Understanding Your City’s Heat Islands: Overview and Key Considerations

David Sailor, Ph.D.
Director, Urban Climate Research Center
Professor, School of Geographical Sciences and Urban Planning
David.Sailor@asu.edu

ARIZONA STATE UNIVERSITY
September 7, 2017
Defining “the Urban Heat Island (UHI)”

“An area of higher temperatures in an urban setting compared to the temperatures of the suburban and rural surroundings. It appears as an ‘island’ in the pattern of isotherms on a surface map.”

- Glossary of Weather and Climate, Ira Geer, Ed.
What causes the urban heat island phenomenon?

- Short-wave (solar) radiation
- Long-wave (thermal) radiation
- Anthropogenic waste heat
- Convection & mixing
- Evaporation
- Thermal storage
Most common image when searching the internet for “Urban Heat Island”
Air Temperature UHI via empirically-based models

... usually the “shelter” height of 1.25 to 2 m (~4 to 6 ft)
Another common type of UHI image...
Surface Temperature UHI is by definition highly variable...

... and consists of horizontal and vertical surfaces

Image from Moody and Sailor
A Cautionary Note

“Overall, the quality of the UHI literature and its empirical content is low at best… nearly half of the evaluated studies provide estimates of UHI magnitude that are unacceptable in terms that environmental science can reasonably expect.”

• Recommendations
 1. Representativeness of sites
 2. Standardized site reporting guidelines
 3. Disclose limits of data (uncertainty)
 4. Use terminology with discretion (e.g., “the UHI”)
Further Caveats about Working with UHI

• Do we really care about a UHI magnitude?
 – What is important, ΔT_{u-r} or T?

• In fact, how much do we care about T itself?
 – Think about the end points that we actually do care about...

• Thermal comfort, heat-related mortality and morbidity
 – Air temperature, humidity... and surface temperatures
 – Daytime highs are important, but so too are nighttime lows.
Measuring Urban Thermal Environments

Air Temperatures

• Traditional first-order (NWS) weather stations
 – High quality instruments and generally sound siting
 – Long-term hourly records
 – Limited spatial coverage

• Networks of “lower-quality” stations
 – Lower quality instruments and siting
 – Better spatial coverage

• Mobile traverses
 – Poor temporal resolution
 – Good spatial coverage (on roads/paths)

• Crowd-sourced data
 – Quantity and extensive QA/QC protocols help to make up for poor quality data.
General Considerations for Air Temperature Measurements

• Accuracy of temperature measurements influenced by
 – Sensor type (e.g. Thermistor, Thermocouple, RTD)
 – Sensor temporal response characteristics
 – Instrumentation/circuitry
 – Sensor environment (e.g. radiation shielding, aspiration)
 – Nearby microclimate

• Representativeness is key to generating useful data
Traverse Measurement Example

UHI ~ 6 °C

UHI Magnitude (°C)
- -3.99 - -2.00
- -1.99 - 0.00
- 0.01 - 2.00
- 2.01 - 4.00
Measuring Urban Thermal Environments

Surface Temperatures

• Radiometers on satellites and aircraft
 – Often limited to a few overpasses per day and require cloud-free conditions
 – Vertical surfaces not “visible”
 – Intervening atmospheric attenuation and surface emissivity must be estimated

• Hand-held IR cameras
 – Capable of measuring horizontal and vertical surfaces
 – Limited spatial coverage
 – Surface emissivity must be estimated

• Relating to air temperatures
 – Uncertainties/errors can be high
In Summary...

You must be careful in defining your measurement objectives, designing your measurement/analysis system, and conveying your results... or they are useless.

email: dsailor@asu.edu
URL: UrbanClimate.asu.edu
@ASUrbanClimate