3. 

Informative cases will be further discussed here. 

Figure 5.4 shows pollutant removal found by preliminary single point equilibrium 

tests for each of the parent sorbents and Ti and Fe nano-composite sorbents synthesized 

with 10% precursor concentration. As expected, each of the three parent WBAX resins 

showed higher Cr(VI) than As(V) removal. For each sorbent, the Fe nano-composite lost 

Cr(VI) removal but added As(V) removal. The Ti nano-composite gained both Cr(VI) 

and As(V) removal and maintained preference for Cr(VI). Of the three parent sorbents, 

nano-composites synthesized using WBAX1 demonstrated the highest pollutant removal, 

so the remaining results focus on WBAX1. 

3.2.1 Acid Post Treatment. Figure 5.5 shows the equilibrium isotherms for 

WBAX1, FeWBAX1-10%, and FeWBAX-10%-acid. The WBAX1 exhibited the highest 

capacity to remove Cr(VI). This is demonstrated by a 1/n value <1 (a flat line on the 

graph) which indicates favorable binding energy, as well as a high K value (high on the 

graph) which indicates high capacity for pollutant removal at the thermodynamic state 

characterized by the 1/n value. However WBAX1 exhibited the lowest capacity to 

remove As(V) with final pollutant concentrations nearly equivalent to the initial 

concentration. This shows the parent resin has a very high capacity for Cr(VI), but is 

unable to remove As(V).  

In order to simultaneously remove both Cr(VI) and As(V), the FeWBAX needs an 

acid post rinse after synthesis. After embedding with Fe nanoparticles using only the 

previously published process developed for SBAX (i.e. FeWBAX1-10%), some As(V) 
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removal capacity is added. However, most of Cr(VI) removal capacity was lost, dropping 

below even the As(V) removal capacity. The isotherm line became much steeper 

indicating unfavorable sorption. However, with an acid rinse during the final synthesis 

step (i.e. FeWBAX1-10%-Acid), both the Cr(VI) and As(V) removal capacity were 

significantly increased in subsequent batch sorption testing. The Cr(VI) removal capacity 

was restored nearly to the same level as the parent resin with the same flat isotherm line, 

and the As(V) removal capacity was nearly equivalent.  

In contrast, the effect of the acid post rinse was not observed in the TiWBAX. As 

seen in SI Table 5.3, both the TiWBAX1-10% and TiWBAX1-10%-Acid demonstrated 

high capacity to remove both Cr(VI) and As(V) similar to that of FeWBAX1-10%-acid 

without the significant loss in capacity seen in FeWBAX1-10%. The TiWBAX does not 

demonstrate a need for the acid post rinse after synthesis. 

We attribute the loss of Cr(VI) and As(V) removal capacity in the FeWBAX 

without the acid post rinse to a change in the ion exchange functional group during 

exposure to sodium hydroxide during the precipitation step. WBAX has a tertiary amine 

functional group which is uncharged at high pH. The nitrogen only takes on a positive 

charge if its electron pair becomes associated with a proton. That is why WBAX resins 

report optimal performance below pH 6.5 (McGuire et al. 2007), and why they are 

classified as being only weakly basic. During nano-composite synthesis, the Fe is 

precipitated in-situ by soaking in a strong base solution. Besides just precipitating the 

iron nanoparticles, the hydroxide also reacts with the anion exchange functional groups. 

It strips them of the associated protons and renders the nitrogen atoms uncharged, 

drastically reducing the ion exchange capacity. Therefore, an acid post-rinse is then 
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required in order to restore the ion exchange capacity of the tertiary amines. The acid 

provides a high proton concentration to replace those lost during hydroxide soaking and 

reactivates the ion exchange functional groups. This is illustrated in Figure 5.6. In 

comparison, TiWBAX does not require the acid post-rinse because the synthesis 

procedure does not include a hydroxide soak (instead precipitating the metal 

nanoparticles via high temperatures). Thus the acid post rinse has little effect on the 

TiWBAX, but is required for the FeWBAX. 

The null hypothesis to this interpretation was that the acid post rinse left localized 

low pH areas, where both Cr(VI) and As(V) would be present as monovalent anions 

instead of divalent anions and therefore take fewer sorption sites and increase the sorbent 

capacity. This was disproved by performing the synthesis process with no metal in the 

precursor solution to demonstrate removal capacity was not just a pH effect but actual 

sorption to the metal nanoparticles and anion exchange. The results are included in SI 

Table 5.3. The FeWBAX-0% showed almost no capacity to remove either Cr(VI) or 

As(V). This is because the hydroxide rinse removed the anion exchange capacity and did 

not have any metal nanoparticles. The FeWBAX-0%-Acid successfully restored the 

anion exchange capacity for Cr(VI) removal, but without the metal nanoparticles still 

exhibited no As(V) removal capacity. 

These results demonstrate that As(V) removal by FeWBAX is due to the presence 

of the iron hydroxide nanoparticles, and is not due to any other artifacts from the 

impregnation process itself or pH effects from the acid post-treatment. They further 

confirm that the acid post-treatment is required to restore the ability to remove Cr(VI) 

after the iron impregnation process, independently of the actual presence of any metal. 
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Pollutant removal capacity of the titanium infused WBAX is largely unaffected by the 

acid post-rinse, and may not merit the small loss in metal content. 

3.2.2 Metal Precursor Concentration. Figure 5.7 shows the equilibrium isotherms 

of WBAX1, TiWBAX1-10%, TiWBAX1-50%, and TiWBAX-100%, all with 24 hour 

hydrolysis time. The WBAX1 data is repeated from Figure 5.5 for comparison. WBAX1 

demonstrated high removal of Cr(VI) and insignificant removal of As(V). TiWBAX1-

10% and TiWBAX1-50% both demonstrated favorable binding energy for both Cr(VI) 

and As(V) with capacity almost as high as WBAX1 for Cr(VI). TiWBAX-100% 

demonstrated only mediocre removal of both Cr(VI) and As(V). 

Figure 5.7 demonstrates that the parent resin had a very high capacity for Cr, but 

was unable to remove As(V). After embedding with Ti nanoparticles via the previously 

published process developed for SBAX (100% precursor solution), some As(V) removal 

capacity was added. However, significant amounts of Cr(VI) removal capacity was lost. 

Sorbent synthesized with 10% or 50% solution lost only a very small amount of ability to 

remove Cr(VI), but added an almost equimolar ability to remove As(V). Between the 

two, TiWBAX-10% was slightly higher for Cr, but TiWBAX-50% was slightly higher 

for As(V).  

3.2.3 Hydrolysis Time. Figure 5.8 shows the pollutant removal capacity at 2µM 

pollutant concentration of Ti sorbents synthesized with various oven heating times. The 

Cr(VI) removal capacity ranged from 16.5 to 26.2 µmol/g and the As(V) capacity from 

7.4 to 19.7 µmol/g. Overall, very little difference in pollutant removal capacity, metal 

content, or surface area is observed by reducing the heating time from 24 hours to 16, 8, 

or 4 hours. While some statistically significant differences are evident sample to sample, 
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further testing would be required to clarify these trends. Separately, a slight increase in 

removal capacity by performing the acid post-treatment from TiWBAX1-10%-24hr to 

TiWBAX1-10%-24hr-acid is observed, but it is not as significant of an increase as that 

seen between FeWBAX1-10% and FeWBAX1-10%-acid.   

 

3.3 Impacts of Synthesis Conditions on Simultaneous Removal Ability 

The acid post rinse was the most significant variable during synthesis of 

FeWBAX sorbent in terms of characteristics and pollutant removal capacity. This 

resulted in loss of some iron content, but was small compared to the large gains in 

pollutant removal capacity. Comparatively for the TiWBAX, the acid post rinse resulted 

in only marginal gains on pollutant removal capacity. Therefore it may not be worth the 

associated loss of titanium content. 

The metal precursor concentration was the most significant variable during 

synthesis of TiWBAX in terms of sorbent characteristics and pollutant removal capacity. 

While previous studies have concluded that higher metal content is favorable (Hristovski 

et al. 2008b), this study demonstrated there can be too much of a good thing. The 

TiWAX1-100% had lower pollutant removal capacity than TiWBAX1-50% or 

TiWBAX1-10% (Figure 5.7). This shows that strictly increasing surface area is not 

sufficient because TiWBAX-100% had the highest surface area (Figure 5.3), and that a 

proper pore size distribution with surface that is accessible to pollutants and useful to 

sorption is required. SEM imaging (Figure 5.2) further supports that the loss in removal 

capacity is due to excess metal precipitation clogging pores and covering ion exchange 

sites. Figure 5.9 shows this effect by normalizing pollutant removal capacity to metal 
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content. The figure demonstrates that TiWBAX1-100% showed little ability to remove 

pollutants with very high metal content. TiWBAX1-50% had a high pollutant removal 

capacity, but with a high metal content. TiWBAX1-10% solution had similarly high 

pollutant removal capacity with lower metal content. This suggests that the additional 

metal content beyond that provided by the 10% precursor solution did not add any 

additional functionality to the sorbent. TiWBAX-10% achieves nearly identical pollutant 

removal capacity and pore size distribution as TiWBAX1-50% using five times less 

titanium during synthesis and only half as much final titanium content. 

 

4. CONCLUSIONS 

Nano-composite sorbents with sorptive metal nanoparticles synthesized in-situ 

inside of porous sorptive material can be used to simultaneously remove multiple 

pollutants from drinking water. Nano-composite synthesis procedures cannot be blindly 

applied to any parent sorbent or any embedding metal. Unique properties of WBAX 

require adaptation in the synthesis process compared to other sorbents, and even Fe and 

Ti nanoparticles should be synthesized differently.  Selection of synthesis variables such 

as metal precursor concentration can influence nano-composite characteristics and 

subsequent capacity to remove both Cr(VI) and As(V). The highest pollutant removal 

capacity demonstrated for an iron infused sorbent was FeWBAX1-10%-acid, and for a 

titanium infused sorbent was TiWBAX1-10%. This work has shown: 

·  Nano-composite synthesis methods developed for GAC or SBAX cannot blindly 

be applied to WBAX. Synthesis methods should be optimized for compatibility 

with its unique functional groups and chemistry. 
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·  Infusion of Fe or Ti nanostructures does not significantly decrease the parent resin 

capacity for Cr(VI) removal, but does significantly increase the capacity for 

As(V) removal. TiWBAX has higher capacity for simultaneous removal of Cr(VI) 

and As(V) than FeWBAX, which is still higher than the other existing sorbents. 

·  Acid post-treatment is required to restore ion exchange capacity of tertiary amine 

functional groups on FeWBAX after exposure to high pH during nanoparticle 

precipitation.  

·  Lower precursor concentrations result in smaller size nanoparticles in FeWBAX 

and TiWBAX. Excessively high precursor concentrations result in higher metal 

contents but block pores and coat binding sites, resulting in lower treatment 

capacity. 

·  Oven hydrolysis time in titanium synthesis can be reduced without significant loss 

in metal content or pollutant removal capacity. 

·  Metal nanoparticles are dispersed throughout the resin, not coated on the exterior. 

·  Increasing total surface area is not directly related to increasing pollutant removal 

performance, but creating a pore size distribution that is accessible and useful for 

pollutant sorption. 
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 Fe Content  

Sample Gravimetric Acid Digest Relative Error 

FeWBAX1-10% 19.3% 19.9% 3.1% 

FeWBAX1-10%-Acid 5.2% 4.9% 5.8% 

FeWBAX2-10% 2.7% 2.6% 3.7% 

FeWBAX3-10% 3.3% 1.9% 42.4% 

FeSBAX-10% 7.2% 18.7% 160% 

Bayoxide E33 55.9% 59.4% 6.3% 

 

SI Table 5.1. Comparison of metal content determination methods. Fe content of 
FeWBAX was determined by acid digestion, but Ti content of TiWBAX was determined 
gravimetrically (due to insolubility in nitric acid). To verify the ability to compare results 
from the two methods, the Fe content of split samples was determined both ways. 
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Figure 5.1. Images of the synthesized sorbents. A) is the parent WBAX magnified 
in the silver epoxy. B) is an EDX image showing the location of Ti in the TiWBAX-
100%Ti. C) is an EDX image showing the location of Fe in the FeWBAX-10%. Inset 
light microscopy photographs are WBAX, TiWBAX-100%Ti, and FeWBAX-10% at 60x 
magnification respectively. 
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Figure 5.2. SEM images of TiWBAX1 synthesized with various metal precursor 
concentrations and the parent WBAX1 resin at 350,000x magnification, and FeWBAX1 
with or without acid post-treatment at 200,000x magnification. 
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Table 5.1. Metal Content of Synthesized Sorbents. The Fe or Ti compositional 
percentage of dry nano-composite sorbents synthesized with one of four parent resins and 
different metal precursor concentrations. 
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SI Table 5.2. Water Content of Synthesized Sorbents. The water compositional 
percentage of saturated nano-composite sorbents synthesized with one of four parent 
resins and different metal precursor concentrations. 
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SI Figure 5.1. Water content as a function of metal content for synthesized hybrid 
sorbents. Diamond symbols indicate sorbents based on WBAX1, square symbols indicate 
sorbents based on WBAX2, and triangle indicate sorbents based on WBAX3. Filled 
symbols indicate iron content as Fe, and empty symbols indicate titanium content as Ti. 
Increasing metal content correlates with decreased water content for the titanium 
embedded sorbents and iron embedded WBAX1. 
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Figure 5.3. Pore size distribution and total surface area of titanium nano-
composite WBAX using various precursor concentrations.  
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SI Table 5.3. Equilibrium batch test results. For Cr(VI) and As(V) removal 
capacity for all nano-composite synthesized sorbents is shown based on a single point or 
a full isotherm. For full isotherms, the observed Fruendlich isotherm parameters (K in 
(µmol/g)(L/µmol)1/n and 1/n) are shown. The Simultaneous Removal Capacity (SRC) is a 
weighted average of the two removal capacities as previously described (Chapter 4). 
Blank values were not measured. Zero values indicate no observable removal. Sorbents 
with multiple entries indicate multiple batches of sorbent were synthesized. 
 

  

Primary 
Variable Sorbent Name Data Set K 1/n r2 K 1/n r2 Ce (µM)

qCr 
(µmol/g)

qAs 
(µmol/g) SRC

WBAX1 Isotherm 28.52 0.44 0.91 0.00 0.00 0.00 2.0 38.6 0.0 0.0
WBAX1 Single Point 2.0 0.3 0.0 0.1
WBAX2 Isotherm 5.65 0.20 0.25 0.76 0.78 0.76 2.0 6.5 1.3 2.6
WBAX2 Single Point 2.0 0.2 0.1 0.1
WBAX3 Single Point 2.0 0.1 0.1 0.1
SBAX Single Point 2.0 0.2 0.1 0.1
TiWBAX1-100%-24Hr Isotherm 3.97 0.34 0.49 3.12 -0.03 0.02 2.0 5.0 3.1 5.2
TiWBAX1-50%-24Hr Isotherm 16.88 0.35 0.91 13.75 0.37 0.95 2.0 21.6 17.7 27.4
TiWBAX1-10%-24Hr Isotherm 21.23 0.35 0.70 10.82 0.18 0.42 2.0 27.0 12.3 22.4
TiWBAX1-10%-4Hr Isotherm 16.92 0.34 0.98 13.09 0.42 0.97 2.0 21.4 17.5 27.1
TiWBAX1-10%-8Hr Isotherm 19.70 0.43 0.70 13.96 0.49 0.64 2.0 26.6 19.7 31.6
TiWBAX1-10%-16Hr Isotherm 10.59 0.64 0.89 6.08 0.27 0.93 2.0 16.5 7.4 13.4
TiWBAX1-10%-24Hr-Acid Isotherm 15.56 0.43 0.96 10.21 0.57 0.89 2.0 20.9 15.1 24.5
TiWBAX1-10%-24Hr Isotherm 10.00 0.85 0.84 6.53 0.63 0.70 2.0 18.1 10.1 17.7
FeWBAX1-10% Isotherm 1.50 1.70 0.93 9.40 1.13 0.77 2.0 4.9 20.5 9.5
FeWBAX1-10%-Acid Isotherm 9.68 0.33 0.79 11.90 0.35 0.98 2.0 12.1 15.1 18.9
FeWBAX1-0% Single Point 2.0 3.7 0.2 0.4
FeWBAX2-0% Single Point 2.0 1.6 0.4 0.7
FeWBAX3-0% Single Point 2.0 2.3 0.7 1.4
FeWBAX1-0%-Acid Single Point 2.0 11.5 0.4 0.7
FeWBAX2-0%-Acid Single Point 2.0 7.6 1.7 3.3
FeWBAX3-0%-Acid Single Point 2.0 6.8 1.0 1.9
FeWBAX2-2% Isotherm 0.09 7.78 0.88 0.00 0.00 0.00 2.0 18.9 0.0 0.0
FeWBAX2-10% Isotherm 0.16 6.45 0.83 1.07 1.85 0.52 2.0 13.6 3.9 7.4
FeWBAX2-20% Isotherm 0.30 4.69 0.97 0.80 2.86 0.87 2.0 7.7 5.8 9.2
FeWBAX1-10% Single Point 2.0 0.1 0.1 0.1
FeWBAX2-10% Single Point 2.0 0.1 0.1 0.1
FeWBAX3-10% Single Point 2.0 0.1 0.1 0.2
FeSBAX-10% Single Point 2.0 0.1 0.2 0.2
FeWBAX1-10%-Acid Single Point 2.0 0.2 0.2 0.3
FeWBAX2-10%-Acid Single Point 2.0 0.2 0.2 0.3
FeWBAX3-10%-Acid Single Point 2.0 0.2 0.2 0.3
FeSBAX-10%-Acid Single Point 2.0 0.2 0.3 0.3
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Figure 5.4. Pollutant removal by three WBAX parent sorbents and Ti or Fe nano-
composite sorbents.  
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Figure 5.5. Equilibrium isotherm for three sorbents; WBAX1, WBAX1 with 
embedded iron nanoparticles, and WBAX1 with embedded iron nanoparticles plus an 
acid post-rinse. Performed in a simulated groundwater matrix with Cr(VI) and As(V) 
spiked at 2 µM. 
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Figure 5.6. Tertiary amine functional group on the surface of weak base anion 
exchange resin requires a proton to carry a charge. The exposure to strong base during 
synthesis of iron nanoparticles strips the proton and must be counteracted by an acid post 
rinse. 
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Figure 5.7. Equilibrium isotherm for titanium nanoparticle embedded WBAX 
synthesized using various precursor concentrations. Performed in a simulated 
groundwater matrix with Cr(VI) and As(V) spiked at 2 µM.  
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Figure 5.8. Pollutant removal capacity of five titanium nanoparticle embedded 
WBAX sorbents using 10% precursor solutions and various oven hydrolysis times.  
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Figure 5.9. Equilibrium pollutant removal capacity normalized to metal content 
for Ti nano-composite sorbents synthesized with three different metal precursor 
concentrations. Removal capacity at 0.2 µM pollutants calculated by Fruendlich isotherm 
parameters observed in simulated groundwater batch experiments.  
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CHAPTER 6 

REDUCING SUSTAINABILITY IMPACTS OF METAL NANOPARTICLE 

EMBEDDED ANION EXCHANGE RESINS USING ANTICIPATORY LIFE CYCLE 

ASSESSMENT 

ABSTRACT 

Nano-composite sorbents are an emerging technology for drinking water 

treatment of multiple pollutants. This novel technology can be developed in a proactively 

sustainable way when informed by anticipatory life cycle assessment. This allows 

comparison of synthesis methods and treatment options, identifies critical steps in their 

creation and use, and directs reduction of the environmental and human health impacts 

such that it becomes favorable compared to the existing technology. Here we use 

anticipatory life cycle assessment for nano-composite sorbents that have iron or titanium 

nanoparticles created in-situ within the porous structure of a weak base anion exchange 

resin (Fe-WBAX and Ti-WBAX). These provide targeted removal of hexavalent 

chromium and arsenic for drinking water. They are compared to the existing technology 

of using two different materials (anion exchange and granular ferric hydroxide) in a 

mixed bed (MB). 

The Ti-WBAX had the lowest environmental and human health impacts 

compared to Fe-WBAX and MB for nine TRACI categories. The Fe-WBAX had the 

highest. The synthesis phase contributes 50% – 100% of the total impacts for each 

category for each sorbent. The greatest opportunity to improve the Fe-WBAX synthesis 

was increasing the sorbent pollutant removal capacity through chemical re-
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functionalization of ion exchange groups to require less sorbent for treating the functional 

unit. This reduced impacts by 26% – 42%, making it favorable or equal with MB for six 

of nine categories. The greatest opportunity to improve Ti-WBAX is in reducing oven 

heating time for nanoparticle hydrolysis. Reducing heating time from 24 to 4 hours had 

only a small loss in sorbent capacity but reduced impacts by 3% – 31%. Future 

development of synthesis methods for nanocomposite sorbents should focus on 

optimizing sorbent capacity, decreasing heating energy demand, and efficiently reusing 

metal precursors and solvents. This study shows that benefits of treating drinking water 

do involve other environmental and human health tradeoffs, and that impacts associated 

with treatment are on the same order of magnitude as distribution pressurization. 
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1. INTRODUCTION 

Development of nanotechnology has led to many exciting applications for treating 

water to drinking standards. Nanoparticles have high surface area to mass ratio providing 

unique sorption, disinfection, and photocatalytic pollutant reduction abilities (Qu et al. 

2013), but on their own are difficult to remove from finished water after dosing. 

Composite sorbents have nanoparticles embedded in the porous structure of another 

sorbent (Du et al. 2013, Hu et al. 2015, Yamani et al. 2012). The parent sorbent provides 

mechanical strength for use in packed beds, attachment so nanoparticles are not lost into 

the bulk solution, and a beneficial elevated concentration gradient within the pores due to 

Donnan exclusion(Cumbal and Sengupta 2005, Zhao et al. 2011). These nano-composite 

sorbents can exhibit high removal capacity for multiple pollutants (Elton et al. 2013, 

Hristovski et al. 2008a, Sandoval et al. 2011, Sarkar et al. 2012). Continued technological 

progress of novel applications and abilities for nanocomposite sorbents is expected. 

Emerging technologies should be developed with an eye toward sustainably 

instead of relying upon costly mitigation after widespread adoption. Life cycle 

assessment (LCA) provides a framework to anticipate proactively the environmental and 

human health impacts of a technology as it is developed. Currently, the most common use 

of LCA in studying water is to quantify embedded energy in water supply and 

transportation (Plappally and Lienhard 2012, Stokes and Horvath 2006, 2011). It has 

been used with other emerging technologies to set performance metrics, such as hybrid 

cars (Hawkins et al. 2012), high speed rail(Chester and Horvath 2010), and photovoltaic 

energy (Wender et al. 2014). Anticipatory LCA of an emerging technology is challenging 

because of an inherent lack of data regarding technology improvements and production 
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scale-up, and one way to address the challenge is through use of prospective structured 

scenarios(Wender et al. 2014).  One other study has used LCA to set performance metrics 

for an emerging water treatment technology (Choe et al. 2015). This approach allows 

sustainability performance to be a design constraint instead of an afterthought.  

The goal of this paper was to inform sustainable development of nano-composite 

sorbents using anticipatory LCA. Critical processes in the environmental performance 

involved with the deployment of this emerging technology were identified. Multiple 

nanocomposite sorbents were compared from an environmental performance perspective, 

and technology development scenarios were explored to identify what is required to 

outperform traditional sorbents. It demonstrated how anticipatory LCA can be used to 

improve product design and development. The present study is unique because it informs 

selection between treatment options, and because it studies nanocomposite sorbents. 

This paper will focus on two nano-composite sorbents composed of metal oxide 

nanoparticles inside anion exchange resin. The nanoparticles are created in-situ made of 

either iron (Fe) hydroxide or titanium (Ti) dioxide. These are selected for comparison 

because Ti nanoparticles are hydrolyzed using heat and Fe nanoparticles are precipitated 

chemically. Previous studies have established synthesis protocols for Fe embedded 

(Hristovski et al. 2008a) or Ti embedded (Elton et al. 2013) anion exchange resins. In 

Chapter 5, these synthesis procedures were applied to weak base anion exchange resins 

(Fe-WBAX and Ti-WBAX). This study will provide critical information to inform 

technology development, quantify environmental impacts of their use, and determine 

which of the two resins is superior in terms of environmental performance. 
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The Ti and Fe nano-composite sorbents made with WBAX are useful to provide 

simultaneous treatment of chromium (Cr) and arsenic (As). These are prevalent 

groundwater pollutants that are challenging to remove at low concentrations. Cr is an 

oxidized metal for which California recently enacted an maximum contaminant level 

(MCL) of 10 µg L-1. One of the leading treatment technologies is anion 

exchange(Brandhuber et al. 2004a). The national MCL for arsenic (As) was lowered to 

10 µg L-1 in 2006 due to a variety of human ailments including cancer of the bladder, 

lungs, and skin. The leading treatment processes is adsorption to iron oxides(Speital et al. 

2010). Combining metal oxide and anion exchange into a single composite sorbent 

provides targeted removal capacity for both pollutants of interest. 

The evaluation of these new hybrid resins were compared to the environmental 

impacts of using the existing technology. Standard practice would otherwise be to use 

two separate sorbents, one specialized to remove one pollutant and the other sorbent 

specialized for the other pollutant. These two sorbents used together could be configured 

either in two separate packed bed reactors that the water passes through in series, or 

mixed together into a single larger reactor. This treatment option is referred to as Mixed 

Bed (MB). The assumed specialized sorbents anion exchange (WBAX) for Cr removal, 

and a metal oxide (MO) sorbent for As removal. 

2. METHODOLOGY 

The environmental impacts of two metal oxide infused weak base anion exchange 

resins were assessed via comparative, attributional life cycle assessment (LCA). Two 

scenarios were included for each sorbent; an existing protocol scenario using established 
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protocols meant to inform how the synthesis procedure can be improved, and an 

improved technology scenario demonstrating the hybrid sorbents can outperform existing 

technology. The existing technology of using two separate specialized sorbents in a 

mixed bed was analyzed for a comparative benchmark. Impacts of pressurizing the 

system were also analyzed for anchoring and comparison to previous studies.  

First, a functional unit was defined to compare the treatment options. Next, the 

system boundary was defined, which enabled the life cycle inventory to be compiled. 

This inventory is a list of all material and energy inputs into and out of the system 

boundary. The quantities of these inputs were scaled according to the functional unit. 

Finally, the environmental impacts associated with the line items from the inventory were 

assessed. This was done using impact factors that convert mass of an inventory item into 

midpoint environmental impact equivalents that, in turn, may be summed to give total 

impact associated with each product. This approach enabled comparison of the two 

sorbents from an environmental standpoint, as well as identifying phases of the sorbent 

life cycle with the largest potential for environmental improvement. 

2.1 Functional Unit 

The functional unit for this study was 20 million gallons (MG) of drinking water 

treated to an acceptable level. This represented the annual average domestic water use of 

500 people (110 gallons capita-1 day-1). An acceptable level of use characteristics such as 

fines lost, chemical stability, and resin durability was assumed to be met by every 

treatment option. 
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In order to fairly compare disparate pollutant removal capacities between the 

three treatment options it was requisite to define a raw water quality and treated water 

quality goal. This study assumed a raw water quality of 20 µg Cr L-1 and 20 µg As L-1. 

These levels were sufficiently high that treatment would be required beyond blending 

with uncontaminated wells. The assumed water treatment quality goal was 8 µg Cr L-1 

and 8 µg As L-1, which provided a margin of safety beyond the federal mandated 10 µg 

As L-1 maximum and California state mandated 10 µg Cr L-1. It was therefore equivalent 

to think of the functional unit as a mass of sorbent required to remove 12 µg Cr L-1 and 

12 µg As L-1 from 20 MG of water. The mass of sorbent included in the inventory was 

therefore the mass required to treat a volume of water defined by the functional unit 

keeping both pollutants below the defined limit. A low capacity to remove either 

pollutant would result in an increased mass of resin considered. 

The capacity of each sorbent to remove each pollutant for the existing protocol 

and improved protocol scenarios was determined in Chapter 5. Following the original 

synthesis procedures, the Fe-WBAX has an estimated removal capacity of 490 µg Cr g-1 

and 172 µg As g-1 at the pollutant concentration of interest. Therefore treating the 

functional unit worth of water would require 1,800 kg of sorbent if determined by Cr 

capacity or 5,300 kg if determined by As capacity. The larger was selected since it would 

be unacceptable to keep using the resin after As capacity was exhausted even if it was 

still removing Cr. The improved synthesis method for FeWBAX yielded a sorbent with 

300 µg Cr g-1 and 510 µg As g-1 removal capacity. It was therefore limited by Cr capacity 

and requires 3,040 kg of sorbent to treat the functional unit worth of water. The original 

Ti-WBAX had 630 µg Cr g-1 and 600 µg As g-1 removal capacity requiring 1,500 kg 



  146 

sorbent. The improved TiWBAX had 510 µg Cr g-1 and 500 µg As g-1, requiring 1,800 kg 

sorbent. The WBAX had a Cr capacity of 310 µg Cr g-1 requiring 2,900 kg of sorbent to 

treat the functional unit. Another study found the MO had an As capacity of 280 µg g-1 

((Westerhoff et al. 2005)) requiring 3,200 kg to treat the functional unit. The MB option includes 

both the 2,900 kg of WBAX and the 3,200 kg of MO. 

2.2 System Boundary 

This LCA was unique because it follows the life cycle of the treatment product 

itself instead of the water. The evaluated system boundary had three principle phases: 1) 

Synthesis, 2) Use, and 3) Disposal. Figure 6.1 depicts the system boundary.  
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Figure 6.1. The system boundary includes the synthesis of the water treatment 
material by the original synthesis method, the energy required to overcome headloss 
during use, and landfill disposal after exhaustion. It excludes (greyed boxes) any impacts 
from material transport and water transport before or after treatment, as these are highly 
sensitive to assumptions on system location and not dependent on the treatment method 
itself. 
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2.2.1 Synthesis Phase. The methods for synthesis of the hybrid resins have been 

previously described (Elton et al. 2013, Hristovski et al. 2008a), and proposed 

modifications are described in Chapter 5. They each required inputs of the parent ion 

exchange resin, a precursor solution consisting of a high concentration of aqueous metal, 

and some post treatment chemicals. The Fe-WBAX used chemicals like methanol and 

sodium hydroxide to precipitate the metals, whereas the Ti-WBAX used heat-induced 

hydrolysis that expends electricity. 

The original synthesis procedure for Fe-WBAX used hydroxide and has no acid 

post-rinse to restore the ion exchange capacity of the WBAX, resulting in a sorbent with 

little pollutant removal ability. The improved synthesis procedure included an acid post 

rinse to increase sorbent capacity. This added environmental impacts from the acid, but 

greatly reduced the mass of sorbent needed to treat the functional unit and is a net benefit. 

The original synthesis procedure for Ti-WBAX called for 24 hours of oven heating to 

hydrolyze the Ti nanoparticles. The improved synthesis scenario used 4 hours of oven 

heating with only little drop in pollutant removal ability. 

The Ti-WBAX was heated in a Cole Palmer StableTemp 374B laboratory oven 

and electricity demand measured using a DFE Kill-a-Watts EZ power monitor. Set at 

80°C, the oven consistently used 165 watts over a 72 hr monitoring period. This is noted 

to be much lower than the manufacturer power rating of 800 watts. Heating for 24 hours 

therefore demanded 4.0 kW hr for each liter of resin. It is recognized that large scale 

production would likely utilize more efficient oven packing and further reduce the energy 

demanded. 
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2.2.2 Use Phase. The principle inventory of the use phase was the energy required 

to pump water through the resin. This was computed using headloss per bed depth of 5.2 

ft ft -1 as reported from the parent resin product specification sheets (Rohm & Haas 2008). 

The headloss through the nano-composite sorbents was assumed to be the same as the 

parent resin, which was reasonable since the embedded nanoparticles do not add exterior 

surface friction. Only intraparticle mass transport would be affected, which is not related 

to advective mass transport. The main source of difference for energy required by the 

treatment options stemmed from different masses of sorbent required, such that higher 

mass of sorbent required more energy to pump through. 

Results from the treatment option analysis were anchored to the amount of energy 

required to pressurize the water distribution system at the treatment vessel. Energy for 

pumping from the source or after treatment were not considered as these would be highly 

dependent on system location and not the choice of treatment material. 

The bulk weight of moist resin is 1.1 kg per liter (Rohm & Haas 2008), which was 

used to convert the required mass of resin calculated in Section 2.1 to a volume. The 

contact vessel containing the sorbent was assumed to be cylindrical with an aspect ratio 

of 3. It was more reasonable to assume a constant aspect ratio than constant diameter to 

stay within typical design parameters since a larger volume of resin would likely be used 

in a larger diameter vessel to avoid an overly tall vessel. The original Fe-WBAX vessel 

was therefore estimated to be 4.2 feet in diameter and 12 feet tall. The original Ti-WBAX 

vessel was 2.7 feet in diameter and 8.2 feet tall. The MB vessel was 4.4 feet in diameter 

and 13 feet tall. 
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Pump power demand was estimated with the vessel dimensions according to 

Equation 2. 

 P=Q �  g H � -1 (2) 

where P was pump power in kW, Q was water flow rate in gallons min-1, �  was water 

density in lb ft-3, g was gravitational acceleration in ft s-2, H was headloss through the 

resin in ft, and �  is pump efficiency. The flow rate defined in Section 2.1 was 20 MG per 

year, equivalent to 38 gallons min-1. Water density was 62.4 lb ft-3, and gravity was 32.2 

ft s-2. Headloss in the resin bed at a loading rate of 10 gal min-1 ft-2 is 2.25 psi per foot of 

bed depth (Rohm & Haas 2008), equivalent to 5.19 feet of head per foot of bed depth. 

Pump efficiency was assumed to be 60%. Using the separate bed depths of the three 

treatment options yielded required pump power for Fe-WBAX as 0.77 kW, 0.51 kW for 

Ti-WBAX, and 0.81 for MB. These were equivalent to 6,800 kW hr for Fe-WBAX, 

4,500 kW hr for Ti-WBAX, and 7,100 for MB over the course of one year. 

2.2.3 Disposal Phase. It is not currently understood how to regenerate WBAX 

used for Cr(VI) treatment (McGuire et al. 2007), so the sorbents were assumed to be 

single use. As soon as the bed exceeded its removal capacity for either pollutant, it was 

considered exhausted and replaced. The spent sorbents, comprised of the WBAX resin 

and the metal, were landfilled. This study assumed disposal to a sanitary class III landfill, 

and future work will determine if the potential hazardous waste classification would 

require specialized disposal accommodations which cause alternate environmental 

impacts. 

2.2.4 Exclusions from System Boundary. The system boundary excluded a few 

notable items from the life cycle inventory. The inventory did not include materials of the 
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treatment plant itself such as piping, valves, and contactor vessels. These materials would 

be required for physical operation of the water treatment technology, but were only 

loosely attributable to the choice of sorbent itself. Previous studies have indicated 

environmental impacts from treatment plant construction range between negligible 

(Raluy et al. 2005) to 4 – 9% (Stokes and Horvath 2006).  

No pH control chemicals were included because the sorption capacities for each 

sorbent were reported for ambient pH. Each of the treatment options would perform 

better at depressed pH, but the relative benefit was assumed the same for each option and 

therefore excluded from this comparison. 

Transportation of the resin was excluded across the life cycle, including moving 

the parent resin to the place of manufacture, transporting the hybrid resin to the water 

treatment site, and hauling exhausted resin away from the site. This is because impacts 

would vary widely based on an arbitrary assumption for treatment location, and they 

would not vary greatly between scenarios. Prior studies found that material delivery for a 

water treatment facility contributed less than 0.6% of total emissions (Stokes and Horvath 

2006) and less than 2% of total global warming equivalents (Stokes and Horvath 2011). 

Impacts associated with the water supply are excluded. Items such as well 

pumping, source water depletion, and distribution pumping are excluded. This LCA 

focused on differentiating treatment strategies, and impacts from those items would not 

vary. 
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2.3 Environmental Impacts 

Environmental impacts were estimated by multiplying the life cycle inventory 

items with their respective impact factors. Impact factors were from the EcoInvent 

database version 2.2 (SCLCI 2010). Impact factors estimate the total environmental 

impacts that a single inventory item has normalized to a unit (e.g. mass) in terms of 

equivalent risk. It was important to match each inventory line item identified in the 

system boundary to a representative impact factor.  

An impact factor for a general anion exchange resin was used (Anion Exchange 

Resin – Synthesis). It represents a strong base anion exchange resin made of polystyrene, 

functionalized with chloromethyl methyl ether and trimethylamine, and 50% moisture 

content. The three treatment options being studied used a weak base anion exchange resin 

made of phenol-formaldehyde polycondensate, had undergone an unknown 

functionalization, and had 60% moisture content (Rohm & Haas 2008). Though not exact 

matches, it was deemed appropriately representative for an impact factor since they are 

both organic polymer structures with some form of functionalization and high moisture 

content.  

The chemical inventory items correlated closely with impact factors. Sulfuric 

acid, ferric chloride, sodium hydroxide, methanol, and sodium chloride each had impact 

factors with matching CAS numbers and descriptions. The titanium oxysulfate precursor 

was matched with the impact factor for titanium dioxide via sulfate production process. 

Electricity impact factors were a supply mix, medium voltage, at grid, with average 

United States production data.  
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The impact assessment categories to be evaluated were defined by TRACI 

(USEPA 2014). This system is of interest as it was developed in the United States and 

covers a range of environmental and human health midpoint impacts. Some of the impact 

categories were non-cancer toxicity, ocean acidification, and global warming potential.  

2.4 Data Uncertainty Analysis 

Due to a lack of published statistical analysis in the Ecoinvent database, data 

uncertainty is estimated using the approach outlined in the Ecoinvent manual 

(Frischknecht et al. 2007). First, six sets of data were qualitatively evaluated in a pedigree 

matrix shown in Table 6.1. Anion exchange resin, methanol, and electricity were each 

evaluated for inventory and for impact factors because these items contribute a majority 

of final impacts. These scores were converted to uncertainty factors and combined to 

produce a squared geometric standard deviation for each data set. This statistical 

information was applied to produce a lognormal distribution for each of the three 

inventory items and three impact factors. Monte Carlo analysis (1,000 simulations) was 

performed (Lumina Analytica v4.6) with the probabilistic information, with the other 

contributions remaining deterministic, to estimate the total magnitude of the data 

uncertainty.  
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Table 6.1. Data Quality Assessment. The inventory and impact assessment factor 
quality for the three highest contributing items were analyzed. A score of 1 represents the 
data used has high reliability, and 5 represents low reliability. These are converted to 
uncertainty factors and combined to produce a squared geometric standard deviation. 
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3. RESULTS AND DISCUSSION 

3.1 Life Cycle Inventory 

The life cycle inventory was first compiled for each treatment option, and scaled 

to the mass of sorbent required to treat the functional unit (20 million gallons treated 

water). Figure 6.1 shows the items included in this inventory for the original synthesis 

methods. The original iron nanoparticle-infused anion exchange resin (Fe-WBAX) had a 

limiting pollutant capacity of 170 µg As g-1, requiring 5,300 kg of resin to treat the 

functional unit. The synthesis phase of this resin included high chemical usage. The 

energy required during use phase equaled the headloss through a packed bed of the 

required mass of resin. This totaled 65 feet of headloss to deliver the functional unit 

requiring 6,800 kW hr to overcome over one year. Disposal after single use was to a 

landfill. The improved FeWBAX required only 3,000 kg of resin and 5,600 kW hr 

pumping energy. 

The original titanium infused-anion exchange resin (Ti-WBAX) had a limiting 

pollutant capacity of 600 µg As g-1, requiring 1,500 kg of resin to treat the functional 

unit. The synthesis phase of the resin required energy to heat an oven for hydrolysis. Heat 

required for the oven to reach 80°C for 1 hour was measured as 165 W, resulting in 5,400 

kW hr demand for a scaled-size oven to heat for 24 hours. Pumping during use phase had 

to overcome 43 feet of headloss, requiring 4,500 kW hr of pump energy. Disposal after 

single use was to a landfill. Improved TiWBAX used only 4 hours of oven heating. The 

required mass of resin increases slightly to 1,800 kg sorbent, but the heating energy drops 

to 1,090 kW hr. 
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For the mixed bed treatment option, the parent WBAX resin had a removal 

capacity of 310 µg Cr g-1 requiring 2,900 kg of resin to remove just the Cr from the 

functional unit. In addition, the metal oxide had 280 µg As g-1 sorbent of arsenic removal 

capacity, requiring 3,200 kg sorbent to treat the arsenic. These two sorbents together 

created 68 feet of headloss, requiring 7,100 kW hr of pump energy to overcome. Disposal 

after single use was to a landfill. 

The results of the three treatment options are anchored against the impact of 

pressurizing the system to a baseline pressure that is independent of the treatment option 

used. The pressure provided was 80 lb in-2 at the effluent of the treatment vessel, ignoring 

any friction losses that would subsequently occur in distribution piping. This required 

19,000 kW hr of pump energy. 

3.2 Life Cycle Impact Assessment 

TRACI midpoint environmental impacts associated with all life cycle inventory 

items were estimated by use of impact factors obtained from EcoInvent v2.2 (SCLCI 

2010). The impacts of all life cycle phases for each sorbent in each impact category are 

shown in Figure 6.2. These impacts were normalized to the sorbent option with the 

highest impact for ease of comparison.  
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Figure 6.2. Total impacts of each treatment option anchored to pressurizing the 
treatment vessel and normalized to the option with the highest impact.  
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Original Fe-WBAX had the highest impacts of the treatment options for all 

impact categories. Its environmental impacts were 6,500 moles H+-equivalents for ocean 

acidification potential, 9,000 kg 2,4 dioxane-equivalents for ecotoxicity, 13 kg N-

equivalents for eutrophication potential, 47,600 kg CO2-equivalents for climate change 

potential, 0.9 kg CFC-equivalents for ozone depletion potential, and 66 kg NOx-

equivalents for photochemical oxidation (smog) potential. Its human health impacts were 

89 kg benzene-equivalents for human carcinogenicity potential, 137,000 kg toluene-

equivalents for human non-carcinogenic toxicity potential, and 25 kg PM2.5-equivalents 

for human respiratory effect potential. 

The improved Fe-WBAX synthesis scenario with increased sorption capacity 

reduced impacts by 26% – 42% compared to the original scenario. These improvements 

made the impacts of Fe-WBAX lower than MB for ecotoxicity potential and human 

carcinogenicity potential, about equal (within 5%) with MB for four categories, and 

remained 10 – 24% higher than MB for the other three categories. These drastic 

reductions in impacts demonstrate the improved synthesis process was successful. 

The impacts from the original Ti-WBAX ranged from 29% – 66% of those for the 

original Fe-WBAX. Both the original and improved Ti-WBAX scenarios had lower 

impacts than both Fe-WBAX scenarios and the MB for all impact categories. The 

improved Ti-WBAX reduced total impacts by 3% – 31% compared to the original 

scenario, except for eutrophication potential that increased by 5% and ozone depletion 

potential that increased by 20%. This demonstrates nanocomposite sorbents can 

outperform traditional treatment methods, and that titanium dioxide nano-sorbents may 

be preferable to those of iron hydroxide. 
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Impacts from pressurizing ranged from 14% – 100% of the highest, except for 

ozone depletion potential for which it was negligible. Besides that category, the 

pressurizing results were on the same order of magnitude as the five treatment options. 

This means that the treatment stage is a non-insignificant contributor to the total 

environmental impacts of the urban water cycle. 

3.2.1 Phase Analysis. To understand the sources of the observed differences the 

results were next broken down by phase. Figure 6.3 shows the impacts of each treatment 

option divided by contribution from the synthesis, use, and disposal phases. For the 

original Fe-WBAX resin the synthesis phase contributed 57% - 100% of the total impacts 

for each impact category. The use phase contributed 0% - 37% to each category, and the 

disposal phase contributed 0% - 17%. For the Ti-WBAX resin the synthesis phase 

contributed 62% - 100% of the total impacts for each impact category. The use phase 

contributed 0% - 38%, and the disposal phase contributed 0% - 13% for each category. 

The two improved sorbent scenarios followed similar trends. For mixed beds, the 

synthesis phase contributed 50% - 100% of the total impacts for each category. The use 

phase contributed 0% - 50%, and the disposal phase contributed 0% - 15%. For pumping, 

all impacts occurred exclusively in the use phase by definition. 
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Figure 6.3. Relative contribution of each phase to total impacts for A) original Fe-
WBAX, B) original Ti-WBAX, and C) Mixed Beds.  
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It is very evident that the synthesis phase was the main impact contributor for all 

life cycle phases and all treatment options. This was most evident in the case of ozone 

depletion, where over 99.9% of the calculated impact for any option happened during 

synthesis. This is due almost exclusively to the production of the parent anion exchange 

resin, which had an impact factor four orders of magnitude higher than that associated 

with any other inventory item. The production method for polymers often uses 

tetrafluoroethylene and chlorofluoromethane, which each have extremely high ozone 

depletion potential. This illustrated an interesting tradeoff in water treatment that uses 

polymer-based materials like ion exchange or coagulants. While the treatment was 

intended to lower human health risks from exposure to drinking water pollutants, it came 

at a high ozone depletion potential cost. Their use provided short-term human benefit to a 

localized population served by the water system, but contributed to a long-term regional 

environmental problem. 

The other synthesis impacts associated with the Fe-WBAX resin synthesis were 

primarily from the cumulative impact of the chemicals used to precipitate the iron 

hydroxide nanoparticles. These chemicals included methanol and hydroxide, which are 

energy intensive to produce. 

 The synthesis impacts associated with the Ti-WBAX stemmed primarily from the 

energy required to heat the resin in an oven hydrolyzing the titanium dioxide 

nanoparticles. That is why large improvements in environmental performance were 

gained by reducing the heating time. These impacts were also sensitive to assumptions 

made about the oven utilization, i.e. the amount of resin heated per volume of oven. This 

is an area where both environmental performance and economic costs could be improved 
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if further efficiencies are found during commercialization and production scaling since 

the manufacturers can reduce electricity costs by filling the ovens to capacity.  

Impacts associated with the Use Phase were the lowest for original Ti-WBAX 

compared to the Use Phase for other treatment options. They were 52% higher for the 

original Fe-WBAX and 60% higher for mixed bed. This was due to the larger mass of 

sorbent required for those options, and subsequently higher headloss that had to be 

overcome by pumping. Packed bed columns were assumed to maintain a 1:3 diameter to 

height aspect ratio. This means that even though more than three times as much volume 

of original Fe-WBAX resin was required to treat an equivalent volume of water as the 

original Ti-WBAX resin, the bed depth only increased by 52% with the rest of the 

volume compensated by increased column diameter. Different assumptions about bed 

configuration would alter the results, but the total impacts would still be relatively small 

compared to synthesis impacts. 

Impacts associated with the disposal phase were very small for any of the 

treatment options. This analysis assumed disposal after single use to a landfill. It 

excluded any impacts associated with transporting the sorbent to the landfill. It also did 

not consider any impacts associated with special handling required for possible hazardous 

waste or radioactive waste classification. Previous study on WBAX suggests that spent 

sorbent would not be classified as toxic waste by Toxicity Characteristic Leaching 

Procedure (TCLP) or the Resource Conservation and Recovery Act (RCRA), but may be 

toxic waste as classified by Soluble Threshold Limit Concentration (STLC) and Total 

Threshold Limit Concentration (TTLC) (Najm et al. 2014). There are mixed results for if 

the spent sorbent would classify as Technologically Enhanced Naturally Occurring 
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Radioactive Material (TENORM) (McGuire et al. 2007, Najm et al. 2014), possibly 

dependent on how much uranium co-occurs in the source water. Either way, further 

exploration of this possibility was not considered because the disposal impacts relative to 

synthesis impacts were small, so the remaining focus turned to reducing impacts in the 

synthesis phase. 

3.2.2 Hotspot Analysis. Next, further understanding of the impacts associated with 

the synthesis phase for the original sorbents was explored. Figure 6.4 compares the 

impacts for three midpoint indicators (global warming potential, human non-carcinogenic 

toxicity, and ocean acidification potential) delineated by each inventory item. 
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Figure 6.4. Hotspot analysis of original FeWBAX, original TiWBAX, and mixed 
bed showing impact contributions of individual inventory items to A) global warming 
potential, B) human non-carcinogenic toxicity potential, and C) ocean acidification 
potential.   
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The single inventory item making the largest contribution to impacts associated 

with original Fe-WBAX was from the parent anion exchange resin (20,100 kg CO2-

equivalents, 42% of the total in the case of climate change potential). This was pursuant 

to the high mass of resin required to treat an equivalent volume of water. The next 

highest impact was from methanol (11,200 kg CO2-equivalents, 23% of the total in the 

case of climate change potential), which is an organic solvent and has high carbon 

footprint. The original Ti-WBAX used less parent anion exchange resin but still had 

significant impact associated with it (5,800 kg CO2-equivalents, 34% of the total climate 

change potential). It also used less titanium precursor than the Fe-WBAX uses iron 

precursor, but the carbon footprint was nearly equivalent (1,400 and 1,500 kg CO2-

equivalents, respectively). Another primary synthesis impact associated with the Ti-

WBAX was the electricity required for oven heating (4,200 kg CO2-equivalents, 25% of 

the total climate change potential). The overall synthesis impact of TiWBAX was smaller 

than FeWBAX due to higher capacity for pollutant removal and not using methanol or 

other chemicals. 

The acidification potential and human toxicity impacts associated with each 

sorbent broken down by inventory item showed similar overall trends as the global 

warming potential. The largest impacts were from the heating and pumping electricity 

and the parent anion exchange resin. 

3.2.3 Proposed Impact Factors. So that future studies can simply use the results 

of this study, impact factors associated with the Fe-WBAX and Ti-WBAX are presented 

in Table 6.2. These were found by summing the total impacts for each category by phase 

and normalizing to 1 kg of resin. For consistency with data observed in the EcoInvent 
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database, the synthesis and disposal phases were presented separately with the use phase 

omitted.  
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Table 6.2. Proposed impact factors for 1 kg of Fe-WBAX and Ti-WBAX broken 
up by synthesis phase and disposal phase.  
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3.3 Reducing Environmental Impact of Hybrid Sorbents 

A primary goal of this study was to proactively improve the synthesis method of 

hybrid sorbents by applying the LCA results to reduce the overall environmental impact. 

Energy associated with oven heating time to hydrolyze the titanium nanoparticles inside 

the TiWBAX was a very large contributor to environmental impacts that could be 

reduced. Previous synthesis protocol called for 24 hours of hydrolysis time(Elton et al. 

2013). Here we compare pollutant removal performance of TiWBAX given 24 hours, 16 

hours, 8 hours, and 4 hours of oven heating time. The remaining synthesis procedures 

were unchanged (same parent weak base anion exchange resin, 10% metal precursor 

concentration). Reducing the oven heating time to 4 hours reduces the climate change 

potential by 8%, human toxicity potential by 16%, and ocean acidification impact by 

20%. 

Figure 6.5 shows the pollutant removal performance of each of these sorbents. 

This was determined by methods used in Chapter 5. Briefly, 90 mg dry sorbent was 

placed in 500 mL of synthetic groundwater (NSFI/AN 2007) spiked with 2 µM 

hexavalent chromium and 2 µM pentavalent arsenic at pH 8. The pollutant removal 

percentage was the difference in pollutant concentration measured by inductively coupled 

plasma mass spectrometry (ICP-MS) before and after a 7 day equilibrium time. 
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Figure 6.5. Effect of hydrolysis time on pollutant removal percentage of 
TiWBAX. Synthetic groundwater dosed with 180 g L-1 sorbent was spiked with 2 µM 
hexavalent chromium and 2 µM pentavalent arsenic at pH 8 and allowed to equilibrate 
for 7 days. 

 

 

 

  



  170 

Decreasing the oven hydrolysis time from 24 hours to 4 hours increased 

chromium removal from 66% to 88%, and increased arsenic removal from 56% to 77%. 

It was observed that pollutant removal capacity was not significantly inhibited by 

reducing oven hydrolysis time to synthesize the TiWBAX. While it may have been 

possible that the reduced time increased removal performance, more detailed 

performance testing should be carried out to validate that claim. This did clearly show 

that the results of this study can be used to reduce environmental impacts without 

forfeiting water treatment performance efficiency. This corroborates reduced oven 

heating time as the improved scenario for TiWBAX in this study. 

The original FeWBAX synthesis procedure calls for rinsing with hydroxide, 

which causes great loss in ion exchange capacity for the parent WBAX as further 

discussed in Chapter 5. This loss means more than three times additional sorbent was 

required for the original FeWBAX scenario and the greatest potential for improving the 

environmental performance was improving pollutant removal capacity to reduce the mass 

of sorbent required. The improved FeWBAX scenario included an acid-post rinse in the 

sorbent synthesis to counteract the effects of the hydroxide rinse and restore ion exchange 

capacity. This added some environmental impact associated with the production of acid, 

but greatly reduced the mass of sorbent required, providing a net reduction in climate 

change potential by 39%, human toxicity potential by 37%, and ocean acidification 

impact by 28%. 

Other opportunities to further improve on the environmental performance of the 

hybrid sorbents included reducing the demand for metal as well as organic solvents. 

Efficient reuse of metal precursor solution would give large gains in sustainability 
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performance, and future development of hybrid sorbents should focus on reducing oven 

heating, increasing sorbent capacity, and reuse of precursor solution. 

3.4 Data Quality Assessment 

Data uncertainty stems from heavy reliance on the emission factors for TRACI 

impacts published in the EcoInvent database that unfortunately did not include any 

statistical analysis such as standard deviation. They were almost all assembled from 

sources in Europe, except for electricity generation (pumping, heating) were US data was 

available. All factors were used at plant, as desired, and did not include transportation to 

synthesis location or water treatment location. Good correlation between inventory items 

and described factors was generally found. For instance, specific chemicals with 

matching CAS numbers were identified in the database. One general anion exchange 

resin was used from the database, but synthesis procedures can vary widely and develop 

rapidly over time lending to low reliability. Titanium and iron ore impact factors also 

vary based on production process, and using a single data point has low reliability. The 

metal oxide sorbent used for water treatment in the mixed bed option is likely more 

highly processed than the metal oxide impact factor assumed by this study, and adding 

additional processing steps would serve to increase the environmental impacts associated 

with that treatment option.  

A source of parameter uncertainty is the assumed pollutant removal capacity for 

each sorbent. Fruendlich isotherm parameters were used to calculate pollutant removal 

capacity at 0.4 µM from synthetic groundwater. However this capacity can vary greatly 

depending on the influent water quality and the way it is used. For example, removal 
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capacity for any sorbent is generally higher if usedion packed bed flow through column 

mode, which would presumably be the case here. However only the improved sorbents 

were tested in the more time consuming column mode, so for the sake of consistency 

between sorbents, equilibrium capacities were used. Using column mode capacities 

would likely have the effect of scaling impacts from all sorbents downward. Comparative 

trends between them would likely hold, while the absolute values of impacts would 

decrease. 

The data uncertainty associated with this study was estimated using the above 

qualitative analysis and the quantitative method previously described to estimate a 

distribution for the inventory and impact assessment factor of the three items that most 

strongly impacted final results. The standard deviation of total global warming potential 

was found to range from 121% – 154% of the median value for the five sorbent options 

analyzed. The standard deviation of the total non-carcinogenic potential ranged from 94% 

– 143% of the median value for the five sorbent options. This range of variation is similar 

in scale for each treatment option, but is larger than the differences observed between 

them. This makes is hard to make recommendations between the options. Large 

uncertainty is inevitable with anticipatory LCA (Wender et al. 2014), but it does not 

interfere with other valuable findings like relative magnitude of the novel technologies 

compared to the existing, the hotspot analysis, and decreasing the overall impacts by 

using these results to improve the nanocomposite sorbent formulation. 
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4. CONCLUSIONS 

This study demonstrates the value of using anticipatory life cycle assessment to 

improve a technology during its development. The analysis was able to proactively 

identify the largest contributors to environmental impacts associated with creating and 

using nanocomposite sorbents for groundwater treatment, and therefore inform improving 

their synthesis protocol. The improved Fe-WBAX had 26% – 42% lower impacts than 

the original, and the improved Ti-WBAX reduced most impacts by 3% – 31%. In the 

case of Fe-WBAX, the improvement brought the novel sorbent on-par with the existing 

technology in terms of environmental and human health impacts, whereas it was not a 

viable option under the original formulation. 

Electricity use for oven heating during the synthesis of Ti-WBAX is one of the 

largest contributor to environmental impacts and one of the largest opportunities for 

reducing those impacts. Technology developers can help mitigate these impacts by 

focusing research efforts on reducing required hydrolysis time, and future commercial 

manufacturers can help mitigate these impacts through utilizing high efficiency ovens 

and verifying full use of oven capacity each time a batch is synthesized. The Fe-WBAX 

can be environmentally preferable to mixed beds when sorbent capacity is optimized to 

require less sorbent for treatment. This can be accomplished through adding sulfuric acid 

and sodium chloride post treatments to the synthesis process, which have small impacts 

compared to the parent anion exchange resin itself. Technology developers can mitigate 

impacts by optimizing tradeoffs between using chemical to maximize pollutant removal 

capacity and reducing the total mass of resin needed to treat a given volume of water. 
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Commercial manufacturers can help mitigate impacts through efficient reuse of metal 

precursor solutions and the associated solvents. 

Second, this study demonstrates that using nanocomposite sorbents for 

simultaneous treatment of multiple pollutants is a valuable technological option 

compared to the existing approach of using mixed beds or beds in series. Environmental 

and human health impacts of the improved recipe Ti-WBAX nanocomposite sorbents are 

48% – 74% of those of mixed beds. The traditional sorbents used in the mixed bed option 

have removal capacity for only one pollutant, and therefore require more mass with 

higher impacts to remove multiple contaminants. Even for the Fe-WBAX where impacts 

were similar to mixed beds (86% – 120%), a single process performing multiple tasks 

may require less capital equipment and be easier to operate. The ability to remove 

multiple pollutants will become more valuable to water treatment systems into the future 

as water supplies dwindle and require depending on lower quality sources, and as 

regulatory agencies enact tighter limits on increasing number of contaminants. 

Lastly, this study calls attention to tradeoffs in making water related decisions. 

Water treatment is usually done in an effort to reduce human exposure to negative health 

effects. While lower exposure to contaminants such as Cr and As does reduce these risks, 

employing additional treatment technologies will add other environmental impacts. 

Tradeoffs between human health risks and environmental impacts should be understood 

in considering new water quality strategies beyond only performance efficacy and cost. 

By extension, water treatment is a non-negligible contributor to the total environmental 

footprint of the urban water cycle. 
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CHAPTER 7 

EXPORTING CANCER AND OTHER HEALTH RISKS BY INSTALLING 

WELLHEAD DRINKING WATER TREATMENT 

ABSTRACT 

Water treatment reduces health risks to the population drinking the water, but also 

requires materials and energy, the production of which emits pollutants that increase 

health risks. This work explored the tradeoff between the human carcinogenic and non-

carcinogenic health risks involved with water treatment by comparing dose-response 

curves to the indirect burden of providing that treatment using life cycle assessment. It 

studied a representative wellhead sorbent groundwater treatment system removing 

hexavalent chromium or pentavalent arsenic from 1,000 gal min-1 serving 3,200 people 

using both USEtox and EPA TRACI/IRIS methodologies. Reducing the concentration of 

pollutants in drinking water reduced the potential cancer cases by 0 – 37 and non-cancer 

disease cases by 0 – 64 cases. The embedded human carcinogenicity was 0.2 – 5.3 cases 

and non-carcinogenic toxicity was 0.2 – 14.3 cases (or 8 – 199 Mg benzene-eq and 18 – 

1,510 Gg toluene-eq by EPA units) depending on treatment technology and degree of 

treatment. Impacts from treating Cr(VI) using strong base anion exchange were 1% – 8% 

of those from treating by weak base anion exchange. Acidification and neutralization 

contributed 90% – 99% of the impacts for treatment options that required pH control. In 

scenarios where benefit were higher than burdens, tradeoffs still existed because benefits 

are experienced by a local population but the burdens are born externally where the 

materials and energy are produced, thus exporting the health risks. In scenarios where the 
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burdens were clearly higher than the benefits achieved, cost considerations may still drive 

choosing a detrimental treatment level or technology.  
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1. INTRODUCTION 

Drinking water treatment has saved untold numbers of lives and is a hallmark of 

improving quality of life in developed and developing countries. Drinking water filtration 

and chlorination have been hailed as the most important public health intervention of the 

20th century (Cutler and Miller 2004), and continued treatment of major contaminants 

that pose acute or chronic health risks is essential. However as science is able to detect 

and treat increasing numbers of water constituents at increasingly low concentrations, it 

is possible that diminishing returns in improvement of human health could be 

approached, and tradeoffs with production should be considered. Similarly to any 

processed product, treating drinking water requires materials and energy. Production of 

these materials exposes workers to hazards and emits pollutants with deleterious health 

effects. While the population consuming the treated water directly enjoys the health 

benefits of reduced pollutants in drinking water, an external population bears the health 

burden of producing the treated water. 

While regulatory negotiations over new drinking water standards include 

balancing opportunities for measurably reducing public health risks against economic 

costs, overlooked has been the consideration of life cycle human health or ecosystem 

risks now foreseeable through life cycle assessment thinking and approaches. Here we 

examined how recent and potential future regulation by the United States Environmental 

Protection Agency (USEPA) of two inorganic chemicals requires built infrastructure, 

materials, and operational and maintenance activities. While treatment reduces health risk 

to the population served by the drinking water, burden of providing that treatment 

potentially relocates indirect human carcinogenic and non-carcinogenic health effects. 
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Here we focused on human health tradeoffs of treating water to regulatory limits (i.e. 

reducing exposure) against exposures from industrial chemicals required to fabricate and 

operate the treatment system. Potential ecosystem effects undoubtedly also occur, but 

were not the focus here to maintain directly comparable types of impacts between 

benefits and burdens. 

The advent of life cycle assessment (LCA) has brought frameworks to examine 

environmental and social tradeoffs. The focus of most LCAs concerning water has been 

the embedded energy used in water supply pumping. Previous findings show that 

providing water from surface water sources requires 0.1 – 1.5 kW hr m-3 (Arpke and 

Hutzler 2006, Crettaz et al. 1999, Stokes and Horvath 2011) depending on supply 

distance and treatment complexity. Groundwater sources often have less embedded 

energy, depending on well depth (Plappally and Lienhard 2012). In either case, energy 

demand is often dominated (56 – 94%) by on-site or distribution pumping (Plappally and 

Lienhard 2012, Racoviceanu et al. 2007, Stokes and Horvath 2006). However, water 

supply and pumping energy is needed regardless of water quality. Here we focus on 

treatment options that are determined by pollutant concentrations. Some studies have 

focused on energy required for individual treatment processes, finding that chlorination 

demands 0.000021 – 0.003 kW hr m-3 (Burton 1996, Kroschwitz 1995), and coagulants 

such as alum or polymers demand 0.4 – 0.7 kW hr m-3 (Kroschwitz 1995, Tripathi 2007). 

Even these studies do not assess impacts associated with that energy demand. One study 

has compares human health risk to environmental impacts associated with nanofiltration 

(Ribera et al. 2014). This study is unique because it directly compares the embedded 
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human health burden to the human health benefit provided by a number of treatment 

options. 

1.1 Background on Pollutants of Concern. Pentavalent arsenic (As(V)) and 

hexavalent chromium (Cr(VI)) were selected as model pollutants due to recent regulatory 

concern, common occurrence in groundwater, and treatment viability with wellhead 

sorbent systems. Vast epidemiological evidence connects As(V) intake from drinking 

water to cancer of the skin, bladder, kidney, lung, liver, and prostate (USEPA 2010b). 

Non-cancer effects from chronic exposure include hyperpigmentation, keratosis, burning 

eyes, leg swelling, liver fibrosis, and lung disease (Choong et al. 2007). In the United 

States, 12% of groundwater sources contain greater than 20 µg L-1 arsenic (USEPA 

2010b). The USEPA reduced the As(V) regulation from 50 to 10 µg L-1, requiring 

compliance by 2006. Many treatment systems were installed around that time, and this 

study hopes to enlighten the overall human health impacts it might have had. As(V) in 

this analysis served as a retrospective evaluation of prior regulations. 

Cr(VI) regulation in drinking water is currently 100 µg L-1, but is under scrutiny 

and may be revised in the near future. Its analysis in this study therefore informs possible 

future regulation to consider the health burdens embedded in treatment. It is a known 

human carcinogen through inhalation exposure (USEPA 1998a), but updated 

toxicological study from ingestion has observed neoplasms in the small intestines of mice 

and tumors in the oral cavities of rats exposed at high doses of Cr(VI)  (USEPA 2010a). 

Non-cancer gastrointestinal effects from chronic oral exposure include ulcers, diarrhea, 

abdominal pain, and vomiting (USEPA 2010a). The national occurrence of Cr(VI) is also 

being investigated under the USEPA Unregulated Contaminant Monitoring Rule 
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(UCMR3). As of summer 2015 (monitoring will continue through 2016), 5% of 

groundwater systems exceed 10 µg L-1 (USEPA 2015b). Levels up to 53 µg L-1 have 

been observed (Frey et al. 2004).  

The most common As(V) wellhead treatment technique is sorption to metal 

oxides (MO), including ferric oxide/hydroxide and activated alumina (Choong et al. 

2007). These demonstrate a high sorption capacity ranging from 280 – 3,900 µg g-1 

(Bang et al. 2011, Lipps et al. 2010, Speitel Jr. et al. 2010, Westerhoff et al. 2005) even at 

low contaminant levels. They do not require pretreatment, but sorption capacity is 

increased at depressed pH (Choong et al. 2007). Various treatment technologies are being 

piloted and constructed to meet low level Cr(VI) regulations. Weak base anion exchange 

(WBAX) has very high affinity and very high removal capacity, ranging from 5,300 – 

5,600 µg g-1 (McGuire et al. 2007, Najm et al. 2014). Achieving high sorption capacity 

requires acidifying the influent water to pH 6 (Brandhuber et al. 2004b, McGuire et al. 

2007, Najm et al. 2014). Acidification can be achieved by dosing with chemical acids or 

infusing carbon dioxide (Najm et al. 2014). Both MO and WBAX sorbents are generally 

single-use, requiring disposal after exhaustion. Strong Base Anion Exchange (SBAX) is 

another common Cr(VI) treatment option that does not require acidification but shows 

much lower affinity. Sorbent capacity ranges from 110 to 2,800 µg g-1 (Brandhuber et al. 

2004b, McGuire et al. 2007, Najm et al. 2014), but is limited by nitrate and sulfate levels 

more than Cr(VI) levels. SBAX can be regenerated using strong salt solution for multiple 

reuses (Najm et al. 2014). Both As(V) and Cr(VI) can be treated by other technologies 

(such as coagulation, membrane filtration, or precipitation), but they are operationally 
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more difficult in a wellhead situation and more expensive for small systems where 

specialized operators and solid waste handling may be unavailable (Najm et al. 2014).  

1.2 Study Area. As(V) regulations have heavily impacted small groundwater 

systems which prior only provided chlorine disinfection treatment (Impellitteri et al. 

2007). Because As(V) and Cr(VI) often occur in groundwater, a representative 

groundwater system consisting of well head treatment producing 1,000 gal min-1 was 

selected for this study. This would be about the largest size system that would use 

wellhead treatment for a single pollutant. An example of such systems are wells utilized 

by the water district serving Palm Springs, California, USA. As(V) and Cr(VI) are 

common in groundwater there, wellhead treatment is a potentially viable option for a 

single inorganic pollutant, and California more rigidly regulates Cr(VI) at 10 µg L-1  

(CCR 2014). The district includes 96 wells serving 320,000 people with 100 million 

gallons of water daily (CVWD 2014), indicating each well serves on average 3,200 

people with 1,000 gal min-1. Palm Springs is illustrational but results are not confined to 

that area, and are indeed intended to have national relevance. 

1.3 Roadmap and Goal. The shifting human health impacts due to drinking 

water treatment were assessed in a three step process. First, life cycle assessment was 

used to estimate risks embedded in the production, use, and disposal of materials needed 

to treat drinking water. Second, benefits of treating drinking water were estimated using 

dose response curves. Third, the burdens and benefits were compared.  

In order to make these comparisons, the entire process was carried out in two 

parallel methodologies; one, those developed by USEPA, and two, those developed by 

UNEP/SETAC USEtox. Both provided a valid and widely accepted set of consistent units 
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within which to describe human health impacts. Under USEPA, the embedded risks were 

described using TRACI (USEPA 2014) and dose-response curves were developed using 

information from IRIS (USEPA 2015a). Under USEtox (Hauschild et al. 2008, 

Rosenbaum et al. 2008), dose-response curves were developed using information from 

the Inorganic Database. 

The goal is to explore human health tradeoffs of treating water to regulatory limits 

by 1) comparing the magnitude of health benefits against embedded burdens, 2) studying 

how these tradeoffs change with varying levels of treatment for a contaminant that has 

been regulated and another that may be in the near future, and 3) identifying what 

processes or practices may mitigate the risks.  

 

2. METHODOLOGY 

2.1 Life Cycle Assessment. The functional unit was 25 billion gallons (93 billion 

liters) of water treated to an acceptable quality over the period of 70 years. This was 

equivalent to the demand of 3,200 people each using 300 gallons per day, consistent with 

average single-well population and demand in Palm Springs (CVWD 2014). The total 

flow rate is 670 gallons per minute (1 million gallons per day). All withdrawn water was 

treated although human consumption averages only 2 liters per day. 

The system boundary is depicted in Figure 7.1. It included materials and energy 

required for wellhead treatment to comply with As(V) or Cr(VI) regulation, including 

sorbent, energy to pump water through the packed bed, chemicals to adjust pH or 

regenerate the sorbent, energy to transport the sorbents and chemicals to the site, and 

storage tanks for the sorbents and chemicals. It excluded energy and infrastructure 
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associated with water supply or distribution, and chemicals required for disinfection, 

which are required independently of the Cr(VI) or As(V) treatment.  

Influent concentration of either Cr(VI) or As(V) was assumed to be 20 µg L-1 

unless stated otherwise. Other assumed influent water quality parameters were 

representative of groundwaters in southern California, including pH 8, 200 mg L-1 as 

CaCO3 alkalinity, 5 mg L-1 nitrate-N, and 33 mg L-1 sulfate. The regulated effluent 

maximum contaminant level (MCL) was 10 µg L-1 unless stated otherwise, consistent 

with USEPA and WHO recommendations for As(V) in drinking water. The treatment 

goal was set as 80% of the regulatory level, or 8 µg L-1. The treatment goal was met by 

treating portion of the total flow and bypassing portion such that the blended final quality 

met the treatment goal. Further details can be found in the Supplemental Information. 

Three treatment scenarios were considered as summarized in Table 7.1. Scenario 

1 treated Cr(VI) using WBAX, Scenario 2 treated Cr(VI) using SBAX, and Scenario 3 

treated As(V) using a MO sorbent. Sub-scenarios were also considered with different 

methods of pH control. Scenario 1A acidified with hydrochloric acid (HCL) and 

neutralized with sodium hydroxide (NaOH), Scenario 1B acidified using sulfuric acid 

(H2SO4) and neutralized with lime (Ca(OH)2), and scenario 1C acidified using carbon 

dioxide (CO2) and neutralized by air stripping. These sub-scenarios are employed to 

mitigate scenario uncertainty because pH control chemicals are later found to be critical 

drivers of final results. 

The foreground inventory (quantities of materials and energy directly required to 

produce the functional unit) for each of the three scenarios was developed using 

assumptions and methods detailed in the Supplemental Information. It includes sorbent 
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mass based on published pollutant capacity, oversea and overland transport of the 

sorbent, energy to overcome packed bed headloss, chemicals to reduce the pH to 6 before 

treatment and back up to 8 after treatment at doses consistent with assumed water quality, 

and overland transport of the pH control chemicals. Inventory development followed an 

approach developed for a Cr(VI) treatment cost estimate (Najm et al. 2014). Background 

inventory was provided by the EcoInvent database, and its data uncertainty was explored 

as described below. 

2.1.1 Impact Assessment. Impact assessment converted inventory items into 

human health midpoints that could be added and compared. It used conversion factors of 

embedded human health impacts for common products and processes. These impact 

factors were taken from EcoInvent v2.2 (SCLCI 2010) and were matched to inventory 

items identified in this study. Impact factors converted to both EPA TRACI (USEPA 

2014) (in units of benzene or toluene equivalents) and USEtox (Hauschild et al. 2008, 

Rosenbaum et al. 2008) (in units of cases). Discussion of matching impact factors 

available in EcoInvent to the identified inventory, as well as developing a few custom 

impact factors to explore inventory uncertainty, is included in the Supplemental 

Information.  

2.1.2. Uncertainty and Sensitivity. Uncertainty in the LCA model includes data 

uncertainty and model uncertainty. Data uncertainty is associated with input parameters 

such as inventory (if the background energy and materials used to produce the primary 

inventory items adequately capture upstream processes) and impact assessment (if the 

point value impact factors are representative). These stem from temporal and 

geographical variations in processes, as well as technological advancements. Model 
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uncertainty includes variations in design constraints such as influent water quality, and 

limitations due to the calculation method that assume linear responses and rely on a 

published database in lieu of a directly observed facility. 

In an effort to mitigate data and model uncertainty, extensive sensitivity analysis 

was carried out to explore which inputs and assumptions significantly influence final 

results and to what degree. Inventory sensitivity is explored by observing the change in 

final impacts due to varying the assumed influent water alkalinity, background nitrate and 

sulfate levels, sorbent capacities, influent pollutant concentrations, and treatment target. 

Impact assessment sensitivity is explored by observing the change in final total impacts 

by using different impact factors for the chemical storage tank, the anion exchange resin, 

and the size and emission levels of the overland delivery truck. 

Uncertainty in the inventory and impact assessment was then mitigated through 

analyzing multiple scenarios for the inputs deemed to have the largest sensitivity. This 

was intended to give a range of variability in the life cycle assessment results. As pH 

control chemicals were later found to be the largest drivers of results, multiple pH control 

scenarios were analyzed.  

Another way to mitigate inventory data uncertainty is to perform data distribution 

analysis by qualitatively assessing the reliability of the data and using empirical 

relationships to determine a distribution of data to use instead of relying on the published 

point values. This was not performed directly for this study, but was performed for a 

similar study (Chapter 6) that found impact factors could have a squared geometric 

standard deviation (GSD2) of one to three. Final results could therefore vary by a factor 
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of 2 or 3 within a 95% confidence interval. Results of this study should be similarly 

interpreted. 

2.2 Health Benefits of Treating Drinking Water. Dose-response relationships 

projected the human health benefit of lowering the drinking water pollutant 

concentration. This was done using both USEtox (Hauschild et al. 2008, Rosenbaum et 

al. 2008) and USEPA IRIS (USEPA 2015a) methodologies for ready comparison to the 

embedded human health burden estimated in the life cycle assessment results. Both of 

these calculated the estimated number of cases for cancer and non-cancer separately. For 

either methodology, the human health benefit from treating drinking water was calculated 

as the difference between the number of cancer or non-cancer cases expected at the 

influent concentration minus the number of cases expected at the MCL (not the treatment 

goal concentration).  

2.2.1 Using USEtox. Human adult cancer and non-cancer cases associated with 

chronic ingestion of different concentrations of As(V) and Cr(VI) in drinking water were 

estimated under the USEtox methodology using the corresponding Human Health Effect 

Factor from the Inorganics Database 1.00 (Hauschild et al. 2008, Rosenbaum et al. 2008). 

The Effect Factor (in disease cases per kg lifetime intake) is used instead of the more 

typical Characterization Factor (in disease cases per kg emitted to the environment) 

because all of the pollutant in drinking water is being ingested. This is the same as setting 

the Intake Fraction to 100%. The cancer and non-cancer effect factors for As(V) are 0.52 

and 39 cases kg-1 ingested respectively, and for Cr(VI) are 23 and 0.051 cases kg-1 

ingested respectively (Hauschild et al. 2008, Rosenbaum et al. 2008). Uncertainty 

associated with human health factors for contaminants in freshwater have a GSD2 of 215 
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(Rosenbaum et al. 2008). Another study found the GSD2 for As(V) cancer response to be 

3,025 and noncancer response to be 1,936, with the Cr(VI) cancer response to be 3,249 

and noncancer response to be 15,876 (Huijbregts et al. 2005). This means response 

results can vary from one to two orders of magnitude above and below the calculated 

mean. 

First, the lifetime mass of pollutant ingested per person was estimated by the 

product of the daily drinking water intake, the pollutant concentration, and the lifespan. 

Standard EPA assumptions (Hammer and Hammer Jr. 2011) of 2 L day-1 intake and 70 

year person-1 lifetime were applied to yield: 

 @A�B � CDEE � EF,G � �  (5) 

where Ming was the lifetime mass of pollutant ingested (kg person-1), the factor was in (L 

kg person-1 µg-1), and C was the concentration of pollutant in drinking water in (µg L-1).  

The number of cancer or non-cancer disease cases was then estimated by: 

 H� � I� � @ A�B � 4 JKJ  (6) 

where DC was the number of disease cases (cases), EF was the cancer or non-cancer 

effect factor (cases kgingested
-1), Ming was the mass ingested (kg person-1), and Npop was the 

population (3,200 people). 

2.2.2 Using IRIS. Human adult cancer cases associated with chronic ingestion of 

contaminants in drinking water were estimated using the drinking water unit risk 

published in units of cases L µg-1. The cancer drinking water unit risk for As(V) is 

0.00005 cases L µg-1 (USEPA 1998b), and for Cr(VI) is 0 (non-carcinogenic) (USEPA 

1998a). Updated draft toxicological studies were released in 2010 that increased the 

estimated carcinogenicity for each of these contaminants, but have not yet been officially 
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adopted. The new, unofficial drinking water unit risk for As(V) is 0.00073 cases L µg-1 

(USEPA 2010b) and for Cr(VI) is 0.000014 cases L µg-1  (USEPA 2010a). Analysis was 

carried out using both the official 1998 and the unofficial 2010 unit risk, while 

understanding that the 2010 estimates are more conservative. Both sets of data are 

reported to include uncertainty spanning at least an order of magnitude. 

The number of cancer cases was estimated by: 

 H� � L� � � � 4 JKJ  (7) 

where DC was the number of disease cases (cases), UR was the unit risk (cases L µg-1), C 

was the drinking water pollutant concentration (µg L-1), and Npop was the population 

(3,200 people). 

IRIS does not publish dose-response information for human non-cancer cases. 

IRIS does publish a reference dose, which is the threshold dose below which no adverse 

toxic endpoint is expected, including a safety factor often an order of magnitude or more. 

It also publishes the No Observable Adverse Effect Level (NOAEL), which represents 

the highest experimental dose in previous studies for which no non-cancer effects were 

observed. The official As(V) reference dose and NOAEL are 0.003 mg kg-1 day-1 and 

0.008 mg kg-1 day-1 respectively (USEPA 1998b). These values are the same in the 

updated draft toxicology report (USEPA 2010b). The official Cr(VI) reference dose and 

NOAEL are 0.003 mg kg-1 day-1 and 2.5 mg kg-1 day-1 respectively (USEPA 1998a). The 

updated draft values are 0.0009 mg kg-1 day-1 and 0.09 mg kg-1 day-1 respectively 

(USEPA 2010a), demonstrating higher toxicity and lower uncertainty factors. 

In order to construct a dose-response relationship, the NOAEL was first converted 

to an Effective Dose-50 (ED50). The ED50 is the dose for which 50% of the exposed 
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population will demonstrate a non-cancer toxic effect. It was estimated by multiplying 

the published NOAEL by a factor of 9 (Hauschild et al. 2008, Rosenbaum et al. 2008). 

Next, the reference dose was converted to equivalent drinking water concentration using:  

 H�IM � EFFF �
NOP��QRSTU

PVW
 (7) 

where DWEL is the drinking water equivalent level (µg L-1), RfD was the reference dose 

(mg kg-1 day-1), Mbody was the body mass (70 kg)(Hammer and Hammer Jr. 2011), and 

DWI is the drinking water intake (2 L day-1). The ED50 was also converted to a DWEL 

using the above equation but substituting ED50 for the RfD. Finally, a dose-response 

relationship was estimated as zero non-cancer cases between zero exposure up to the 

DWEL for the reference dose. It then linearly interpolates up to half of the population 

potentially being affected at the DWEL for ED50. 

The calculated human health benefits by USEtox or by IRIS, as well as the LCA 

burdens, were interpreted as maximum potentials (i.e. worst case scenario). In each case, 

uncertainty in the underlying data spanned at least an order of magnitude (USEPA 2015a, 

Rosenbaum et al. 2008), and results were similarly interpreted. 

 

3. RESULTS 

Result depicting the shifting human health impacts due to drinking water 

treatment are presented by; first, estimation of human health risks embedded in drinking 

water treatment scenarios from life cycle assessment; second, assessment of the benefits 

of drinking treated water developed through dose response curves; and third, comparison 

of the burdens and benefits. 
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3.1 Human Health Burden Embedded in Treating Water. Table 7.2 shows a 

detailed inventory of items required to treat drinking water, the matched impact factors, 

and equivalent human health impacts summed for Scenario 1A. SI Tables 7.2 – 7.6 are 

similar tables for the other scenarios. Figure 7.2 shows the life cycle human health 

impacts embedded in treating water from 20 µg L-1 Cr(VI) or As(V) to 8 µg L-1 (80% of a 

10 µg L-1 regulatory limit) for all scenarios.  

Under TRACI methodology, human carcinogenicity ranged from 8 – 199 Mg 

benzene-eq depending on the treatment scenario (defined in Table 7.1), and non-cancer 

toxicity was 18 – 1,510 Gg toluene-eq. With USEtox methodology, carcinogenicity was 

0.2 – 5.3 cases and non-cancer toxicity was 0.2 – 14.3 cases. In all treatment scenarios, 

treating Cr(VI) by SBAX had the lowest impacts in all categories. Treating Cr(VI) by 

WBAX with sulfuric acid and lime had the highest impacts in terms of TRACI 

carcinogencity, TRACI non-cancer toxicity, and USEtox. Treating As(V) by MO with 

hydrochloric acid and sodium hydroxide had the highest impacts for USEtox non-cancer 

toxicity. 

Comparing results for treating Cr(VI), treatment by SBAX had significantly lower 

human health impacts than by WBAX.  SBAX treatment impacts were only 1% – 8% of 

those from WBAX depending on pH control strategy. This is statistically significant 

compared to the expected uncertainty of a factor of 2 – 3 for the 95% confidence interval. 

If using WBAX and comparing pH control strategies, carbon dioxide with air stripping 

had the lowest human health impacts by a factor of 1 – 7. Sulfuric acid with lime had the 

highest TRACI carcinogenicity, USEtox carcinogenicity, and TRACI non-cancer toxicity 

potentials. Hydrochloric acid with sodium hydroxide had the highest USEtox non-
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carcinogen toxicity potential. Comparing results for treating As(V), adding pH control to 

the MO sorbent system increased sorbent capacity by a factor of 1.5, but increased the 

human health impacts by a factor of 7.5 – 13 depending on category.  

3.1.1 Critical Contributions to Impacts. Impacts associated with individual 

inventory items were analyzed to identify the largest contributors to the total impacts 

associated with each scenario. Inventory items were also grouped by treatment process 

(sorption, acidification, neutralization, regeneration, or headloss pumping) and illustrated 

by striping within each bar in Figure 7.2. 

The production of pH control chemicals dominated human health impacts for 

scenarios that include it. Production of hydrochloric acid contributed 46% - 59% of the 

total impacts for scenario 1A, followed by sodium hydroxide with 35% - 53%. For 

scenario 1B, lime was responsible for 46 - 97% of the impacts and sulfuric acid was 3% - 

50%. For scenario 1C, 56% - 73% of the impacts came from producing carbon dioxide. 

Electricity generation for neutralization by the blower and the repressurization pump then 

accounted for 21% - 38% of the impacts. For scenario 3A, acid production contributed 

44% - 56% of the impacts and the production of caustic contributed 33% - 51%. The 

sorption process and headloss pumping each contributed less than 7% of the impacts in 

each of these scenarios. 

For treating Cr(VI) by SBAX (scenario 2), energy production for pumping to 

overcome packed bed headloss contributed 39% to 61% of the total human health impact. 

Production of salt for regeneration contributed 34% - 53%, and the sorption process 

contributed 4% - 10%. When treating As(V) by MO without pH control (scenario 3B), 
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impacts from sorption comprised 73% - 93% of the total. Headloss pumping contributed 

the remaining 7% - 25%.  

3.1.2 Model Sensitivity. Model sensitivity was explored by changing inputs and 

observing the final results to mitigate uncertainty by illustrating the range of variability in 

the results.  Additionally it identified critical treatment choices, allowed results to be 

adapted for various water quality situations, and informed various future possible 

regulations. Sensitivity relationships are shown in SI Figure 7.1. 

The model showed the greatest sensitivity to selection of pH control method, 

which is why sub-scenarios for each method were developed. When treating Cr(VI) by 

WBAX, acidification by sulfuric acid in lieu of hydrochloric acid reduced the final results 

by 30% – 40%, except for in USEtox carcinogenicity which increased by 3%. 

Acidification by carbon dioxide decreased overall results by 4% – 32%, except for 

TRACI carcinogenicity which increased by 19%. Neutralization by lime instead of 

sodium hydroxide increased results by 73% – 490%, except for USEtox non-cancer 

toxicity which was reduced by 38%. Neutralization by air stripping reduced results by 

11% – 48%. The effect of changing pH control chemicals was not specifically explored 

in the As(V) removal by MO scenario since similar effects were expected as the changes 

observed in treating Cr(VI) by WBAX. 

The assumed influent pollutant level highly affected the final human health 

impact results by changing the fraction of water to be treated. If the influent level was 

reduced to 15 µg L-1, the results reduced by 19% – 22%. If reduced to 10 µg L-1, the 

results were reduced by 59% – 66%. If the influent level was raised to 30 µg L-1, the 

results increased by 18% – 25%.  
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The regulated effluent contaminant level (MCL) had strong influence on the 

results for all scenarios. A low MCL (requiring more treatment) of 5 µg L-1 increased the 

impacts by 27% - 33%. A very low MCL of 1 µg L-1 increased the impacts by 43% - 

58%. A high MCL (requiring less treatment) of 15 µg L-1 decreased the impacts by 27% - 

33%. A very high MCL of 20 µg L-1 decreased the impacts by 49% - 67%. The studied 

range of MCL from 1 to 20 µg L-1 encompassed 27 to 6 USEtox total disease cases 

embedded in treating Cr(VI) by WBAX, 0.6 to 0.1 cases for treating Cr(VI) by SBAX, 

and 28 to 6 cases for treating As(V) by MO. 

The other inputs with strong influence on results were the water alkalinity and the 

nitrate/sulfate levels. High influent levels could cause prohibitively high human health 

impacts. Other inputs had little effect on final results. The assumed sorbent capacity 

caused only small changes since its impacts were small compared to pH control 

chemicals. Similarly, the custom impact factor used for anion exchange resin had only a 

slight increase in this study, but could have a large impact in other studies where sorbent 

impacts drive results. The choice of truck size, truck engine emission standard, and 

chemical storage tank selection were each inconsequential to final results. Each of these 

observations is further developed in the SI. 

3.2 Health Benefits of Reducing Pollutant Concentrations in Drinking Water. 

The purpose of developing dose response relationships was to estimate the human health 

benefit of changing the pollutant concentration in drinking water. Figure 7.3 shows 

potential cancer and non-cancer cases expected in the study population of 3,200 people 

using both EPA IRIS and USEtox methodology. For the IRIS data, results are displayed 

using both the 1998 official data and the updated 2010 draft data. Numeric descriptions 
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of each relationship are given in the SI, along with an equation and coefficients to 

calculate human health risk from drinking water containing Cr(VI) or As(V) for any size 

population. Calculated responses are mean values with 95% confidence intervals one to 

two orders of magnitude above and below. 

Reducing As(V) concentration in drinking water from 20 µg L-1 to 10 µg L-1 

changed the potential cancer cases in the exposed population from 47 to 23 cases by the 

2010 IRIS relationship, a reduction of 24 cases. The number of potential non-cancer 

disease cases changed from 63 to zero. Using the 1998 IRIS relationship, the number of 

potential cancer cases reduced by 1 and the non-cancer toxicity cases reduced by 63. By 

USEtox methodology, the benefit was 1 cancer and 64 non-cancer cases. 

The human health benefit of treating Cr(VI) from 20 µg L-1 to 10 µg L-1 was 1 

cancer case and zero non-cancer cases by the 2010 IRIS relationship. By the 1998 IRIS 

relationship, zero cases were expected from these exposures and therefore zero were 

saved through treatment. However, USEtox relationships indicated that 37 cancer cases 

would be saved, with zero non-cancer cases expected at these exposures.  

3.3 Comparing Benefits to Burdens. By reducing the contaminant level in 

drinking water, fewer disease cases occurred and thus increased the health benefit for the 

served population. However, greater level of treatment was also required so the 

embedded health burden also increased for the external population. Figure 7.4 shows this 

tradeoff for a range of possible Cr(VI) treatment levels, and Figure 7.5 shows the tradeoff 

for As(V), both using USEtox methodology. Corresponding figures using EPA 

methodology are found in SI Figures 7.2 and 7.3. These figures assumed 20 µg L-1 

pollutant in the influent, and increase the level of treatment (which is equivalent to 
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decreasing the regulatory level, i.e. the MCL) moving toward the right. In each case, 

results are shown for cancer effects and non-cancer effects separately, but both impacts 

would be incurred simultaneously. Health benefits were calculated by the difference in 

disease cases expected at the influent level and the MCL, while treatment burdens were 

the impacts required to treat from the influent level to 80% of the MCL to ensure 

compliance. All results are reported with 95% confidence spanning an order of 

magnitude above and below. 

Figure 7.4 indicates that cancer benefit of treating Cr(VI) was an order of 

magnitude higher than cancer burden at nearly all MCL concentrations, but that non-

cancer burden was an order of magnitude higher than non-cancer benefit at all MCLs. For 

example, with USEtox methodology treating Cr(VI) from 20 µg L-1 to 10 µg L-1  prevents 

37 cancer cases and 0.1 non-cancer disease cases. However the impact of treatment from 

added facilities caused 3 – 5 cancer cases and 3 – 14 non-cancer disease cases if treating 

by WBAX depending on pH control method, or 0.2 cancer cases plus 0.2 non-cancer 

disease cases if treating by SBAX. SI Figure 7.2, using EPA methodology, shows treating 

Cr(VI) from 20 µg L-1 to meet a 10 µg L-1 MCL saved zero cases of cancer by the official 

1998 IRIS data and 0.5 cases by the draft 2010 data, and zero non-cancer disease cases by 

either dataset. This came at an embedded life cycle health burden of 120 – 199 Mg 

benzene-eq and 226 – 1,510 Gg toluene-eq if treating by WBAX depending on pH 

control method, or 8.21 Mg benzene-eq and 17.9 Gg toluene-eq if treating by SBAX. 

For As(V) treatment, Figure 7.5 shows cancer burden was higher than benefit if 

pH control was used under USEtox methodology. Without pH control, an MCL of 20 µg 

L-1 would have a higher cancer burden than benefit, but the cancer benefit rose more 
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quickly relative to the burden such that a break-even point existed between 15 and 20 µg 

L-1 below which the benefit was higher than the burden. The non-cancer benefit was very 

large compared to the cancer benefit on a basis of number of cases and was higher than 

the non-cancer burden at nearly all concentrations. For example, treating As(V) from 20 

µg L-1 to 10 µg L-1  avoided 1 cancer case and 63 non-cancer disease cases. This caused 3 

cancer cases and 14 non-cancer disease cases if treating by MO with pH control, or 0.4 

cancer cases with 1 non-cancer disease case if treating by MO without pH control. SI 

Figure 7.3 shows that cancer and non-cancer benefits had a more similar magnitude under 

EPA methodology. Treating As(V) from 20 µg L-1 down to meet a 10 µg L-1 MCL saved 

2 cases of cancer by the official 1998 IRIS data and 23 cases by the draft 2010 data. It 

additionally saved 63 non-cancer disease cases by either dataset. This came at an 

embedded life cycle health burden of 126 Mg benzene-eq and 287 Gg toluene-eq if 

treating by MO with pH control or 16.5 Mg benzene-eq and 34.8 Gg toluene-eq if 

treating by MO without pH control. 

 

4. DISCUSSION 

Quantitatively comparing the benefits of a population consuming treated water to 

the health burdens embedded in providing that treatment can yield results where the 

benefits seemingly outweigh the burdens, or where the burdens outweigh the benefits. 

However the implications of tradeoffs involved in either scenario may be more far-

reaching than a simple ratio. 

4.1 Net Benefits Export Disease. Treating Cr(VI) benefits a greater number of 

cancer cases than the number of non-cancer cases the treatment causes under USEtox 
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(Figure 7.4). The benefit ratio (number of cancer or non-cancer cases saved over the 

number of cancer or non-cancer cases caused, with values over 1 indicating net benefit)  

ranges from 2 – 12 for WBAX and is 185 for SBAX. This superficially indicates that 

treatment is well warranted from an overall human health standpoint. However, 

consideration should also be given to the fact that the population benefiting is separate 

from the population being burdened. 

The benefits of treating water are realized locally, i.e. directly by the population 

being served by the water treatment system (e.g. the residents of Palm Springs). The 

disease cases being saved would have been dispersed throughout a large population, more 

likely encompassing diverse socio-economic groups. Comparatively, the embedded 

burdens are borne by external parties in geographically separate locations. These health 

risks are given to workers at the material or energy production plants (e.g. acid or caustic 

production in Los Angeles or Houston) and nearby neighbors within influence of the 

plant emissions. These are more likely low-income low-skill laborers, resulting in 

concentrating disease among blue-collar laborers. Health care may be harder to find or 

pay for and lost work has a higher impact to this subpopulation. Installing treatment to 

meet regulations at any level therefore relocates cancer and non-cancer disease risk. It is 

transferred and concentrated from a large population with a disperse disease risk to a 

smaller sub-population with direct exposure now carrying a disproportionate share of 

health risk. This scenario presents an ethical dilemma for regulators deciding on drinking 

water regulations. On a national scale, the detriments involved with producing extra 

materials and energy for treatment must be weighed against the benefits gained by 
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treating water. Current regulation methodology considers cost of treatment but not the 

human health burden.  

As(V) treatment by USEtox indicates a benefit ratio of 3 – 60 (Figure 7.5). 

However a significant shift in the type of potential disease is incurred through treatment. 

Reducing As(V) concentrations prevents many potential non-cancer cases, but the 

removal causes some cancer cases. The legislation regulating As(V) in 2006 may 

therefore have had the net effect of reducing the total number of disease cases, but came 

at the side effect of increasing the incidence of cancer. The number of cases itself says 

nothing of lethality, but it is likely that society values cancer and noncancer cases 

differently, perhaps to the point of preferring to prevent any occurrence of cancer even if 

it means incurring non-cancer disease by not treating water. 

4.2 Cost Drives Incurring Net Burden. In some cases the burden of treatment 

clearly outweighs the benefit from a total human health perspective. It might seem clear 

that requiring treatment in this situation is not merited. However, cost and familiarity are 

two reasons this might be done anyway. For example, the embedded cancer in As(V) 

treatment using MO with pH control (Scenario 3A) is much higher than the health benefit 

using USEtox (Figure 7.5A) and the official EPA (SI Figure 7.3A). This indicates that 

avoiding pH control (Scenario 3B) is a far superior choice. However, the cost of media 

replacement is often responsible for more than 90% of the operational cost of an As(V) 

wellhead sorbent system (Lipps et al. 2010). Maximizing sorbent capacity to minimize 

replacement is considered a cost-savings maneuver. Therefore decision makers would be 

forced to choose between cost and overall health risk.  
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Tradeoffs between cost and overall health benefit is also seen in comparing 

Cr(VI) pH control scenarios. Using CO2 with air stripping (Scenario 1C) nearly always 

had lower human health impact than using either type of acid or caustic (Figure 7.4, SI 

Figure 7.2).  However, pH control using HCl with NaOH is cheaper than CO2 with air 

stripping for systems smaller than 1000 gpm (Najm et al. 2014), not to mention the 

environmental impacts of the chemicals are three to seven times higher (Choe et al. 

2015).  

In another example, Cr(VI) treatment using EPA methodology appears to have 

very little benefit compared to the caused burden (SI Figure 7.2). A benefit ratio cannot 

be calculated since benefits and burdens are not expressed in the same units, but only 0 – 

1 potential cases can be saved while incurring burdens on the order of Mg-benzene 

equivalents and Gg-toluene equivalents. This presents an ethical dilemma on a local 

scale. Local decision makers could see that benefits of higher water treatment are realized 

within the local area by neighbors, friends, and voting constituents. While the detriments 

incurred due to imposing treatment are real, they are exported to unknown factory 

workers located far away. It may be unlikely that the local populous would be willing to 

forgo treatment and therefore incur a few more disease cases locally in order to save a 

few more cases for faceless entities elsewhere in the world.  

The Cr(VI) MCL is currently under review by the EPA, and this study informs 

considerations beyond only cost, occurrence, and direct toxicity. USEtox results suggest 

that low MCLs have high cancer benefit relative to cancer burden (Figure 7.4A), but also 

has high non-cancer disease burden with very little non-cancer disease benefit. Results 

from EPA data only prescribe treatment at any MCL if the 2010 draft cancer toxicology 
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report is adopted, as there is neither cancer nor any non-cancer benefit by the 1998 

official data. Even with the updated data, the number of benefit cases is very small and 

requires incurring a great deal of embedded cancer and non-cancer risk. 

4.3 Health Impacts of pH Control Chemicals. The production methods of pH 

control methods are briefly reviewed to explore where and how the embedded health 

risks may be occurring. HCl is co-produced by chlorinating dichloromethane or 

trichloroethylene. Air emissions are primarily from combustion of coal, but also from 

volatilized HCl, chlorine, and chlorinated organic compounds escaping the purification 

system (USEPA 1995). Sulfuric acid is produced by combusting elemental sulfur, 

catalytically oxidizing it, then absorbing it into acid. Air emissions are sulfur dioxide 

from all unconverted sulfur (USEPA 1995). Lime is a product of high temperature 

calcination of limestone. Air emissions are primarily particulate matter from crushing 

limestone, but include combustion gasses in the kiln such as carbon monoxide, carbon 

dioxide, sulfur dioxide, and nitrogen oxide (USEPA 1995). Water treatment using lime 

has a high average embedded energy of 0.42 kWh m-3 (Kroschwitz 1995).   

Since most emissions associated with production of chemicals required for pH 

control in water treatment are airborne, the exposed parties are likely workers at the 

production facilities and downwind neighbors. Practices to mitigate human health risks 

embedded in water treatment therefore include reducing worker inhalation and improving 

plant air emission standards. 

4.4 Comparison to Previous Studies. Some studies have found that treatment 

chemicals contribute only 6 – 10% of total impacts (Arpke and Hutzler 2006, Crettaz et 

al. 1999, Racoviceanu et al. 2007), and construction and disposal of treatment facilities 
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contributes 4 – 9% (Raluy et al. 2005, Stokes and Horvath 2006). However, another 

found energy used by material production for treatment chemicals to be as high as 37%.  

Manufacturing treatment chemicals is the largest part (73%) of that material production 

(Stokes and Horvath 2011). The treatment phase contributes 42% – 44% of water 

treatment impacts (Crettaz et al. 1999, Stokes and Horvath 2011). The corresponding 

supply phase contributes 21% – 38%.  

4.5 Conclusions. Current drinking water contaminant regulations do not consider 

embedded life cycle health risks. Imposing regulatory limits will save some number of 

health cases, but will also cause a non-trivial level of health burden associated with 

increased production of materials and energy required for additional treatment to meet the 

regulation. The degree of this burden depends on treatment technology choices and level 

of required treatment. For example, water treatment technologies that do not depend on 

pH control are likely to have significantly less embedded human health burden than those 

that do.  

Furthermore these detriments are likely not carried by the same populace that 

experiences the benefits since the materials and energy are not typically produced in the 

same location where the treated water is consumed. Installing treatment to meet 

regulations at any level therefore exports cancer and non-cancer disease risk. It is 

transferred from a large population with a disperse disease risk to a concentrated sub-

population with direct exposure.  

It may also shift the type of disease expressed between cancer and non-cancer. 

Evaluating prior legislation regulating As(V) in drinking water suggests implementing 

the rule may have had the net effect of reducing the total number of disease cases, but 
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came at the side effect of increasing the incidence of cancer cases. Potential new Cr(VI) 

regulation can only be justified if the draft 2010 toxicology report is adopted. Even then, 

imposing a low Cr(VI) MCL may have the effect of shifting toxicity expression from 

cancer to noncancer cases. 

Unfortunately stakeholders may be incentivized to choose treatment options that 

produce a net health detriment. One reason could be due to cost-savings. For example, 

adding pH control would increase sorbent capacity and reduce replacement costs but 

increase embedded health risks. Another reason is familiarity. The exported risks 

transcend local geopolitical boundaries, but treatment decisions are made locally and 

would favor friends and neighbors over far away strangers. Therefore regional or national 

policies must be responsible to consider the life cycle burden along with the benefit. 

These policies may concern the allowable level of contaminant in drinking water, 

acceptable treatment strategies, workplace exposures in chemical production facilities, 

and airborne emission standards. Balancing all of these tradeoffs queries values such as 

who should bear the health risk, what type of disease should be incurred, and how much 

money one’s health is worth. 
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Figure 7.0. Graphical Abstract. 
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Figure 7.1. System Boundary Diagram. 
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Table 7.1. Scenario Definition. 
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Table 7.2. Inventory and impacts for Scenario 1A (treating Cr(VI) by WBAX 
with HCl and NaOH).  
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Figure 7.2. Life cycle human health impacts embedded in the water treatment 
system that treats water from 20 µg L-1 to 8 µg L-1 (80% of the 10 µg L-1 regulatory 
limit). The four graphs are the life cycle cancer and non-cancer potential for the EPA 
TRACI and USEtox methodologies. The six bars in each graph represent the six 
treatment scenarios defined in Table 7.1. The stripping within each bar represents the 
contribution of each process to total impact of each scenario.  
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Figure 7.3. Dose-response relationships for oral ingestion of contaminated 
drinking water by 3,200 people calculated by A) EPA IRIS and B) USEtox data. Lines 
depict mean values, and 95% confidence intervals would be between one to two orders of 
magnitude above and below. All relationships are linear. IRIS carcinogenic responses and 
all USEtox responses begin at the origin, but IRIS non-carcinogenic responses have a 
threshold value (reference dose) below which no adverse effects are expected. Cr(VI) 
Cancer and Non-Cancer by 1998 IRIS data are zero in all depicted concentrations. 
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Figure 7.4. Tradeoffs of increasing treatment (i.e. reducing MCL) of Cr(VI) on A) 
cancer and B) non-cancer disease using USEtox methodology for a 3,200 person 
population with a 20 µg L-1 influent.  Scenario 1A is treating by WBAX with 
HCL/NaOH, 1B is WBAX with H2SO4/Na(OH)2, 1C is WBAX with CO2/air stripping, 2 
is SBAX.  Scenario 2 in both figures and Treatment Benefit in the bottom figure are both 
nearly zero.  
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Figure 7.5. Tradeoffs of increasing treatment (i.e. reducing MCL) of As(V) on A) 
cancer and B) non-cancer disease using USEtox methodology for a 3,200 person 
population with a 20 µg L-1 influent. Scenario 3A is treating by MO with HCL/NaOH, 
and 3B is MO without pH control.  
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SUPPLEMENTAL INFORMATION 

2.1 Assumptions to Develop LCA Inventory. A fraction of the total flow was 

treated and a fraction was bypassed such that when blended back together the final 

quality equaled the defined treatment goal. All treated water was assumed to reduce the 

contaminant concentration to 1 µg L-1, which accounts for possible variability in 

treatment efficacy or low-level leakage. The treated portion of flow was:  

 XYZ�[Y\��Y � X YKY[] �
 ^ _`a ,^ bScd $

 ^ _`a ,^ efgcegT $
 (1) 

where Qtreatment was the flowrate being treated (gpm), Qtotal was the total flowrate (670 

gpm), Cinf was the influent pollutant concentration (µg L-1), Cgoal was the blended effluent 

pollutant target (defined as 80% of regulation, µg L-1), and Ctreated was the pollutant 

concentration for the treated water (1 µg L-1). 

The mass of WBAX required to treat the functional unit was a function of the 

volume of treated water, sorbent density, and sorbent usage rate. The volume of treated 

water was the product of treated water flow rate found in Equation 1 and the project 

duration (70 years). The sorbent density was 38 lb ft-3 (Rohm & Haas 2008, Najm et al. 

2014). The sorbent usage rate (ft3 million gallons-1) was found following (Najm et al. 

2014): 

 �hij�Lk��������� � EDC �
^ _`a

"=
 (2) 

The volume of SBAX used to treat the functional unit was assumed to be 750 ft3 

plus an annual replacement rate of 5%, totaling 3,375 ft3 total. This was converted to 

sorbent mass using the same resin density as WBAX. The SBAX run duration was a 

function of the influent nitrate and sulfate levels as described(Najm et al. 2014):  
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where BV was the number of bed volumes treated between regeneration cycles, [SO4] 

was the concentration of sulfate (33 mg L-1), and [NO3] was the concentration of nitrate 

(5 mg L-1 as N).  

The mass of MO sorbent required was based on As(V) removal capacity, assumed 

to be 280 µg g-1 as previously observed for granular ferric hydroxide(Westerhoff et al. 

2005) at pH 8.5. This capacity was increased by 50% for scenarios that included pH 

adjustment. The required mass of MO sorbent (MMO, kg) was estimated as: 

 @Q€ �
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where Vtotal was the total water volume (93 billion liters), and q was the sorbent capacity 

(µg g-1). The sorbent density for granular ferric hydroxide was 72 lb ft-3 (Westerhoff et al. 

2005).  

Transporting the sorbent from the place of manufacture to the site of usage was 

considered. Anion exchange resin was assumed to be produced in Hong Kong, China and 

traveled via transoceanic freight to Los Angeles, CA (12,000 km). It then traveled via 

truck to Palm Springs, CA (160 km). Metal oxide sorbent was assumed to be 

manufactured in Germany then travels via transoceanic freight to Houston, TX (9,000 

km). It then traveled via truck to Palm Springs, CA (2,300 km). In each case, the 

overland truck could carry up to 5 tons per trip. The sorbent was used on-site in three 

vessels to allow a lead-lag-maintenance configuration. Each vessel was 10 feet in 

diameter and held 250 ft3 of sorbent at 3 ft deep.  
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Pump energy required to overcome headloss in the sorbent bed is estimated using 

a headloss rate of 5.2 ft ft-1 (Rohm & Haas 2008) and 60% pump efficiency. Since the 

water pumped through two beds in series, the total headloss was 33 ft requiring 4.37 kW 

of pump energy. Pumping energy for water supply or distribution was not considered. 

Acid and base doses required to adjust pH from 8 to 6 for treatment and back to 8 

for distribution were estimated from online calculators(AQIon 2014, Water Quality & 

Treatment Solutions 2008). HCl and H2SO4 were delivered as 30% purity. NaOH, 

Ca(OH)2, and CO2 were delivered as 50% purity. Chemicals were transported from Los 

Angeles, CA to Palm Spring, CA (160 km) in trucks with 4,500 gallon capacity. Each 

chemical was stored on-site in one 4,500 gallon tank. In the air stripping scenario, a 26 hp 

blower was used per recommendation based on flowrate (Najm et al. 2014). The water 

was then re-pressurized up to 60 psi using a pump with 60% efficiency. 

Disposal of anion exchange resin to landfill was included. Disposal of salt 

regeneration brine was assumed to be to sewer with no further impact. Disposal to 

landfill of MO sorbent, transport associated with disposal of any sorbent, and possible 

hazardous waste landfilling was not considered. 

2.2 Matching Impact Factors to Inventory Items. Good agreement was 

generally found in matching impact factors available in EcoInvent to inventory items. For 

example, an impact factor for ‘anion exchange resin’ was matched with both weak base 

and strong base anion exchange inventory, and a ‘transport via transoceanic freight ship’ 

impact factor matched for oversea sorbent delivery. Most chemicals, including acids, 

salts, and bases had impact factors with matching CAS number descriptions.  
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Some inventory items did not have clearly corresponding impact factors. For 

example, no metal oxide sorbent impact factor was available, so the impact factor for 

magnetite was used. Magnetite is generally used for ink toner, and while not a perfect 

match, it was a reasonable match because both are produced from ferric chloride and 

hydroxide to produce ferric oxide. 

Some inventory items had multiple impact factors that would have been 

reasonable options. The selected impact factor for overland transport was a 5-ton lorry 

conforming to EURO3 engine emission standards. This vehicle size was reasonable 

because it corresponded to on-site tank storage capacity. Chemical storage and sorbent 

contactor vessels used the impact factor for a similarly sized hot water tank. Electricity 

for pumping and air stripping used the impact factor for medium voltage electricity 

supply at grid with US average production and losses.  

Custom impact factors were developed for specialty chemicals not found in the 

EcoInvent database. These were divinylbenzene, styrene-divinylbenzene copolymer, 

stannous chloride, aluminum chloride, and un-functionalized ion exchange copolymer. A 

custom impact factor was also developed for anion exchange resin to compare to the one 

in the database to account for wide technological options in resin synthesis and explore 

inventory uncertainty associated with this study. It follows a classic published recipe 

(Kunin 1958). These custom impact factors were derived by a weighted average of their 

respective stoichiometric synthesis chemicals and an assumed process efficiency of 70%. 

For example, divinylbenzene is industrially made using one part benzene and two parts 

ethylene. The custom impact factors were estimated by averaging the EcoInvent available 
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factors for benzene and two times the factors for ethylene, then dividing by 70%. For 

carcinogencity under USEtox, the calculation followed: 

H�ƒ���1���„� �
E���������„��� # )�����k�����1���

3�����k � ��
��kk��……�������

�
3DEoCC � EF,| �

�†L�
‡�����„��� # ) � )D3orE � EF ,| �†L�

‡������1���
3 � FDr

� 3Dr33) � EF ,| �†L�
‡����ƒ���1���„���

 

This and other proposed impact factors for the chemicals and anion exchange resin are in 

SI Table 7.1.  

3.1 LCA Model Sensitivity. The model showed the greatest sensitivity to 

selection of pH control method, and sub-scenarios (e.g. scenarios 1A, 1B, 1C) were 

developed to capture this sensitivity. Theoretically, the lowest total human health impact 

for pH control could be achieved by pairing sulfuric acid with air stripping. However, 

sulfuric acid reduces water alkalinity and must be counteracted with chemical hydroxide 

to avoid changing the corrosion potential and causing detrimental downstream piping 

effects. Carbon dioxide and air stripping were exclusive partners for this reason (scenario 

1C), while hydrochloric and sulfuric acid could be paired with either sodium hydroxide 

or lime. 

The assumed influent water alkalinity highly influenced the final results for 

scenarios which included pH control, with a nearly direct proportionality observed. A 

75% reduction (50 mg L-1 as CaCO3) in influent alkalinity reduced the results by 71% - 

74%. A 75% increase (350 mg L-1 as CaCO3) in influent alkalinity increased the results 

by 71% - 75%. Intermediary changes elicited proportional changes in results. Alkalinity 



  217 

is the water’s ability to resist change in pH, so this result was expected since pH control 

chemicals are the dominant impact. 

The assumed influent water nitrate and sulfate levels have a strong influence to 

the results of the SBAX scenario. A 75% reduction (1.3 mg L-1 NO3-N and 8.3 mg L-1 

SO4) caused a 15% - 23% decrease in final results. A 75% increase (8.8 mg L-1 NO3-N 

and 58 mg L-1 SO4) caused a 16% to 24% increase in total results. Linear responses were 

observed between those points, but nitrate and sulfate levels higher than this were found 

to cause an exponential increase in impacts as the sorbent needed to be regenerated for 

more time than it was in service. 

The effect of the assumed sorbent capacity was found to have little change on the 

final results. For both the WBAX and MO scenarios, doubling the sorbent capacity 

reduced impacts by only up to 3%, and a ten-fold increase in sorbent capacity only 

reduced the impacts by up to 6%. A 50% reduction in sorbent capacity increased the final 

results by less than 7%. Further reduction begins to cause more drastic changes as sorbent 

would be replaced very frequently, but this is not plausible as cost considerations would 

prevent such a low capacity sorbent from being used. Low sensitivity to sorbent capacity 

is because the sorption process comprised only a small percentage of the total impacts 

compared to pH control processes. 

Custom impact factors for anion exchange resin synthesis were derived using 

mass relationships following a published recipe (Kunin 1958) and presented in the SI. 

The human health factors were 2.2 to 9.1 times higher than those found in the EcoInvent 

v2.2 database. Using these custom factors had the effect of increasing the total impact 

associated with treating Cr(VI) with WBAX by 3% - 11%, and treating Cr(VI) with 
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SBAX by 7% - 32%. While this was only a small change in this study, this indicates that 

in other treatment scenarios where the sorbent is a principal driver of life cycle impact 

results a custom impact factor should be used. 

The type of truck assumed for chemical and sorbent land transport is 

inconsequential to final results. Changing the truck size (5 to 25 ton) and engine 

efficiency standards (EURO3 to EURO5) changed the final results by less than 1% for all 

scenarios. The assumed chemical and sorbent storage tank was similarly inconsequential. 

A scaled impact factor for a chemical storage tank was compared to that for the hot water 

tank and found to change the final results by less than 1%.  

3.2 Dose Response Relationships. A relationship to estimate the potential 

number of human health cases at various drinking water equivalent levels was developed 

in SI Equation 1. 

 ��k�k W\J[ˆY � 4 JKJ � � 
1
�� � H�IM p ‰�������� �  (SI1) 

CasesImpact is the potential number of cases for the selected pollutant, impact, and 

dataset (cases), Npop is the study population (people), and DWEL is the drinking water 

pollutant concentration (µg L-1). Slope and Intercept are coefficients developed for each 

pollutant, impact, and dataset which are found in SI Table 7.7. 

No non-cancer disease cases were expected at pollutant levels at or below the 

reference dose under EPA IRIS methodology. The DWEL corresponding to As(V) non-

cancer reference dose was 10.5 µg L-1. For the 1998 Cr(VI) reference dose it was 105 µg 

L-1, and for the 2010 Cr(VI) reference dose it was 31.5 µg L-1.  

4.1 Addressing Critiques of the Dose/Response Methodology. The published 

effect factors, slope factors and reference doses are provided with uncertainty of perhaps 



  219 

an order of magnitude (USEPA 1998a, b, 2010a, b, Rosenbaum et al. 2008). The number 

of cancer and non-cancer cases estimated in this study from these numbers should be 

similarly interpreted. For example, if 6 excess cases are estimated, this result can be 

interpreted as anywhere between 1 and 60 cases. Embedding this uncertainty generally 

overestimates the actual number of disease cases. While this limits the ability of the 

model to predict absolute values of cancer and non-cancer cases, it is still valuable to 

inform the magnitude of the change in cases estimated for different treatment scenarios 

and to identify the most influential contributors to total health impact. 

Dose-response relationships are often observed to have curved responses in the 

low dose range resembling an exponential increase. This study has assumed linear 

responses for consistency with USEtox and IRIS methodology as well as for model 

parity. This line would therefore overestimate the number of cases from a curved dose-

response relationship. 

For the non-cancer responses, all contaminant intake is assumed to come from 

drinking water. Drinking water does dominate arsenic intake for areas with drinking 

water concentrations above 10 µg L-1 (James et al. 2015). However, ignoring any intake 

from food or inhalation has the effect of underestimating the expected number of non-

cancer cases associated with that pollutant. 

For all health benefit analysis the population is assumed to be adults with 70 kg 

body mass and 2 L day-1 drinking water intake. Including infants as a fraction of the 

population with 10 kg body mass and 1 L day-1 drinking water intake (Hammer and 

Hammer Jr. 2011) would have the effect of slightly increasing exposure and raising the 

expected number of cancer and non-cancer cases. 
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The EPA does not intend for Reference Doses to be used to inform dose-response 

estimations. It really should only be a threshold of “safe” or “not safe”. Also, the 

reference dose includes modifying factors and uncertainty factors in its derivation that 

make it difficult to interpret as a true point of ‘zero response’. Assuming zero response up 

to the level of the NOAEL would have the effect of lowering the estimated number of 

cases. 
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SI Table 7.1. Custom Impact Factors. 
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SI Table 7.2. Inventory and impacts for Scenario 1B (Treating Cr(VI) by WBAX 
with H2SO4 and Ca(OH)2). 
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SI Table 7.3. Inventory and impacts for Scenario 1C (Treating Cr(VI) by WBAX 
with CO2 and air stripping). 
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SI Table 7.4. Inventory and impacts for Scenario 2 (Treating Cr(VI) by SBAX). 
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SI Table 7.5. Inventory and impacts for Scenario 3A (Treating As(V) by MO with 
HCl and NaOH). 
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SI Table 7.6. Inventory and impacts for Scenario 3B (Treating As(V) by MO 
without pH control). 
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SI Figure 7.1. Sensitivity Relationships for A) influent alkalinity for treating 
Cr(VI) by WBAX, B) change in assumed sorbent capacity for treating As(V) by MO, C) 
influent nitrate and sulfate levels for treating Cr(VI) by SBAX, and D) influent pollutant 
concentration for treating Cr(VI) by WBAX. Vertical lines represent the base case. 
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SI Table 7.7. Coefficients to calculate dose-response relationship based on the 
dataset, pollutant, and impact of interest given a study population and drinking water 
pollutant concentration (DWEL). For DWEL less than or equal to the limitation stated, 
the potential number of cases is zero. 
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SI Figure 7.2. Tradeoffs of increasing treatment (i.e. reducing MCL) of Cr(VI) on 
A) cancer and B) non-cancer disease using EPA methodology for a 3,200 person 
population with a 20 µg L-1 influent. Scenario 1A is treating by WBAX with 
HCL/NaOH, 1B is WBAX with H2SO4/Na(OH)2, 1C is WBAX with CO2/air stripping, 2 
is SBAX.  Benefit from 1998 uses official data, while 2010 uses newer draft information.  
1998 Benefit is zero in the top graph, and both benefit lines are zero in the bottom figure. 
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SI Figure 7.3. Tradeoffs of increasing treatment (i.e. reducing MCL) of As(V) on 
A) cancer and B) non-cancer disease using EPA methodology for a 3,200 person 
population with a 20 µg L-1 influent.  Scenario 3A is treating by MO with HCL/NaOH, 
and 3B is MO with no pH control. Benefit from 1998 uses official data, while 2010 uses 
newer draft information. The benefit lines are coincident in the bottom figure. 
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CHAPTER 8 

NANO-COMPOSITE SORBENT  

POLLUTANT REMOVAL PERFORMANCE AND MECHANISM 

1. INTRODUCTION 

The goal of this chapter is to demonstrate performance of the nano-composite 

sorbents. Methods for synthesizing the nanocomposite sorbent infused with titanium (Ti) 

or iron (Fe) nanoparticles into weak base anion exchange (WBAX) have been developed 

as informed by sorbent characteristics and preliminary simultaneous removal capacity in 

Chapter 5 as well as for environmental and human health performance in Chapter 6. They 

now face the culminating test to demonstrate performance in challenging conditions 

during a long term packed bed application.  

The results of this test will first verify the performance of the nano-composite 

sorbents and that they fulfill the goal which was outlined at the onset of the research. 

Secondarily, it also informs future use of the sorbent to identify key operational 

parameters and potential interfering constituents. Lastly, it will shine light on 

mechanistically understanding how the hybrid sorbents remove pollutants, and someday 

therefore inform how they might be regenerated.  

The mechanism of removal for arsenic removal and for chromium removal is 

important to understand in order to maximize performance and improve any current 

limitations hybrid resins may have. One such current limitation with use of WBAX, and 

therefore nano-composite using WBAX also, is that it is unknown how it can be 

regenerated. It has been speculated that Cr(VI) is reduced to Cr(III) on the surface of 
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WBAX because visual observations show the spent resin takes on a green color 

characteristic of solid Cr(III).  

Previous work (McGuire et al. 2007) has explored a spent WBAX commonly 

used for Cr treatment (SIR700). XANES demonstrates that the sorbed Cr(VI) is reduced 

to Cr(III). It is unknown what the electron donor is, but speculated to be the polymeric 

resin backbone or the ion exchange functional groups. SEM images show that the Cr(III) 

is distributed through the resin structure and is not localized. XRD show that the Cr(III) is 

amorphous. XRF showed that the resin has high affinity for Cu also. They observe that 

Cr removal capacity is greater at pH 6 than 7 due to the ion having a -1 charge instead of 

-2 and taking up fewer ion exchange sites, protonation of the weak base anion exchange 

groups, as well as lower competition from hydroxide ion. 

Other recent work (Chaudhary and Farrell 2015) has demonstrated regenerating 

nano-composite sorbents embedded with iron nanoparticles that use either strong base or 

weak base anion exchange resins as the parent material. In that work the FeWBAX could 

be regenerated using only NaOH, whereas the FeSBAX required both NaOH and NaCl to 

regain sorption capacity. In that study the sorbents were loaded only with As, and 

therefore only the iron nanoparticles required regeneration. It is still unclear how the 

anion exchange functional sites were behaving, how it would be different if co-loaded 

with an anion that sorbed via ion exchange like Cr(VI), and how precipitated Cr(III) 

could be removed. It does validate the hope of regenerating composite sorbents, and 

corroborates the approach of using mixed regenerants. 

This chapter aims to show if MOx-WBAX can remove hexavalent chromium and 

arsenic from water in challenging flow through conditions, and if so identify the removal 



  233 

mechanism. It hypothesizes that during treatment of co-occuring pollutants using MOx-

WBAX, the hexavalent chromium is removed by anion exchange and the arsenic is 

removed by metal oxide sorption. The approach is to use column testing of the Ti-WBAX 

and Fe-WBAX resins and compare it to that of WBAX and MO. Comparing 

breakthrough curves and pollutant removal capacities of the hybrid resins to standard 

sorbents could indicate if simultaneous removal on hybrid sorbent is competitive, 

additive, or even synergistic. If the hybrid resins have a similarly shaped breakthrough 

curve for one pollutant as the standard sorbent, that might indicate a similar removal 

mechanism is at work. 

 

2. METHODOLOGY 

Both the Ti-WBAX (Column A) and Fe-WBAX (Column B) were synthesized 

using a 10% precursor concentration solution using Amberlite PWA7 as the parent resin. 

For the Ti-WBAX the hydrolysis time was 24 hours with no acid post rinse. The Fe-

WBAX did have an acid post rinse. Other details of synthesis are elaborated in Chapter 5. 

These synthesis conditions were chosen based on low environmental impacts as shown in 

Chapter 6 and high pollutant removal capacity as shown in Chapter 5. PWA7 (Column C) 

and E33 (Column D) are commercially available sorbents that were used as received.  

Glass columns 1.5 cm inner diameter were prepared with glass beads, glass wool, 

sorbent, glass wool, and glass beads. Each column contained 20 mL of sorbent, giving a 

bed depth of 12 to 13 cm. This was equivalent to between 22 and 26 g of saturated 

sorbent. Columns were operated in downflow at a target influent pump rate of 8 mL/min, 
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giving a target empty bed contact time of 2.5 minutes. Pump rates did fluctuate slightly 

over the 2 month operation period but were monitored daily and re-adjusted as needed. 

Influent was prepared by filling a 330 gallon tank with municipal tap water that 

had been dechlorinated with a carbon filter. It was spiked with 0.4 µM Na2HAsO4 (30 

ppb As(V)) and 0.4 µM K2Cr2O7 (21 ppb Cr(VI)). All four columns were operated 

simultaneously while drawing influent from the same tank, and were run continuously 

through the duration of the experiment to avoid on/off effects. The tank was refilled when 

it became depleted at 13,000 bed volumes and again at 25,000 bed volumes. Influent 

conductivity ranged between 1.27 and 1.49 mS/cm, and pH ranged from 7.9 to 8.2. In 

order to compare this matrix to previous experiments, batch equilibrium bottle tests were 

done with this water matrix and the sorbents under investigation using previously 

described methodology. 

Influent and effluent samples were taken periodically through the column run. 

Metal analysis samples were acidified to 2% nitric acid, stored in a refrigerator, and 

analyzed for total Cr and total As by ICP-MS within 21 days. Ion analysis samples were 

stored in a refrigerator, filtered with a 0.7 µm glass fiber membrane, and analyzed by IC 

(Dionex 2000) within 21 days. 

After completion of the column testing, the spent sorbents were digested to 

recover sorbed constituents. This was completed by removing 50 mg dry weight of 

sorbent from the top, one-third depth, two-third depth, and bottom of the column. Each 

sample was placed in a microwave digestion vessel, added 9 mL nitric acid and 1 mL 

hydrochloric acid, and allowed to predigest overnight. Then each sample was sealed and 

heated in a microwave (MARS XPRESS) at 1600 W power ramping to 175°C over 15 
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minutes, then holding at 175°C for 10 minutes. Digested samples were diluted to 4% acid 

and screened by ICPMS for 61 metals. 

 

3. RESULTS 

Cr and As breakthrough curves for each of the columns are shown in Figure 8.1. 

The TiWBAX removed both pollutants for the first 2,000 bed volumes (BVs). Then the 

As started to breakthrough sharply and reached complete exhaustion by 10,000 BVs. The 

Cr broke through gradually and only reached 80% exhaustion by 35,000 BVs. The 

FeWBAX removed both pollutants for 1,000 BVs. Then the As started to breakthrough 

sharply and reached exhaustion by 4,000 BVs. The Cr broke through gradually and 

reached exhaustion at 35,000 BVs. The WBAX was exhausted for As within 400 BVs, 

and broke through gradually for Cr reaching 75% exhaustion at 35,000 BVs. The MO 

broke through for Cr within 400 BV’s and released any that was sorbed (chromatographic 

peaking) over the subsequent 1,000 BVs. It broke through gradually for As reaching 85% 

exhaustion at 35,000 BVs. 

Measured as the difference between influent and effluent (area above the curve) 

normalized to sorbent dry weight, the TiWBAX removed 14.2 µmol/g of Cr and 5.0 

µmol/g of As. The FeWBAX removed 19.0 µmol/g of Cr and 1.9 µmol/g of As. The 

WBAX removed 24.9 µmol/g of Cr and 0.5 µmol/g of As. The MO removed 0.0 µmol/g 

of Cr and 7.6 µmol/g of As.   
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Figure 8.1. Hexavalent chromium and arsenic breakthrough curves for A) 
TiWBAX, B) FeWBAX, C) WBAX, and D) MO. Columns contained 20 mL of sorbent 
and had 2.5 minutes of empty bed contact time. Influent conductivity was 1.4 mS/cm and 
pH was 8.0. Columns were run continuously from the same influent tank that was refilled 
at 13,000 and 25,000 bed volumes.  
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Figure 8.2 shows the mass of metals detected in the digested raw and spent 

sorbents normalized to dry mass averaged for the entire column depth. Only 19 of the 61 

metals were detected and are illustrated. The mass of Cr found increased from non-detect 

in the raw sorbent to between 0.10% (mass/mass) and 0.15% for the spent TiWBAX, 

FeWBAX, and WBAX. The mass of As found increased from non-detect in the raw 

sorbents to 0.02% in FeWBAX and 0.13% in the MO. Na, Mg, Si, and Ca were detected 

in all samples and generally showed slightly lower levels in the spent sorbent than in the 

raw sorbent. Significantly high levels of Al, V, Ni, Cu, and Zn were found in all of the 

spent sorbents with none in any of the raw resins. Cu in the spent sorbents had the highest 

mass detected of all metals (excluding Fe measured in the Fe-based sorbents), ranging 

from 0.33% – 2.2% of dry mass. Generally the next highest was Zn at 0.27% – 0.78% in 

the spent sorbents, then Al at 0.04% – 0.78% in the spent sorbents. All three were 

detected at higher levels than the target pollutants Cr and As. Very little Ti was found in 

any of the digestates, including for TiWBAX. That is to be expected since Ti is not 

soluble in nitric acid and a much higher mass would likely have been found with a 

digestion using hydrofluoric acid. The other metals of interest are nitric acid soluble. 
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Figure 8.2. Mass of detected metals in raw and spent sorbents normalized to dry 
mass. Digested in nitric/hydrochloric acid by microwave heating. Another 42 metals were 
analyzed but not detected. Spent sorbent values are averaged over four samples taken at 
various column depths. Error bars show two standard deviations where triplicate sets of 
four samples were taken.  
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As a comparative experiment, batch testing was conducted with the four sorbents 

in the same water matrix as the column testing. This allowed comparison between 

column and batch testing results, as well as comparison to previous batch tests conducted 

in simulated groundwater or deionized water. The results of this batch test are shown in 

Figure 8.3. The observed data was used to generate Fruendlich isotherm parameters, then 

the parameters were used to calculate a sorption capacity at 0.4 µM pollutant 

concentration (the same as the column influent). The TiWBAX has pollutant removal 

capacity of 3.2 µmol/g for Cr and 3.3 µmol/g for As. The FeWBAX has pollutant 

removal capacity of 4.5 µmol/g for Cr and 2.3 µmol/g for As. The WBAX has pollutant 

removal capacity of 6.1 µmol/g for Cr and 0.0 µmol/g for As. The MO has pollutant 

removal capacity of 0.0 µmol/g for Cr and 3.5 µmol/g for As. 
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Figure 8.3. Equilibrium batch test results conducted in the same water matrix and 
pollutant concentrations as the column testing. 
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4. DISCUSSION 

Both the TiWBAX and the FeWBAX showed very similar breakthrough curves as 

the parent WBAX in terms of shape and duration. This suggests that the primary sorption 

mechanism for each of the three sorbents was the same, presumably ion exchange. It also 

shows that the iron or titanium hybridization process does not reduce Cr removal 

capacity. The added metal nanoparticles do not seem to inhibit Cr sorption in any way, 

nor do they synergistically augment it in any way. 

Adding the metal nanoparticles did successfully add As removal capacity in the 

TiWBAX and FeWBAX compared to the parent WBAX. This suggests that the removal 

mechanism for As on the hybrid resins was not ion exchange like the WBAX. However 

the As breakthrough curves for the hybrid sorbents did not demonstrate the same shape 

nor duration as the MO curve. If the removal mechanism is sorption to metal oxide like 

the MO, it is perhaps inhibited in some way. This apparent inhibition could be a function 

of metal content. The MO sorbent has 89% metal oxide content whereas the TiWBAX 

has 16% and the FeWBAX has 8%. The MO sorbent had 6 – 11 times more metal oxide 

content but only absorbed 1.5 – 4 times more As. This shows that even though the MO 

had a higher removal capacity the metal oxide in the hybrid sorbents was being utilized 

more efficiently. 

4.1 Potential partial regeneration. A unique and unexpected feature of each 

breakthrough curve is that each shows a dip corresponding to when the influent tank was 

refilled. Both the Cr and As curves exhibit a decrease in the amount of pollutant in the 

effluent, which could be interpreted as a partial sorbent regeneration or restored pollutant 
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removal capacity. No significant difference in column operation, Cr or As influent 

concentrations, pH, or conductivity were observed before and after refilling. 

It is not understood what caused this partial restoration of pollutant removal 

capacity, but discovering and harnessing whatever happened may be the key to unlocking 

the ability to regenerate and reuse hybrid resins and WBAX in general. It could inform 

the pollutant removal mechanism, and the ability to reuse the sorbent could reduce the 

overall environmental impact of its use compared to the current practice of single pass 

through followed by transportation and disposal.  

Two possible causes of the partial regeneration are theorized and future work 

proposed in the following section seeks to prove or disprove them each. The first 

possibility is that the partial regeneration could be due to the presence of oxidants. 

Residual chlorine in the influent would have volatilized during long term storage in the 

influent tank (days to weeks). The oxidation potential of the influent water would be low 

as it entered the column bed, providing conditions favorable for precipitation of Cr(III) 

on the resin. When the tank was refilled, any residual disinfectant in the refilled water 

would have raised the oxidation potential that could then oxidize the precipitated Cr(III). 

This would open functional sites to allow for future sorption and allow access to blocked 

internal pores for internal diffusion. Ability to regenerate an ion exchange resin with a 

widely available chemical such as chlorine would be remarkable. 

The second possibility is that co-occurring metals in the influent could cause the 

regeneration. High levels of copper and other metals were found sorbed to the spent 

resins (Figure 8.2). These were presumably introduced into the system from the refill tap 

water that came through copper pipes. This metal could have precipitated on the sorbent. 
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Similarly to the function of the MOx nanoparticles, the precipitated metals would create 

fresh sorption surface allowing additional pollutant removal. 

4.2 Comparing experimental results. The mass of pollutant removed from 

solution in the column test can be compared to that found in the spent sorbent digestion. 

The TiWBAX removed 5,762 µg Cr and 2,916 µg As in column testing. Digesting 

recovered 6,838 µg Cr and 597 µg As (+19% and -80% error respectively). The 

FeWBAX removed 5,845 µg Cr and 859 µg As in column testing. Digesting recovered 

6,874 µg Cr and 994 µg As (+18% and +16% error respectively). The WBAX removed 

7,492 µg Cr and 231 µg As in column testing. Digesting recovered 7,640 µg Cr and 12 

µg As (+2% and -95% error respectively). The MO removed 10 µg Cr and 14,241 µg As 

in column testing. Digesting recovered 2,872 µg Cr and 33,730 µg As (+28,620% and 

+137% respectively).  

Generally, the mass of pollutant on the spent resin found by digestion was 

consistent with mass removed by the column. Error from the digestion method is 

attributed to the large dilutions required for analysis. This is particularly evident in the 

mass of Cr supposedly recovered by the MO. Even though little more than the analytical 

detection limit of Cr was measured, after the large dilution factor was applied it appears 

to be a large number compared to what was removed by the column. Error from the 

column method is attributed to interpolating mass removed and flow rates in between 

sample points. Error cannot be attributed to pollutant already sorbed to the sorbent 

because no Cr or As was found on the raw sorbents upon digestion. 

Sorbent capacity determined by batch testing to column testing is next compared. 

The TiWBAX column removed 14.2 µmol/g of Cr and 5.0 µmol/g of As. Batch testing 



  244 

predicts pollutant removal capacity of 3.2 umol/g for Cr and 3.3 umol/g for As. (-77% 

and -34% error, respectively). The FeWBAX column removed 19.0 µmol/g of Cr and 1.9  

µmol/g of As. Batch testing predicts pollutant removal capacity of 4.5 umol/g for Cr and 

2.3 umol/g for As (-76% and +21% error, respectively). The WBAX column removed 

24.9 µmol/g of Cr and 0.5 µmol/g of As. Batch testing predicts pollutant removal 

capacity of 6.1 umol/g for Cr and 0.0 umol/g for As (-75% error for Cr). The MO column 

removed 0.0 µmol/g of Cr and 7.6 µmol/g of As. Batch testing predicts pollutant removal 

capacity of 0.0 umol/g for Cr and 3.5 umol/g for As (-54% error for As). 

Sorption capacity demonstrated in column mode is nearly always 2 – 5 times 

higher than that shown in batch mode. Numerical results obtained from these two testing 

methods are of course not truly fairly compared because different sorption drivers are at 

play. For example, in column mode the pollutant concentration is continually replenished, 

whereas in batch it reduces as pollutant is sorbed. Kinetics and intraparticle diffusion play 

critical roles in column mode sorption, compared to batch testing which has been given 

sufficient time to reach pseudo-equilibrium conditions. However the trends demonstrated 

between the two methods are informative, including relative performance of the sorbents 

compared to eachother, and relative contaminant preference shown for each sorbent.  

Lastly, batch results conducted in the dechlorinated tap water column influent are 

compared to previous batch tests conducted in simulated groundwater. Using the 

Fruendlich isotherm parameters presented in Chapter 5 and a pollutant concentration of 

0.4 µM, the TiWBAX has a pollutant removal capacity in simulated groundwater of 4.6 

µmol/g for Cr and 3.7 µmol/g for As. The dechlorinated tap water results are -30% and -

11% relative error respectively compared to the simulated groundwater. The FeWBAX 
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has a pollutant removal capacity of 9.1 µmol/g for Cr and 5.2 µmol/g for As (-51% and -

56% error respectively). The WBAX has a pollutant removal capacity of 19.1 µmol/g for 

Cr and 0.0 for As (-70% error for Cr). The MO has a pollutant removal capacity of 0.0 

µmol/g for Cr and 4.1 µmol/g for As (-15% error for As). 

In all cases the sorbents performed better in simulated groundwater than in 

dechlorinated tap water. There are multiple reasons why this could have happened. Most 

likely this is a function of starting concentration. The simulated groundwater batch tests 

were conducted with a starting concentration of 2 µM pollutants, whereas the tap water 

tests were conducted with a starting concentration of 0.4 µM pollutants. Even though the 

calculated capacities were projected to 0.4 µM in both cases, the higher starting 

concentration for the simulated groundwater would provide a higher gradient to drive 

sorption and cause higher energy sorption states. This underscores the importance of 

conduction batch tests at the same concentration to have truly comparable results. 

Another reason for the higher capacities could also be that the dechlorinated tap water 

would have some fraction of organic content whereas the simulated groundwater has only 

inorganic constituents. The organic constituents could interfere with sorption in 

unexplored ways.  

 

5. FUTURE WORK 

The answers to the questions that have been discovered in this dissertation are 

hopefully valuable in advancing the state of science for nano-composite sorbents and 

simultaneous pollutant removal, but also inspire further questions to address in the future. 

This section explores questions and proposes experiments that continue this line of 
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research. The focus is on further developing understanding of the pollutant removal 

mechanism and to explain the observed partial regeneration in order to unlock the ability 

to regenerate MOx-WBAX resin. 

Hypotheses that can be considered in the future include: 

·  Hexavalent chromium is reduced to trivalent chromium on the surface of 

WBAX (or MOx-WBAX) and precipitated, while resin polymer is 

oxidized. 

·  MOx-WBAX can be regenerated in a three-step process of caustic rinse, a 

strong oxidant rinse, then an acid rinse.  

5.1 Explore the removal mechanism. To explore the mechanism of removal the 

total ion exchange capacity could be measured via standard acid titration methodology 

before and after nano-metal impregnation. If the total exchange capacity has not been 

significantly reduced this will support the idea that the metal nanoparticles do not take up 

exchange sites themselves. This capacity would be compared to the pollutant removal 

capacity observed in column testing in the preliminary data. The removal mechanism 

hypothesis would be further explored by comparing the charge concentration of 

pollutants removed from treated water with the charge concentration of counterion 

introduced to the treated water from the column test. If the counterion concentration is 

similar to the concentration of chromate removed but not the total concentration of 

chromate plus arsenate removed, it would support that one pollutant is removed by a 

mechanism other than ion exchange (presumably by sorption). 

Previous batch equilibrium tests could be further examined using a Dubinine-

Radushkevich isotherm model. Using linear regression this model estimates a free energy 
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of sorption constant, E, which is the free energy change when 1 mole of ion is transferred 

to the surface of a solid (Landry et al. 2015). E values of 8 < E < 16 kJ/mole indicate pure 

ion exchange mechanisms of sorption, while E values E<8 indicate van der Waals 

interactions (Alberti et al. 2012, Antonio et al. 2004, Dominguez et al. 2011, 

Mahramanlioglu et al. 2002) 

5.2 Spent sorbent imaging. To explore the mechanism of removal and oxidation 

state of the sorbed pollutants, elemental mapping images of the parent resin, the hybrid 

resin, and spent hybrid resin could be explored by SEM and NanoSIMS.  The images of 

the hybrid resin would describe the location of metal nanoparticles through the polymeric 

structure. The images of spent resin would locate where the removed pollutants 

ultimately reside, and correlations hopefully will emerge such that concentrations of one 

pollutant are coincident with locations of metal oxide nanoparticles. Other 

characterization tools could also be used including XAFES and XRD. This will identify 

the crystalline mineralogy of the embedded nanoparticles and the oxidation state of 

sorbed Cr and As. This would indicate if Cr(VI) is in fact reduced and precipitated on the 

surface as opposed to sorbed by ion exchange as Cr(VI), and if a similar process does or 

does not happen to As. 

5.3 Jar tests for mechanism. A set of equilibrium experiments to elucidate the 

fundamental mechanism of pollutant removal could be conducted. First, hexavalent 

chromium would be mixed in a jar test with tertiary amines in different forms, such as 

aqueous dimethylamine or coagulant polymers with tertiary amine groups. This would be 

done with and without acidification, then measure results using spectrophotometry with 

the diphenylcarbohydrazide method to analyze reactive Cr(VI) (10-700ppb quantification 
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limit). It would show that chromium is reactive with tertiary amines and that tertiary 

amines do require acidification to become ionized and able to perform ion exchange. 

More importantly it would show that the tertiary amines by themselves do or do not 

reduce hexavalent chromium to trivalent chromium. 

A similar test could be done mixing aqueous hexavalent chromium with solid 

trivalent chromium. The solid trivalent chromium experiment would show if adsorption 

and precipitation on previously sorbed chromium is a mechanism for further chromium 

removal. This could demonstrate what is happening on the surface of the polymeric resins 

after hexavalent chromium is reduced, explaining if removal after that is due to opening 

up the ion exchange site for future removal or if it is adsorbed directly on the precipitated 

metal.  

Another test mixing chromium and chlorine could be conducted. The chlorine 

experiment would demonstrate if an oxidant can restore the reactivity of the precipitated 

trivalent chromium. It is discussed further in the following section since it connects to 

column regeneration. 

A last jar test mixing hexavalent chromium and arsenic and precipitated copper 

could be performed. Copper is of interest since high amounts were found sorbed to the 

spent sorbent in the column test (see Figure 8.2). This would be done by making a 

solution of aqueous copper, then adding a precipitating agent. After enough time to allow 

some precipitation, it would be spiked with hexavalent chromium and arsenic. Reactive 

Cr(VI) concentration and arsenic would be measured over time. This would show if 

Cr(VI) or As sorbs to (or is somehow reduced by) freshly precipitated copper. Results 

would serve as a null hypothesis that the pollutant removal is not actually due to 
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precipitated metal commonly found in tap water completely inconsequential to the 

performance of the hybrid sorbent.  

If the tertiary amine group in absence of resin is not able to reduce Cr(VI) to 

Cr(III), it would corroborate that the polymeric resin backbone is the electron donor. 

However, by itself this would not indicate why this phenomenon is observed on only 

WBAX and not SBAX. This implies that an unknown component of the polymeric resin 

backbone that is unique to WBAX does so. Product data sheets for Amberlite PWA7 and 

ResinTech SIR-700, two chromate specific WBAX resins known to precipitate green 

chromium, list the polymer structure as “cross linked polycondensate” and “epoxy 

polyamine” respectively. These are common descriptors used by many ion exchange 

resins and do not give any clue what polymeric constituents or crosslinking agents could 

be the unique reducing agent. As these constituents are likely proprietary information it 

will then be unlikely to be able to prove exactly what specific constituent is the electron 

donor. Carrying out these jar tests in absence of resin will at least prove or disprove that 

the resin backbone is vital to the reaction occurring.  

If it is found that the resin is required to reduce Cr(VI) to Cr(III), an increase in 

DOC would be observed in the column effluent. This would need to be tested in very low 

DOC water since the increase would be very small compared to the amount of DOC 

commonly found in surface water. If it is found that the tertiary amine group itself is 

reduced, then an increase in ammonia would be observed in the effluent. 

An additional experiment that could show the electrons are coming from the resin 

is to electrically ground the resin and prevent the transfer from occurring. This is the 

same thing that is done when imaging ion exchange resin by SEM by coating the resin in 
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silver epoxy to conduct electrons away and prevent image whitening. An experiment 

should be run by connecting the resin column to a conductor that prevents electrons from 

the static polymeric backbone from reaching sorbed Cr(VI). That would further show that 

the polymeric structure itself is the reducing agent as opposed to a surface concentration 

gradient. 

A null hypothesis is that the chromium is reduced by organics in the bulk influent 

solution. This could be tested by performing the column test in highly purified water with 

high oxidation potential. Then if the Cr(VI) is still reduced it is shown to be inherent to 

the function of the sorbent. But if the Cr(VI) is not reduced under the same conditions 

that it would have been reduced by tap water it shows that bulk water constituents 

participate in the reduction reaction. 

5.4 Column regeneration tests. Some column regeneration experiments could be 

conducted to inform the removal mechanism. A few columns of hybrid sorbents will be 

saturated with both arsenic and hexavalent chromium. The first experiment will be to try 

to regenerate them using individual solutions of chloride, caustic solution, and mixed 

chloride/caustic solution. If the chloride solution shows that the chromium removal 

capacity has been replenished without replenishing arsenic capacity, it will suggest the 

ion exchange was regenerated and chromium is primarily removed in this manner. 

Similarly, if the caustic solution regenerates the metal hydroxide surfaces such that 

arsenic capacity is restored but not chromium, it will suggest that is the primary 

mechanism of removal for that pollutant. This experiment may have a fatal flaw though if 

the parent WBAX is not regenerable to start with. It will work if the Cr(VI) is sorbed by 
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ion exchange, but will give a false negative if the Cr is reduced to Cr(III) and precipitated 

as previously suggested. This means that additional steps involving oxidation are needed.  

Hence is the proposed hypothesis that caustic, oxidant, and acid are required to 

fully regenerate the column. The caustic rinse intends to strip sorbed arsenic from the 

metal nanoparticles and regenerate the arsenic removal capacity. Unfortunately this will 

also “un-functionalize” the tertiary amine ion exchange groups, similar to that observed 

during the hybrid synthesis process. The second rinse with strong oxidant, such as 

chlorine, will oxidize and remove the precipitated trivalent chromium. Lastly the acid 

rinse will restore the ion exchange capacity of the tertiary amine ion exchange groups for 

restored hexavalent chromium removal capacity. This regeneration scheme will be 

analyzed with life cycle assessment to verify that the environmental impact of such a 

chemically intense regeneration procedure is still lower than synthesizing new sorbent. 

Therefore the second regeneration experiment that will be run will seek to verify the 

effects of each step in the proposed regeneration procedure by comparing column test 

performance of spent sorbent that has undergone only one, two, or all three of these steps. 

If this procedure still does not restore Cr(VI) removal capacity, a possible salt rinse step 

can be added with the intent to displace the chromate from the ion exchange functional 

groups. 

To verify that a strong oxidant such as chlorine can oxidize the precipitated 

Cr(III), this could be tested in the absence of the resin. Cr(III) could be precipitated in an 

aqueous solution using a supersaturation of salts or by causing reduced conditions 

through lowering the dissolved oxygen by bubbling nitrogen gas. Into various bottles will 

be added known doses of chlorine, including a zero dose as a control. Under reduced 
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conditions the equilibrium state for Cr in water is as Cr2O3(s) which is Cr(III) and green 

in color. Increasing the oxidation potential of the solution by the presence of chlorine will 

shift the equilibrium higher to CrO4
-2 which is Cr(VI). I will measure the concentration of 

Cr(VI) spectrophotometrically. 

 

6. CONCLUSIONS 

This study has shown: 

·  The hybrid nano-composite sorbents that were optimized for 

environmental performance and sorbent characteristics can remove Cr(VI) 

and As(V) simultaneously from a challenging water matrix in packed bed 

flow through testing. It required little operational attention and no pH 

adjustment, confirming the applicability for use in small systems. 

·  The addition of iron or titanium nanoparticles does not reduce the capacity 

of the parent WBAX resin to sorb Cr(VI) compared to the WBAX resin.  

·  Similarly shaped Cr(VI) breakthrough curves demonstrated by the 

FeWBAX and the TiWBAX as the WBAX resin suggests that the 

mechanism of removal on the nano-composite sorbents is still anion 

exchange. 

·  Co-constituents in the influent also sorb to the sorbent and possibly reduce 

the sorbent capacity for the target pollutants. The most highly sorbed co-

constituents were Cu, Zn, and organic matter from tap water (especially as 

compared to simulated groundwater with only inorganic constituents). 



  253 

CHAPTER 9 

DISSERTATION SYNTHESIS 

INTRODUCTION 

The purpose of this chapter is to summarize the dissertation and answer the 

research questions and hypotheses that have been presented. The next section 

“Associated Products” presents tangible accomplishments achieved while producing this 

research. Next, “Answering the Research Question” demonstrates how the research 

answered the original overarching research question. Finally, “Broader Impacts” 

supposes how this work can affect the water industry, science, and society. It provides 

concluding take away messages for different water industry stakeholders. 

 

ASSOCIATED PRODUCTS 

This work has been in development for five years. During that time it has 

produced deliverables, accomplishments, and been disseminated in various forms. This is 

a review of the tangible products and achievements that are associated with this work. 

Research funding. As a graduate student I have been awarded $126,000 in 

research grants, $159,580 in school-sponsored fellowships, and $50,680 in private 

scholarships.  

Awarded research grant. The research presented in this dissertation was funded 

by the United States Environmental Protection Agency Science to Achieve Results 

(STAR) Fellowship for Graduate Environmental Studies. This nationally competitive 

fellowship supports outstanding graduate students specializing in the environmental 

arena. The application underwent multiple layers of review and included a five page 
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research proposal, a two page personal statement, three letters of recommendation, and a 

curriculum vitae. It was worth up to $42,000 per year for up to three years to cover 

tuition, expenses, and living stipend. 

My grant is titled “Simultaneous Removal of Inorganic Pollutants by Sorbents for 

Small Drinking Water Systems”. The application was submitted to EPA-F2013-STAR-

E1: Drinking Water in Fall 2012, awarded in Spring 2014, and funding began in Fall 

2014. The research proposes to develop the science and technology of sorption processes 

for simultaneous removal of inorganic pollutants. The focus is on inorganic pollutants 

due to their occurrence and toxicity in groundwater. The context is small drinking water 

systems due to the disproportional health risk people served by these systems face. It is 

novel since it develops simultaneous removal of multiple pollutants instead of standard 

competition. As an EPA STAR fellow, the goal is to develop water treatment technology 

and scientific understanding, and disseminate the research results for widespread benefit 

to human health. 

The grant included three thrusts: 

1. Commercially available sorbents designed for specific pollutant removal 

have limited ability to simultaneously remove multiple inorganic 

pollutants.  

2. Hybrid media synthesized by iron nanoparticle impregnation to anion 

exchange resin can simultaneously remove multiple inorganic pollutants. 

3. Hybrid media removes As through iron adsorption and is diffusion 

limited, while Cr is removed through anion exchange and is capacity 

limited. 
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The first thrust sought to answer whether hope of simultaneous removal of 

important groundwater contaminants already exists or if it needs to be developed. This 

intended to have the broad impact of informing residents of small communities of their 

current options to provide safe drinking water. It also allowed water treatment systems 

that already utilize these sorbents to understand the possible side health benefits they are 

experiencing. The second thrust sought to answer if an anion exchange resin with a high 

capacity to remove one pollutant can maintain that capacity after metal oxide 

impregnation. This would show that simultaneous removal capacity can be cumulative or 

even synergistic as opposed to competitive. The impact of this finding would be to 

drinking water treatment systems that currently use any of these resins to know that 

removal of other pollutants can be achieved by use of hybrid media. The third thrust 

sought to answer what mechanism removes multiple pollutants in hybrid media. This 

answer would enable scientists to optimize resin synthesis for multiple pollutant removal. 

It would impact small systems by predicting performance of hybrid resins for preliminary 

screening without need for extensive laboratory or pilot experimentation. Results of the 

overall research would maximize the potential for broader impacts by widely 

disseminating the results through publication in peer reviewed journals, presentations at 

specialized conferences, and presentations for generalized audiences.  

Submitted grant applications. Previous to being awarded the 2013 EPA STAR 

fellowship, I submitted four research grant applications for similar fellowships that were 

not funded. I submitted applications to each the Graduate Fellowship Research Program 

(GRFP) sponsored by the National Science Foundation and the STAR Fellowship for 

Graduate Environmental Studies sponsored by the Environmental Protection Agency in 
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both Fall 2010 and Fall 2011. I prepared each proposal in conjunction with my advisor 

Dr. Paul Westerhoff. He supplied the premise for the research project and at least one 

written review of the submittal materials. I carefully studied review comments from each 

application for the improvement of subsequent applications. I also obtained non-technical 

reviews before submittal from the department grant writing specialist.  

Other awards. The school-sponsored fellowships I have received include the 

Dean’s Fellowship supplied by the School of Sustainable Engineering and the Built 

Environment, and Research Assistant support from research grants awarded to my 

advisor Dr. Paul Westerhoff. These fellowships provided tuition waivers, health 

insurance, and a living stipend.  

I have been awarded 17 private scholarships funded by generous private donors 

and professional associations pursuant from over 45 submitted applications. The most 

prominent awards are the Ron & Sharon Thomas Fellowship, the Achievement Reward 

for College Scientists (ARCS) Fellowship, and the AZ Water Association Scholarship. 

The Thomas Fellowship is intended to support a non-traditional doctoral student in 

ASU’s Ira A. Fulton Schools of Engineering. Dr. Ron Thomas completed his doctoral 

degree from ASU in mechanical engineering while raising a young family. After a 

successful and impactful career in designing aviation instrumentation, he along with his 

wife Sharon provide this generous fellowship to pay it forward to other young engineers. 

The ARCS Foundation is a national organization that boosts American leadership and 

aids advancement in science and technology. The local member who sponsored my 

fellowship is Irene Douglas, a long-time member who has helped many graduate students 

and the advancement of science in Arizona. The AZ Water Association is a professional 
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association for water professionals that has provided many opportunities to disseminate 

my research, network with industry professionals, and participate in educational outreach 

activities. Together, these scholarships have funded personal expenses while a graduate 

student, allowing me to forego getting an outside job and focus on my studies. The most 

invaluable impact was therefore to allow me to succeed at school while still having time 

for my young family. 

Publications. As a graduate student I have published one original research peer 

reviewed scientific journal article entitled “Phosphorus Recovery from Microbial Biofuel 

Residual Using Microwave Peroxide Digestion and Anion Exchange”. The full citation is 

below. This paper was created as a master’s thesis, grew with some additional lab work, 

and was further refined by co-author reviews and peer reviewer comments. The final 

form is also included in this document as Chapter 3. 

·  Gifford, M., Liu, J., Rittmann, B.E., Vannela, R., Westerhoff, P., 2015. 

Phosphorus Recovery from Microbial Biofuel Residual Using Microwave 

Peroxide Digestion and Anion Exchange. Water Research 70, 130-137. 

DOI:10.1016/j.watres.2014.11.052. 

Many lessons were learned from this research. I learned the value of working on 

an interdisciplinary team to create novel research. This collaboration involved 

microbiologists, engineers, and ecologists and helped developed technology at the 

interface of all these traditional disciplines. This interdisciplinary effort did come with 

various challenges too. It required me to become familiar with physical laws, methods, 

bodies of literature, and processes that were outside my area of specialty, which took 

extra effort and time. It also was difficult to find the right journal for publication. While 
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the paper was construed around biotechnology and green energy, the core processes 

being investigated were water treatment. That may have contributed to the journals 

seeming to have difficulty finding qualified peer-reviewers, ultimately resulting in three 

biotechnology-focused journals declining to publish it before a water-focused journal 

accepted it.  

It is my intent to publish the other chapters of this dissertation that contain 

original research in peer reviewed scientific journals. Chapters 4 through 7 are presented 

in this dissertation as draft manuscripts ready for review with co-authors and imminent 

journal submission. Chapter 8 requires some further research, story development, and 

manuscript preparation, but this document will still aid in its eventual publication. 

Presentations. I have given eight peer reviewed scientific conference 

presentations related to my research as a graduate student. Two were at a national level 

conference (WQTC 2014, SNO 2015), one at a regional level conference (ICS 2013), and 

five at state level conferences (AZWater and GPSA). Presenting at these conferences has 

represented Arizona State University as being on the cutting edge of technology 

development. I have gained very valuable feedback on my research, which I have been 

able to use to direct the future development. It has opened networking and collaboration 

opportunities with other treatment professionals and testing on real world waters with 

public utilities. Conference presentations has been a very valuable tool to disseminate 

research. 

In addition I have given six invited lectures and 12 poster presentations regarding 

my research. Invited lectures include lunch seminars on multiple university campuses. 

Poster presentations include local, state, and national level conferences. These lectures 
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are usually a longer and more casual format compared to conference talks. The poster 

presentations are a much more personal interaction with the audience, which allows the 

chance to adapt the message to his or her level of interest and understanding. They also 

provide an opportunity to attend conferences in more interdisciplinary settings where I 

would not be comfortable giving a full talk to specialists in their field of expertise, but 

still appreciate sharing my thoughts and hearing their input. Both of these forms of 

dissemination have led to good feedback guiding my research and practice presenting my 

data in a clear fashion.  

 

ANSWERING THE RESEARCH QUESTION 

The objective of the proposed research is to address the overarching question: 

Can synthesis methods of hybrid nano-sorbents be improved to increase sustainability 

and feasibility to remove multiple inorganic contaminants simultaneously from 

groundwater compared to existing sorbents? Here each research question and hypothesis 

is reviewed to clearly identify how it contributes toward answering this question, and 

therefore how each chapter builds upon each other to create a cohesive overall story. 

Research Question 1 deals with recovering the inorganic oxygenated anion 

phosphate from a complex organic matrix. A hybrid nano-enabled sorbent with iron 

nanoparticles embedded into a strong base anion exchange resin was compared to a 

standard strong base ion exchange sorbent. I found that the hybrid sorbent could remove 

98% of the influent phosphate in column mode, and the ion exchange sorbent captured 

87%. However, the hybrid resin only released 23% of the P upon regeneration, and the 

ion exchange resin released 50%. This confirmed Hypothesis 1. From a recovery and 
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reuse point-of-view it is concluded that the standard sorbent worked better. But by 

shifting the paradigm to removal, the hybrid sorbent demonstrated a high affinity and 

capacity to remove inorganic contaminant even from a complex aqueous matrix. This 

contributes to answering the overarching research question by understanding that a 

hybrid sorbent has a higher capacity to remove an inorganic pollutant than an existing 

sorbent. 

Research Question 2 then sought to quantify how well the currently available 

sorbents can remove multiple inorganic contaminants. Industry-leading sorbents were 

compared to hybrid sorbents synthesized by existing methodology for their ability to 

remove the oxygenated anions chromate and arsenate from a challenging groundwater 

matrix by via batch testing using a Simultaneous Removal Capacity (SRC). I found that 

the hybrid sorbents had a higher capacity to remove both pollutants simultaneously in 

batch mode, scoring three of the top five highest SRC scores of all sorbents tested. They 

also worked for a few thousand bed volumes in column mode at high influent 

concentrations, but struggled at low concentrations. This confirmed Hypothesis 2. This 

contributes to answering the overarching research question by verifying the potential for 

hybrid sorbents to remove multiple inorganic contaminants from groundwater is greater 

than other existing sorbents, but that the performance has opportunity to be improved. 

The next questions explore if the hybrid synthesis process can be improved; first 

in regards to sorbent characteristics, then in regards to sustainability. Research Question 3 

explored improving characteristics of the nano-composite sorbents. Various synthesis 

conditions were explored, such as precursor concentrations and hydrolysis times, with 

resulting effect on sorbent characteristics and pollutant removal ability. I found that an 
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acid post rinse greatly improves the ability of the Fe-WBAX sorbent to sorb chromate 

and arsenate. I also found that metal content and total surface area increases by increasing 

metal precursor concentration up to 100%. However a 10% or 50% precursor 

demonstrated higher pollutant removal capacity and more usable pore size distribution, 

inferring that too much metal blocks pores or agglomerates nanoparticles thus reducing 

their utility. This rejected Hypothesis 3. When synthesized under the correct conditions, 

the equilibrium chromium removal capacity had only negligible decrease while the 

arsenic removal capacity had significant increase compared to the parent resin. This 

confirmed Hypothesis 4. Together these findings contribute to answering the 

overarching question by showing how the synthesis process can be improved to increase 

sorbent capacity which in turn decreases environmental impact and improves multiple 

pollutant removal ability. 

Research Question 4 anticipated the environmental and human health impacts of 

the hybrid sorbent life cycle normalized to the existing technology. First, the 

environmental impacts of using the hybrid sorbents was explored through anticipatory 

life cycle assessment. I found that the environmental impacts of the titanium hybrid 

sorbents can be reduced by altering the synthesis procedure to minimize oven heating 

time and chemical solvent use. The impacts of the iron sorbents could be improved by 

maximizing pollutant removal capacity through acid rinsing to use less sorbent to treat 

the same volume of water. For all environmental impact categories studied, the titanium 

hybrid sorbents had lower impact than the iron sorbents. This confirmed Hypothesis 5. 

The hybrid sorbents (after the environmental performance improvements) could remove 

multiple pollutants and therefore had a lower environmental impact for most all impact 
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categories than using mixed beds. This helped to answer the overarching question by 

proactively improving the hybrid sorbent synthesis protocol to increase sustainability. 

The second part of Research Question 4 analyzed the human health impacts of 

treating the target groundwater contaminants. Life cycle assessment was used to compare 

the health burdens of producing and using processed goods to create clean water against 

the health benefits of drinking water with lower levels of pollutant. I found that the total 

number of cancer and non-cancer cases expected to be caused during the manufacture 

and use of water treatment energy and materials were fewer than the number of cases 

expected to be prevented from drinking safer water. This suggests that water treatment 

decreases the overall human health risk, and confirmed Hypothesis 6. However I also 

found that treatment causes significant shifts in the types and locations of those cases. 

The people who enjoy the health benefit of treated water are a disperse population local 

to the water treatment facility that avoid cancer risk. The people who bear the burden of 

providing that treatment are largely factory workers who produce pH control chemicals 

and energy required to produce them incurring non-cancer disease risk. The treatment 

therefore exports, concentrates, and changes the type of health risks incurred. These 

findings informed the overall research question by verifying that wellhead treatment of 

the target pollutants does provide overall benefit to human health risk, but identified that 

it should be done avoiding dependence on pH control chemicals to not export disease. 

Research Question 5 focused on demonstrating the hybrid sorbent works for the 

intended purpose and shines light on the mechanism of removal for each pollutant. When 

employed in a packed bed flowthrough condition with challenging influent matrix, the 

hybrid sorbent optimized for environmental performance and sorbent characteristics 
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successfully removed both pollutants for a certain duration with little operational 

intervention and without requiring pH adjustment of the influent water. This further 

confirmed Hypothesis 4. The breakthrough for arsenic seemed to follow the same pattern 

as shown by metal oxide sorbents, and that for chromate followed the pattern shown by 

weak base anion exchange. This supported but did not prove Hypothesis 7. Some 

partial regeneration was observed by changing column influent, which may be related to 

increased influent copper or chlorine. The results contributed to answering the 

overarching question by verifying that the hybrid sorbent does demonstrate higher 

pollutant removal ability than existing sorbents, and because understanding how the 

sorbent works may illuminate further improvements to the synthesis protocol. 

Looking at this work as a whole, it is clear that iron or titanium nanoparticles 

embedded weak base anion exchange resins do have higher affinity for and capacity to 

remove arsenic and chromium simultaneously from groundwater compared to existing 

sorbents. The synthesis methods were improved to increase sustainability through 

minimizing hydrolysis time and reducing mass of required sorbent. The method was 

improved to increase removal capacity by optimizing metal precursor concentration and 

using an acid post-rinse. The synthesis methods of hybrid nano-sorbents were improved 

to increase sustainability and ability to remove multiple inorganic contaminants 

simultaneously in groundwater compared to existing sorbents. 

 

BROADER IMPACTS 

The primary way that this research hopes to impact the broader community is to 

inspire use of different values and approaches to make water related decisions. Many of 
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the findings herein challenge pre-existing procedures, and those who read this may think 

about their own work in different ways. This applies to the focus of those who develop 

drinking water treatment technology, owners and operators of water treatment facilities, 

and regulators who decide policy that they follow. 

Technology Developers. Technology developers can take away a number of 

findings to inspire their work. First is to strongly consider the water matrix used to test 

treatment efficacy. Many studies use very high pollutant concentrations and very clean 

water to show how well a novel technology works. This study has shown that removal 

efficacy can be drastically reduced in a complex organic matrix compared to deionized 

water (chapter 3), and in a synthetic groundwater compared to deionized water (chapter 

4). A treatment method that showed high promise at lab scale with high pollutant 

concentration performed poorly in a field test at low pollutant concentration (chapter 4). 

Testing a novel technology in challenging conditions (for example, those shown in 

chapter 8) will inevitably not portray the technology in the best case scenario, but will 

give results that are dependable to those who can actually employ the technology and will 

avoid disappointing performance when fully deployed.  

Technology developers may next take note of the potential of titanium dioxide 

nanoparticles as adsorbents over those of iron hydroxide. Much of the nanotechnology 

development has focused on iron hydroxide as a sorbent and titanium dioxide as a 

catalyst and photocatalyst. This work has shown that titanium dioxide is a superior 

nanosorbent for arsenic removal from drinking water compared to iron hydroxide. It has a 

higher sorption capacity for arsenic in batch equilibrium testing (chapter 5), and a longer 

duration before exhaustion for arsenic and chromium removal in column testing (chapter 
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8).  Additionally, its creation and use has a lower environmental impact (chapter 6). 

Attention toward minimizing the energy demand in heating required for hydrolysis can 

continue to reduce this impact (chapter 6). 

Another approach that technology developers can take away from this study is 

that nanocomposite sorbent synthesis processes should be specifically tailored for the 

application and macrostructure. Some have previously claimed that some novel method 

of preparing a nanoparticle would be applicable to any sorbent or porous structure for 

removal of any pollutant. This study has shown instead that the nanocomposite sorbent 

should be tailored for the specific application to reach higher removal efficiency. A 

nanocomposite sorbent developed for nitrate and arsenic removal did not work well for 

chromium and arsenic removal (chapter 4). The nanocomposite synthesis process 

developed with strong base anion exchange resin as the macro-material did not work well 

for use with a weak base anion exchange resin and additional steps were required 

(chapter 5).  

The last suggested value that technology developers can glean to apply to their 

work is the viability of including sustainability metrics as design constraints. This study 

has demonstrated that anticipatory life cycle assessment can proactively identify critical 

contributions to environmental impacts during the nascent design phase of a novel 

technology (chapter 6). There is of course large uncertainty associated with how the 

technology will develop into the future and change with scale up, but no one can be better 

to address this uncertainty than those that are doing the development. Identifying these 

environmental impacts may possibly be synergistic with other design constraints such as 

treatment efficiency, energy usage, and cost. This study has further demonstrated that 
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sustainability analysis can even be used to justify the need to employ a technology for 

overall human health benefit (chapter 7). Technology developers can approach their work 

with an eye toward environmental consequences during development instead of only as 

an afterthought. 

Treatment Facility Owners and Operators. People who own and operate water 

treatment facilities can acquire additional values with which to select treatment processes. 

It may not be necessary to install a dedicated process for each pollutant of concern. In the 

event that new regulation for a pollutant is enacted (such as a new hexavalent chromium 

rule or lowered total chromium rule), it may be possible to use the same infrastructure 

already installed and simply replace the sorbent media with something that can address 

multiple pollutants. This can simplify operation and reduce cost compared to adding a 

whole new contactor. This study has shown the viability of using treatment processes that 

address multiple pollutants simultaneously. Nanocomposite sorbents can remove both 

hexavalent chromium and arsenic (chapter 5 and chapter 8). This can even be done at a 

lower environmental footprint compared to the traditional approach of having separate 

dedicated processes (chapter 6). In general, owners may also shy away from treatment 

technologies that require high daily chemical input such as pH control in order to have 

the highest total benefit to the health of the customers (chapter 7). 

Regulators. This research hopes to inspire values that regulators can use to 

decide how to enact water quality policy. The current strategy for choosing which 

potential contaminants to regulate and at what levels typically considers occurrence, 

analytical ability, and cost to treat to compliance. This research has shown that the 

embodied health risk in providing treatment to meet the potential regulation is non-
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negligible (chapter 7). Consideration of new regulations should include not just the direct 

health risk avoided to the population drinking treated water, but also the indirect health 

risk borne by the subpopulation that creates the energy and materials required to meet the 

regulation.  

 

gg 
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