Multi-Input Single-Inductor MPPT Regulator with Sliding-Mode Controller

by

Yu Geng

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved May 2017 by the
Graduate Supervisory Committee:

Sayfe Kiaei, Chair
Bertan Bakkaloglu
Jennifer Kitchen

ARIZONA STATE UNIVERSITY
August 2017
ABSTRACT

A Multi-input single inductor dual-output Boost based architecture for Multi-junction PV energy harvesting source is presented. The system works in Discontinuous Conduction Mode to achieve the independent input regulation for multi-junction PV source. A dual-output path is implemented to regulate the output at 3 V as well as store the extra energy at light load condition. The dual-loop based sliding-mode MPPT for multi-junction PV is proposed to speed up the system response time for prompt irradiation change as well as maximize MPPT efficiency. The whole system achieves peak efficiency of 83% and MPPT efficiency of 95%. The whole system is designed, simulated in Cadence and implemented in PCB platform.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION ... 1
 1.1 Multi-junction PV ... 1
 1.2 Prior Work Limitations ... 3
 1.3 Highlight of This Works Contribution 4
 1.4 Thesis Organization ... 5

2 FUNDAMENTALS IN PV ENERGY HARVESTING 6
 2.1 Photovoltaic Cells ... 6
 2.2 Maximum Power Point Tracking ... 8
 2.3 Multi-junction Energy Extraction .. 10
 2.4 Output Regulation ... 11

3 PROPOSED SYSTEM ARCHITECTURE AND BASIC OPERATION 13
 3.1 Proposed System .. 13
 3.2 Sliding-mode MPPT Controller .. 14
 3.3 Input Multiplexer Sharing Single Inductor 16
 3.4 Dual-path Output regulation ... 19

4 STABILITY ANALYSIS AND LOOP CONTROL 21
 4.1 Inductor Current Based Control .. 21
 4.2 Sliding-Mode MPPT .. 22
 4.3 Loop stability and Compensation ... 24
 4.4 Current Controller Sharing .. 25

5 EXPERIMENTAL RESULTS ... 27
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CONCLUSION AND FUTURE WORK</td>
<td>34</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>35</td>
</tr>
<tr>
<td>Table</td>
<td>Parameters of PV Inputs</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Page</td>
<td>28</td>
</tr>
</tbody>
</table>

LIST OF TABLES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Multi-junction Power Management System</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Multi-junction PV I-V Curve</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MJ-PV Power Management System</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Single-junction PV</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Single-diode Model of Idea PV Cell</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>I-V Curve of a PV Cell</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Impedance Matching for Energy Extraction</td>
<td>8</td>
</tr>
<tr>
<td>8.</td>
<td>P&O Method</td>
<td>9</td>
</tr>
<tr>
<td>9.</td>
<td>XNOR Gate Truth Table</td>
<td>10</td>
</tr>
<tr>
<td>10.</td>
<td>PV Junctions in Parallel or in Series</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>Utilizing DC-DC Converter for Multi-junction PV</td>
<td>11</td>
</tr>
<tr>
<td>12.</td>
<td>Cascade DC-DC for PV Application</td>
<td>12</td>
</tr>
<tr>
<td>13.</td>
<td>Top-level Diagram of the Proposed System</td>
<td>13</td>
</tr>
<tr>
<td>14.</td>
<td>Dual-loop Sliding-mode MPPT</td>
<td>15</td>
</tr>
<tr>
<td>15.</td>
<td>PV Characteristic with Different Insolations</td>
<td>15</td>
</tr>
<tr>
<td>16.</td>
<td>Sliding-mode MPPT Tracking Behavior</td>
<td>16</td>
</tr>
<tr>
<td>17.</td>
<td>DCM Inductor Current Sharing</td>
<td>18</td>
</tr>
<tr>
<td>18.</td>
<td>Input Phase Switching Algorithm</td>
<td>19</td>
</tr>
<tr>
<td>19.</td>
<td>Dual-path Output Regulator</td>
<td>20</td>
</tr>
<tr>
<td>20.</td>
<td>Inductor Current Based Control Loop</td>
<td>22</td>
</tr>
<tr>
<td>21.</td>
<td>AC Loop Stability</td>
<td>24</td>
</tr>
<tr>
<td>22.</td>
<td>Inner Current Control Sharing</td>
<td>26</td>
</tr>
<tr>
<td>23.</td>
<td>Board picture</td>
<td>27</td>
</tr>
<tr>
<td>24.</td>
<td>Inductor Sharing DCM Operation</td>
<td>28</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>25.</td>
<td>Compensation Mux Out</td>
<td>29</td>
</tr>
<tr>
<td>26.</td>
<td>PV1 MPP Regulation</td>
<td>30</td>
</tr>
<tr>
<td>27.</td>
<td>PV2 MPP Regulation</td>
<td>30</td>
</tr>
<tr>
<td>28.</td>
<td>PV3 MPP Regulation</td>
<td>31</td>
</tr>
<tr>
<td>29.</td>
<td>Dual-path Output Voltage Regulation</td>
<td>32</td>
</tr>
<tr>
<td>30.</td>
<td>Output Voltage Ripple</td>
<td>32</td>
</tr>
<tr>
<td>31.</td>
<td>Transient Response Behavior</td>
<td>33</td>
</tr>
<tr>
<td>32.</td>
<td>Zoom in Response Time Measurement</td>
<td>33</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 Multi-junction PV

Green power becomes a really hot topic in the background of global warming. Photovoltaic (PV) as a good alternate for the both indoor and outdoor application is widely used in our daily life. Depending on the bandgap of the material used, silicon based single junction solar cells utilize a fraction of the solar spectrum. The earliest research on silicon based solar cells are proposed during 1940s, which indicated that the efficiency is even lower than 1%, [1], [2]. However, the hope of higher efficiency fuel the research in this domain. Years of research have been dedicated into both the material end and application end to achieve better efficiency. In 2009, a solar cell with efficiency of 24.7% has been reported [3]. The upper efficiency limit of any PV devices will be 95% at room temperature [4]. Instead of just utilizing single junction PV device, multi-junction PV device has been studied. Multi-junction PV evolves to fetch energy from a larger energy band of the solar spectrum. As reported, idea 1, 2, 3 and 36 energy gap cells have efficiencies of 37, 50, 56 and 72%, respectively [5]. And the Shockley and Queisser limit of such a multi-junction device is about 86.8% [6]. Thus, the multi-junction PV device is attractive to be used as an alternative to standard single junction device.

High Efficiency and high power density are always the key factors in the power system consideration. To extract the energy from any PV device, the load need to be modulated to match the PV input impedance for maximum power extraction. The power output from the solar cells vary with temperature, illumination and the electric load connected with it.
Therefore, maximum power point tracking (MPPT) is almost an indispensable part of a high power density delivery solar cell system. More new strategies and techniques are required for the load demanding and better power management. Vary in the complexity, sensor required, convergence time, efficiency, implementation and platform, the methods are proposed and studied. Among all the methods, perturb and observe method is the most popular method which has been used. From Figure 1, the inverse correlation between current and voltage can be seen. Thus, there is one peak power point when we multiply the current and voltage. By detecting the power change after every perturbation, we can achieve the maximum power tracking.

![Figure 1. Multi-junction Power Management System](image)

Usually solar cells in a multi-junction structure are interconnected in series to form a string, and multiple strings are connected in parallel to form a panel [7]. As shown in the Figure 2, the maximum power points for multi-junction vary in voltage and current. Each junction performs as isolated PV source. Thus, the challenge for extracting the power from multi-junction devices is to tract the maximum power point simultaneously from multi input sources.
Since the maximum power points for multi-junction vary from one to another. Therefore, simply adding multi-junction in parallel fashion or in series fashion will limit the current or voltage, which leads to the significant mismatch between exact maximum power point and the operating point in each multi-junction layer. Consequently, multi converters and controllers are both necessary to regulate the MPP from multi-junction PV devices. Furthermore, voltage regulation, high end to end efficiency should also be achieved [8]-[9]. Meanwhile, people contribute significant effort in achieving high efficiency in PV extracting converters. However, the total efficiency is the also affected by the MPP efficiency which depends on the steady state and transient performance [10], which brings more challenges to the designer in the application end.

![Multi-junction PV I-V Curve](image)

Figure 2. Multi-junction PV I-V Curve

1.2 Prior Work Limitations
Several previous studies might become good candidates as the energy extracting converter for multi-junction PV devices. Multi channels parallel dc-dc converter is easy to implement with the penalty of losing current phase alignment [11]. Interleaved Boost converter solved the conduction alignment issue with multi identical power stage components [12]. Single inductor sharing structure with time domain Hill Climbing MPPT achieves the phase alignment with less power stage components, while the control strategy is not able to handle the prompt radiation variation [10]. Sliding mode concept is introduced into MPPT to speed up the system response to the sudden change [13]-[18]. Predetermined two dimensional sliding mode MPPT is able to speed up the MPPT convergence around the two dimensional sliding surface. However, it requires offline PV characterization for one specific condition and can not handle wide environment range [17]. P&O based voltage domain sliding-mode MPPT improves system response time to the sudden illumination change along the voltage domain sliding surface. However, the output voltage is not regulated in this work, and multi MPPT controllers are required to modulate all PV inputs [18].

1.3 Highlight of This Works Contribution

In this paper, a more efficiency and low cost multi-input single inductor dual-output (MISIDO) converter is proposed for multi-input energy harvesting application. As is shown in Figure 3, the single stage structure shares inductor to extract maximum power from multi energy harvesting sources in top-level. Compared with the classic two stages cascade MPPT circuit, output regulation is achieved by reusing the same Boost MPPT stage in this work, which means that one stage power loss is reduced in operation.
Furthermore, it can store the extra energy in the battery for future use at light load condition instead of wasting that part of energy. Last but foremost, to improve the transient response to the irradiation for multi-junction PV devices, a novel sliding mode based multi-input sharing MPPT technique is presented within proposed multi-input sharing inductor structure operating in discontinuous conduction mode (DCM).

Figure 3. MJ-PV Power Management System

1.4 Thesis Organization

This thesis is organized in the following manner. Fundamental knowledge regarding PV energy harvesting and Boost regulation are discussed in Chapter 2. The details of proposed architecture and control strategy are presented in Chapter 3. Sliding mode based algorithm, stability analysis and implementation are presented in Chapter 4. Chapter 5 presents the experiment results and Chapter 6 concludes our research effort.
2.1 Photovoltaic Cells

The PV cell can directly convert sunlight into electricity. The voltage and current will be varied according to the load connecting at the contact of the PV. The load can be lighting systems or DC motors. Regulation converter will be required if the load voltage requirement is strict. Moreover, the current flow or the MPPT function can be achieved by using the converter. As is shown in the Figure 4, a PV cell is basically a semiconductor diode whose p-n junction is exposed to the light [19], [20]. The single-junction PV can be made by several different materials. A thin layer of silicon is connected to the metal terminal in the silicon based PV cells. The two junctions are doped to form a p-n junction. The light injected through the junction will be absorbed and the electron and hole pair will be generated. Depending on the energy of the photons, the charges will be generated and collected at the metal terminal. Then, the charges will be delivered to the load by different voltage potential [21], [22].
Figure 5 shows the equivalent circuit of the idea PV cell. The non-linear I-V characteristic can be modelled according to the equation [23].

\[I = I_{PV} - I_0 \left(e^{\frac{qV}{nKT}} - 1 \right) \]

where \(I_{PV} \) is the current generated by the incident light which linearly depending on the sunlight irradiation, \(I_0 \) is the reverse saturation or leakage current of the diode in the model, \(q \) is electron charge (i.e.1.602×10⁻¹⁹ C), \(n \) is diode ideality constant, \(K \) is Boltzmann constant (i.e.1.38064852 × 10⁻²³ J/K) and \(T \) is the kelvin temperature of the p-n junction. Fig 6 shows the plotted the I-V curve of a PV cell, where ISC stands for short circuit current, IMPP is the PV output current at its MPP operating condition, VMPP is the PV output voltage at its MPP operating condition and VOC is PV open circuit voltage.
Figure 6. I-V Curve of a PV Cell

Resulting from the inverse relationship between voltage and current, the maximum power point lies in the middle of the voltage range. Furthermore, to extract the maximum power, a proper load is required to connect to the PV cells. Thus, maximum power point tracking technique is indispensable to dynamically extract maximum power from PV in practical condition.

2.2 Maximum Power Point Tracking

To extract the energy from the any active source with inner resistance, we need to tune the load properly. As shown in the Figure 7

Figure 7. Impedance Matching for Energy Extraction
The relationship between V_{out} and V_{in} is modulated by the DC-DC converter duty cycle as the equation below

$$V_{out} = M(D) \cdot V_{in}$$

Assume 100% efficiency, the output current and input current hold an inverse relationship.

$$I_{out} = \frac{1}{M(D)} \cdot I_{in}$$

Then the input resistance of the DC-DC converter can be modulated by the duty cycle. Thus, the optimal load resistance of the energy source can be tuned by controlling the duty cycle to achieve maximum power extraction.

$$R_{out} = M(D)^2 \cdot R_{in}$$

$$R_{in} = \frac{1}{M(D)^2} \cdot R_{out}$$

Figure 8. P&O method

Tracking the MPPT is usually an essential part in the PV application end to end system. Among all the MPPT methods, hill climbing [24]-[31] and P&O [32]–[48] is most simple to implemented. The duty ratio of the power converter is perturbed in Hill climbing method and the voltage is perturbed in the P&O method. The power information is sampled before and after perturbation. As shown in the Figure 8, power information in both cycles are compared to determine the further perturbation direction. The truth table or the XNOR gate is shown in Figure 9
2.3 Multi-junction Energy Extraction

Because of the big difference optimal operation points among all junction, there will be significant mismatch between the optimal operation point and the real operation point if we simply parallel all junction output or put them in series as Figure 10.
Thus, a DC-DC converter is required here to match the different impedance from multi-junction PV device as Figure 11.

Figure 11. Utilizing DC-DC Converter for Multi-junction PV

2.4 Output Regulation

In the classic two stages design as Figure 12, first stage is responsible to track the maximum power while one more stage is required to achieve the output regulation for the load. Consequently, a lot of power stages components and controllers are required to complete the MPPT as well as the regulation function, which is not a cost-efficient option.
Figure 12. Cascade DC-DC for PV Application
CHAPTER 3

PROPOSED SYSTEM ARCHITECTURE AND BASIC OPERATION

3.1 Proposed System

The Top-level diagram of the proposed system is shown in Figure 13. The proposed architecture consists of three parts: Inductor sharing input multiplexer, Boost converter and dual-path output regulation. SW_1, SW_2, SW_3 is controlled by the input multiplexer to achieve multi-input single inductor sharing. The input selection block is an embedded finite state machine which is triggered by the clock signal from the current controller. The dual-path output regulation controller will select to deliver the inductor stored energy through one of the high side switch either SW_5 or SW_6 based on the sensed feedback load voltage. The middle Boost converter stage consists of shared inductor, SW_4 and one of the high side switches in every input selected phase.

Figure 13. Top-level Diagram of the Proposed System
The controller consists of two loops: outer loop is determined by the Perturb & Observe algorithm while the inner current loop is controlled by the shared sliding-mode current controller. With the P&O algorithm, the maximum power point can be dynamically searched at a low frequency. At the meantime, the inner sliding mode current controller turns the shared inductor into an adjustable current source to speed up the current domain behavior of the whole system.

3.2 Sliding-mode MPPT Controller

The each junction operates significantly different according to irradiation, temperature and shades, which makes it difficult to predict the maximum power point. As is shown in Figure 14, sliding-mode MPPT controller consists of two loops. For the outer loop, P&O algorithm is applied to dynamically track the maximum power point for each PV junction. The power information is sensed and compared cycle by cycle to decide the perturbation direction. Thus the whole converter equivalent impedance is modulated by the duty cycle to extract the optimal power from PV input. A reference error signal is generated through error amplifier as an adaptive reference for the inner sliding mode controller. Outer loop defines the sliding surface dynamically in a much lower frequency and the inner loop speeds up the convergence speed around sliding surface. By utilizing the dual-loop technique, the perturbation step can be designed with fine step size to achieve high MPPT efficiency in steady state while the most tracking is carried out by the inner sliding mode loop to speed up the tracking performance.
In different irradiation condition, the PV is characterized as Figure 15. Resulting from the linear dependence of the PV current on the illumination, the PV maximum power points vary significantly in current while vary insignificantly in voltage. The sharp blue line is the optimal MPPT surface for different insolation conditions.

The system slides around the adaptive surface which is generated by the P&O outer loop instead of the predetermined optimal MPPT surface which need to be characterized offline.
in the idea condition. Therefore, the PV current tracking performance will be speeded up by the inner sliding mode controller while only few steps in voltage are required to complete the whole tracking behavior as the Figure 16. Consequently, high MPPT efficiency and fast irradiation response performance are both obtained with fine perturbation step in the P&O outer loop and sliding mode inner loop.

![Figure 16. Sliding-mode MPPT Tracking Behavior](image)

3.3 Input Multiplexer Sharing Single Inductor

Multi-junction PV inputs play as multiple supplies to deliver the energy to the load. The MPPT function will regulate the each input at different optimal operating points which requires fast convergence, accurate regulation and good stability. No dependency is allowed among all inputs for accurate MPPT performance especially in irradiation fast changing condition. In order to minimize the components in the DC-DC converter, an inductor sharing scheme is applied in this multi-input energy harvesting system [49]. The single inductor has been time shared by all multi-junction PVs to maintain Boost converter switch operation. All inputs are connected to the Boost converter in an interleaved way.
Within each selected window, the shared inductor will be energized and de-energized through the high side switches.

The converter can operate in either continuous conduction mode (CCM) or discontinuous conduction mode (DCM). If the converter works at steady state in CCM condition, the average current will be maintained constant while the valley will vary according to the different duty cycle, input and output, which makes the starting point of next cycle dependent on the previous cycle. Therefore, the DCM operation is perfect for single inductor time sharing structure. As shown on the diagram in Figure 17, when the inductor current of one sub-converter reduces to zero, another sub-converter is turned on, which leads to the varying frequency in different conditions. Varying frequency creates more freedom to modulate the PV current, which also regulates the PV voltage in an inverse way. The total conduction time is determined by the inductor current.
By invoking voltage-second balance, we have the turn on and turn off time relationship for each input as below:

$$t_2 = t_1 \frac{V_{PV1}}{V_{OUT} - V_{PV1}}$$

Thus the input impedance can be obtained as

$$Z_{in1} = \frac{V_{PV1}}{I_{in1}} = 2L \left(\frac{1}{t_1} + \frac{V_{OUT} - V_{PV1}}{V_{OUT} - V_{PV2} \cdot \frac{t_3}{t_1^2}} \right)$$
By utilizing Boost converter, the output over input voltage ratio is ensured as high. So
\[
\frac{V_{OUT}-V_{PV1}}{V_{OUT}-V_{PV2}}
\]
can be seen as almost constant in steady state. While \(\frac{t_3}{t_1}\) is strongly dependent on \(t_1\), which is generated by the loop controller. Thus, the sub-converter can be tuned as the load of the input PV for impedance matching to extract optimal MPP out of each PV junction.

To achieve the multi-input sharing, one finite state machine is defined as below algorithm in Figure 18. The input phase switching will be triggered by the rising edge of high side switch discharge pulse width \(t_{off}\) when the inductor current reduces to zero, which also ensures the DCM operation. Thus, the interleaved operation for multi-junction PV is ensured by the embedded finite state machine.

![Figure 18. Input Phase Switching Algorithm](image)

3.4 Dual-path Output regulation

Limited by the maximum PV current, the load command is usually less than PV maximum power. Therefore, most of the MPPT circuit will push the PV out of the MPP
condition at light load condition, which leads to an energy waste. By introducing the battery as a second output path, the extra energy can be stored at light load condition. Furthermore, as shown in Figure 19, by sensing the feedback output voltage and comparing with the reference voltage, the Dual-path regulator block will decide in which path the inductor need to charge during the de-energizing phase. Compared with traditional two stage design, by reusing the MPPT stage Boost converter, regulated output voltage is obtained at 3V without one more stage power loss.

Figure 19. Dual-path Output Regulator
4.1 Inductor Current Based Control

As shown in the Figure 20, the inductor current based control topology is applied in this work. At the output node of PV, the PV current, input capacitor current and inductor current hold Kirchhoff current law:

$$i_{PV} = i_{CAP} + i_L$$

The negative feedback in the current controller loop will clamp the inductor current to i_{REF} in steady-state, while i_{REF} is the output of the compensator as the reference of the inductor current.

$$i_e = i_{REF} - i_L$$
$$i_{PV} = i_{CAP} + i_{REF} - i_e$$

Where the capacitor current and error current are both zero in steady-state, which leads to

$$i_{PV} = i_{REF}$$

Therefore, by regulating the inductor current, the PV current is regulated accordingly. The current reference i_{REF} will be generated by the feedback loop to minimize the voltage error between PV voltage and the reference voltage from the P&O loop. As long as the inner loop is fast enough, i_{PV} can be regulated even in prompt irradiation changing condition to extract the maximum power.
4.2 Sliding-Mode MPPT

The classic MPPT algorithm is designed based on constant irradiation. The P&O method is largely used in MPPT application to dynamically track the maximum power point in changing illumination condition. However, by perturbing the small change in voltage, the algorithm seeks the right direction to achieve the peak power point by power comparison. Therefore, the P&O performance is significantly depending on the perturbation step size and frequency [45]. The optimal MPP performance is ensured by selecting the minimum step size in steady state, which leads to the penalty of losing speed in the abrupt transient change in the sunlight. The larger the irradiation is changed the bigger step we need to achieve high MPP efficiency. Just as P&O, most of the algorithms in MPPT research is voltage based because of the fine correlation dependence of the voltage step around MPP compared with the current. While, the linear dependence of the PV current on the irradiation level can benefit the re-tracking speed. Thus, by utilizing the dual-loop control, we can have the accurate control ability around the optimal power from outer voltage loop
as well as the fast transient response in big irradiation changing condition from the inner current loop. As mentioned above, the regulating target is $i_{PV} = i_{REF}$. To utilize the sliding-mode control, we set the sliding surface as

$$
\Psi = i_{PV} - i_{REF}
$$

The reference current i_{REF} is determined by the compensator output. Once the system works in sliding-mode, the surface Ψ will be converged into zero. Any deviation of the sliding surface away from the zero state will be rejected, resulting from the PV voltage V_{PV} locking at P&O outer loop reference voltage V_{REF}. The strong current control capability rejects the PV voltage perturbation in prompt irradiation change condition as well as keeps PV current i_{PV} tracking irradiation level.

To hold the sliding mode operation, two key requirements need to be fulfilled:

$$
\Psi = 0
$$

$$
\frac{d\Psi}{dt} = 0
$$

In the Boost converter, by turning on and off the switches, the converter is modulated. The unified equation for inductor current in the switching state is

$$
\frac{di_L}{dt} = \frac{V_{PV} - (1 - u) \cdot V_{OUT}}{L}
$$

Where u is the variable determining the switch state. $u = 1$ when low side switch is on while $u = 0$ at switch off state. Since the sliding surface equation can be simplified as below

$$
\frac{d\Psi}{dt} = \frac{di_L}{dt} - \frac{di_{REF}}{dt}
$$

Thus
\[
\frac{d\Psi}{dt} = \frac{V_{PV} - (1 - u) \cdot V_{OUT}}{L} - \frac{di_{REF}}{dt}
\]

The inductor current keeps increasing when low side switch is on, which leads to the sliding surface moving to the positive direction. And the inductor current keeps decreasing when the low side switch is off, which turns the sliding surface into negative direction instead.

In conclusion, by switching operation, the sliding surface can be modulated around zero.

- when \(\Psi < 0 \) low side switch turns on
- when \(\Psi > 0 \) low side switch turns off

4.3 Loop stability and Compensation

By using the sliding mode control technique, the Boost converter is utilized as a tunable current source. The whole Boost converter is modulated to regulate the PV voltage. In ac stability angle, it equals to adjusting the capacitor current to modulate the shunt capacitor voltage.

Thus, as shown in Figure 21, when we close the loop at the input capacitor, the

![AC Loop Stability Diagram](image-url)
modulation relationship between reference current to PV voltage can be simplified as below

\[
\frac{H_v(s)}{I} = -\frac{1}{c_{in} \cdot s}
\]

Resulting from the inner current mode control, the classic two poles system for the Boost converter can be simplified as one pole system instead. Therefore, in this work, a traditional PI compensator is applied to achieve enough phase margin.

The PI compensator transfer function is shown as below

\[
G_{comp}(s) = k_p + \frac{k_i}{s}
\]

The total transfer function of the whole loop

\[
H_{CL} = G_{comp}(s) \cdot H_v(s)
\]

After selecting proper settling time to ensure the system function in the fastest P&O loop frequency condition, the PI compensator is obtained by the MATLAB loop analysis tools.

4.4 Current Controller Sharing

The complementary pulse width signals are generated as the output of the sliding mode controller. However, all multi-junction PVs need to be regulated simultaneously via one adjustable inductor current from the Boost converter. So the duty cycle signal will be shared among all inputs. In additional, the sliding mode controller need to be shared among all compensators. The loop diagram is as shown in Figure 22.
Figure 22. Inner Current Control Sharing
CHAPTER 5

EXPERIMENTAL RESULTS

The proposed system has been implemented and measured in the PCB platform. As shown in the Fig. 23, the PV was integrated on the board. By stacking the standard PV bits with double and triple fashion, three gap material based multi-junction PV was mimicked. The new PV parameters have been characterized in the lab with PV tracer as shown in Table 1.

Figure 23. Board picture
Table 1: Parameters of PV Inputs

<table>
<thead>
<tr>
<th></th>
<th>PV1</th>
<th>PV2</th>
<th>PV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-circuit I_{STC} (mA)</td>
<td>50</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>Open-circuit V_{OC} (mV)</td>
<td>500</td>
<td>940</td>
<td>1450</td>
</tr>
<tr>
<td>MPP current I_{mpp} (mA)</td>
<td>44.6</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>MPP voltage V_{mpp} (mV)</td>
<td>390</td>
<td>780</td>
<td>1100</td>
</tr>
<tr>
<td>Maximum Power (mW)</td>
<td>17.4</td>
<td>33.5</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Figure 24 shows that the inductor current operated in DCM with alternate input sources. During each selected input phase, the inductor current was energized by different input source independently without reverse current or big ringing at the switching node. The input sharing phases were not identical because the duration was determined by the different input voltage level and different peak current level. The DCM operation was maintained by the cycle by cycle peak current mode control benefiting from the inner sliding mode current controller.
As is discussed above, the input was regulated by feeding the sensed input voltage to the error amplifier. And the inner sliding mode current controller was shared by three compensation blocks. The compensation block for each input was only selected through mux during its conduct phase. The mux output was connected to the inner current controller. Furthermore, the compensation block was held during the idle time when the other phases were selected, which led to a smooth input voltage regulation during the input switch transition.

Thus, the input regulation was achieved by the dual-loop control. The outer P&O loop dynamically generated an optimal voltage reference for the inner loop. The three-level toggle behavior showed that the maximum power point was achieved by outer loop. And the inner sliding mode current loop accurately controlled the inductor current cycle by cycle. All inputs were regulated around the MPP condition as Figure 26 – 28. PV1, PV2 and PV3 were regulated around 388, 784 and 1100 mV.

Figure 25. Compensation Mux Out
Figure 26. PV1 MPP Regulation

Figure 27. PV2 MPP Regulation
The output voltage regulation is a fundamental requirement for power management. The output capacitor held the output during the inductor rising period. And during the inductor deenergizing phase, the output voltage rose till the idle time. By reusing the MPPT single stage Boost, regulated output voltage was obtained around 3V with voltage ripple of 80mV, as shown in Figure 29 -30. The output ripple can easily be improved by increasing the output capacitor value which is not our focus here.
Due to the linear dependency of the PV current on the sunlight illumination density, the maximum power need to be re-tracked dynamically in real life. Figure 31 shows the re-tracking behavior of this system when the sunlight changes abruptly. Figure 32 shows the...
response time measurement result when we zoom in the plot. In this test case, the system recovered from the Voc condition which is the worst condition. The system could be re-tracked back to MPP condition within 82us. Compared with the typical PWM based MPPT system, the proposed system has a much fast response behavior.

Figure 31. Transient Response Behavior

Figure 32. Zoom in Response Time Measurement
CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis proposes Multi-input single inductor Dual-output Boost based architecture for Multi-junction PV energy harvesting source. The system works in Discontinuous Conduction Mode to achieve the independent input regulation for multi-junction PV source. Inductor sharing provides a single stage platform for combining power from MJ-PV sub-cells. The input PV cells provide a few hundred milli-watt of power. A dual-output path is implemented to regulate the output at 3.3 V as well as store the extra energy at light load condition. The dual-loop based sliding-mode MPPT for multi-junction PV is proposed to speed up the system response time for prompt irradiation change as well as maximize MPPT efficiency. The boost converter works at around 300K Hz and each input is regulated at around 100K Hz. The measured peak efficiency is 83% and MPPT efficiency is 95%.

The future work includes the following:

1) Instead of using one dimensional sliding surface, a tunable sliding surface can be added to speed up the transient performance in voltage.

2) The energy stored in the battery can be recycled by reusing the single stage DC-DC instead of using Buck converter as an independent path.

3) The DCM operation can be extended into Pseudo Continuous Conduction Mode, which leads to less ripple in heavy input power condition. This can be tested in the existing system by changing the valley reference value without any other modification.
REFERENCES

