ERK/MAPK Requirements for the Development of Long-Range Axonal Projections and Motor Learning in Cortical Glutamatergic Neurons

by

George Reed Bjorklund

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Approved October 2018 by the Graduate Supervisory Committee:

Jason Newbern, Chair
Janet Neisewander
Brian Smith
Miles Orchinik
Marco Mangone

ARIZONA STATE UNIVERSITY

December 2018
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels
of the immediate early gene ARC in *Nex:Cre* and *Rbp4:Cre* mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ACKNOWLEDGEMENTS

I would like to sincerely thank my mentor and advisor Dr. Jason Newbern for his help, guidance, and patience through my graduate career in neuroscience.

My dissertation committee, Drs. Brian Smith, Miles Orchinik, Janet Neisewander, and Marco Mangone truly deserves my deep appreciation for their patience, feedback, and support. Thank you all.

I am also grateful to Dr. Jeanne Wilson-Rawles for her help and support during my graduate career. I feel it safe to say that without her backing I would not have made it to this point.

Early graduate mentorship from Drs. Hugh Mason and Charles Arntzen has also meant a lot for my academic and scientific development.

I would also like to thank all current and previous lab members and graduate colleagues that have provided help, support, and friendship over these years.

Last but not least, my family. Without their backing and encouragement, I may have never finished. Special thanks to Sticky and all his relatives that made my research possible.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii-ix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS / NOMENCLATURE</td>
<td>x-xiv</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xv-xvi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>The RASopathies</td>
<td>1-4</td>
</tr>
<tr>
<td>RAS/MAPK Signaling Pathway:Background</td>
<td>4-5</td>
</tr>
<tr>
<td>RAS/MAPK Signaling Pathway:Core Pathway</td>
<td>6-10</td>
</tr>
<tr>
<td>RAS/MAPK Signaling Pathway:Functions</td>
<td>11-17</td>
</tr>
<tr>
<td>Connectivity in the RASopathies</td>
<td>18-20</td>
</tr>
<tr>
<td>Immediate Early Gene ARC – Memory and Learning</td>
<td>21-21</td>
</tr>
<tr>
<td>Summary</td>
<td>21-22</td>
</tr>
<tr>
<td>2 PROJECTION NEURON DEVELOPMENT IN A LOSS-OF-FUNCTION</td>
<td>22</td>
</tr>
<tr>
<td>MEK1/MEK2 MOUSE MODEL</td>
<td>24</td>
</tr>
<tr>
<td>Abstract</td>
<td>24</td>
</tr>
<tr>
<td>Introduction</td>
<td>25-27</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>28-32</td>
</tr>
<tr>
<td>Results</td>
<td>33-56</td>
</tr>
<tr>
<td>Discussion</td>
<td>57-62</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>63</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LONG-RANGE AXONAL DEVELOPMENT IN A GAIN-OF-FUNCTION CAMEK MOUSE MODEL</td>
<td>64</td>
</tr>
<tr>
<td>Abstract</td>
<td>65</td>
</tr>
<tr>
<td>Introduction</td>
<td>66-69</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>70-76</td>
</tr>
<tr>
<td>Results</td>
<td>77-104</td>
</tr>
<tr>
<td>Discussion</td>
<td>105-112</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CORTICAL LAYER SPECIFICITY IN A GAIN-OF-FUNCTION CAMEK MOUSE MODEL</td>
<td>114</td>
</tr>
<tr>
<td>Abstract</td>
<td>115</td>
</tr>
<tr>
<td>Introduction</td>
<td>116-117</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>118-123</td>
</tr>
<tr>
<td>Results</td>
<td>124-137</td>
</tr>
<tr>
<td>Discussion</td>
<td>138-141</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>142</td>
</tr>
<tr>
<td>5</td>
<td>143</td>
</tr>
<tr>
<td>CONCLUDING REMARKS</td>
<td>143-149</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>150-170</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>171-177</td>
</tr>
<tr>
<td>Curriculum Vitae</td>
<td>171-177</td>
</tr>
<tr>
<td>B</td>
<td>178-195</td>
</tr>
<tr>
<td>Parvalbumin Fast-spiking Interneurons are Selectively Altered by Pediatric Traumatic Brain Injury</td>
<td>178-195</td>
</tr>
<tr>
<td>C</td>
<td>196-197</td>
</tr>
<tr>
<td>Animal Subjects</td>
<td>196-197</td>
</tr>
<tr>
<td>D</td>
<td>199-198</td>
</tr>
<tr>
<td>Table 2: Nex:Cre/caMEK1 Microarray Profiling</td>
<td>199-198</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>The RASopathies; Frequencies, Genes, and Mutation Effects</td>
</tr>
<tr>
<td>2</td>
<td>Nex:Cre/caMEK1 Microarray Profiling</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NTRK2 Recruits Various Adapter Proteins</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>RAS Activation by GEFs and Deactivation by GAPs</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>$Mek1/2^{CKO(Nex)}$ Cortical Excitatory Neurons Specific Recombination</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>Loss of ERK/MAPK Signaling Leads to a Reduction in the Number of CTIP$^+$ Layer 5 Neurons</td>
<td>37</td>
</tr>
<tr>
<td>5.</td>
<td>Loss of ERK/MAPK Signaling Leads to a Reduction in the Number of CTIP$^+$ Layer 5 Neurons</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>Corticospinal Tract Tefects in the MEK1/2CKO (Nex) Mice</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>Layer 5 neuron corticospinal axon outgrowth requires ERK/MAPK signaling $in vivo$</td>
<td>44</td>
</tr>
<tr>
<td>8.</td>
<td>The Rostrocaudal Elongation of Layer 5 Axons in the Spinal Cord Requires ERK/MAPK.</td>
<td>45</td>
</tr>
<tr>
<td>9.</td>
<td>Initiation of layer 5 neuron death by P3 in Mek1/2CKO(Nex) mutants</td>
<td>48</td>
</tr>
<tr>
<td>10.</td>
<td>Mouse Model for Excitatory Neuron Specific Gain-of-ERK/MAPK Signaling in the Cortex</td>
<td>52</td>
</tr>
<tr>
<td>11.</td>
<td>No Overt Defects in the Specification or Number of Layer 5 Neurons in $caMEK1^{(Nex)}$ Mice Detected</td>
<td>53</td>
</tr>
<tr>
<td>12.</td>
<td>Gain-of-Function ERK/MAPK Signaling in $caMEK1^{(Nex)}$ Mice Decreases Corticospinal Extension into the Spinal Cord.</td>
<td>54</td>
</tr>
<tr>
<td>13.</td>
<td>Hyperactivation of ERK/MAPK Enhances Axonal Branching in the Hindbrain and Spinal Cord</td>
<td>55</td>
</tr>
<tr>
<td>14.</td>
<td>Hyperactivation of ERK/MAPK Enhances Axonal Branching in the Hindbrain and Spinal Cord</td>
<td>56</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>15.</td>
<td>MEK1 Hyperactivation Results in Increased Levels of P-ERK1/2 in the Axons of Cortical Excitatory Neurons.</td>
<td>80</td>
</tr>
<tr>
<td>16.</td>
<td>Enhanced MEK1 Expression is Detected in the Somatosensory Cortex of Embryonic <em>NexCre/caMek1</em> Mice.</td>
<td>81</td>
</tr>
<tr>
<td>17.</td>
<td>Increased Levels of P-ERK1/2 in the Axons and Reduced Somal Detection of P-ERK1/2 Persists in Adult <em>NexCre/caMek1</em> Mice.</td>
<td>82</td>
</tr>
<tr>
<td>18.</td>
<td>Increased Levels of P-ERK1/2 in the Axons and Reduced Somal Detection of P-ERK1/2 Persists in Adult <em>NexCre/caMek1</em> Mice.</td>
<td>83</td>
</tr>
<tr>
<td>19.</td>
<td>P-ERK1/2 Localizes to White Matter Tracts in <em>NexCre/caMek1</em> Mice When Compared to Controls.</td>
<td>84</td>
</tr>
<tr>
<td>20.</td>
<td>P-ERK1/2 Localizes to White Matter Tracts in <em>NexCre/caMek1</em> Mice When Compared to Controls.</td>
<td>85</td>
</tr>
<tr>
<td>21.</td>
<td>Corticocortical and Corticostriatal Innervation and Branching Patterns are Disrupted by Hyperactivated MEK1.</td>
<td>89</td>
</tr>
<tr>
<td>22.</td>
<td>Corticocortical and Corticostriatal Innervation and Branching Patterns are Disrupted by Hyperactivated MEK1.</td>
<td>90</td>
</tr>
<tr>
<td>23.</td>
<td>ARC Protein Levels are Negatively Affected by MEK1 Hyperactivation.</td>
<td>93</td>
</tr>
<tr>
<td>24.</td>
<td>ARC Protein Levels are Negatively Affected by MEK1 Hyperactivation.</td>
<td>94</td>
</tr>
<tr>
<td>25.</td>
<td>Motor Learning and Motor Skill Acquisition is Disrupted by MEK1 Hyperactivation in Cortical Glutamatergic Neurons.</td>
<td>99</td>
</tr>
<tr>
<td>26.</td>
<td>Motor Learning and Motor Skill Acquisition is Disrupted by MEK1 Hyperactivation in Cortical Glutamatergic Neurons.</td>
<td>100</td>
</tr>
<tr>
<td>27.</td>
<td>Subcortical Recombination of <em>caMEK1</em> Selectively Affects P-ERK1/2 Detection in the <em>NexCre/caMek1</em> Mice.</td>
<td>103</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>28. Subcortical Recombination of $caMEK1$ Selectively Affects P-ERK1/2 Detection in the <em>NexCre/caMek1</em> Mice</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>29. Corticospinal Tract Elongation is Decreased but Corticospinal Axonal Innervation is Increased in Layer V Specific MEK1 Hyperactivation</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>30. Corticospinal tract elongation is decreased but Corticospinal Axonal Innervation is Increased in Layer V Specific MEK1 Hyperactivation</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>31. Corticobulbar Tract Axonal Extension and Hindbrain Innervation not Affected in the <em>RBP4Cre/caMek1</em> Mice</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>32. Corticocortical and Corticostriatal Innervation and Branching is Reduced in a Layer V Autonomous Manner</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>33. Corticocortical and Corticostriatal Innervation and Branching is Reduced in a Layer V Autonomous Manner</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>34. ARC Levels Reduced Specifically in Layer V Glutamatergic Neurons in the <em>RBP4Cre/caMEK1</em> Mice</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>35. ARC Levels Reduced Specifically in Layer V Glutamatergic Neurons in the <em>RBP4Cre/caMEK1</em> Mice</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Axial diffusivity</td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>Apparent diffusion coefficient</td>
<td></td>
</tr>
<tr>
<td>AKT1</td>
<td>Serine/threonine kinase 1 ()</td>
<td></td>
</tr>
<tr>
<td>ALPS</td>
<td>Legius syndrome, autoimmune lymphoproliferative syndrome</td>
<td></td>
</tr>
<tr>
<td>AMPAR</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor</td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>Activity regulated cytoskeleton associated protein</td>
<td></td>
</tr>
<tr>
<td>BAD</td>
<td>BCL2 associated agonist of cell death</td>
<td></td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain derived neurotrophic factor</td>
<td></td>
</tr>
<tr>
<td>BH3-only</td>
<td>Bcl-2 homology domain 3</td>
<td></td>
</tr>
<tr>
<td>BIM</td>
<td>BCL2 like 11</td>
<td></td>
</tr>
<tr>
<td>CDK5R1</td>
<td>Cyclin dependent kinase 5 regulatory subunit 1</td>
<td></td>
</tr>
<tr>
<td>CFC</td>
<td>Cardio-facio-cutaneous syndrome</td>
<td></td>
</tr>
<tr>
<td>CM-AVM</td>
<td>Capillary malformation-arteriovenous malformation syndrome</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
<td></td>
</tr>
<tr>
<td>CRK</td>
<td>CRK proto-oncogene, adaptor protein</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Costello syndrome</td>
<td></td>
</tr>
<tr>
<td>CSK</td>
<td>C-terminal Src kinase</td>
<td></td>
</tr>
<tr>
<td>DRG</td>
<td>Dorsal ganglion</td>
<td></td>
</tr>
<tr>
<td>DTI</td>
<td>Diffusion tensor imaging</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>Epithelial growth factor</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
<td></td>
</tr>
<tr>
<td>ERK1</td>
<td>Extracellular signal-regulated kinase 1</td>
<td></td>
</tr>
<tr>
<td>ERK2</td>
<td>Extracellular signal-regulated kinase 2</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Fractional anisotropy</td>
<td></td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast growth factor receptor</td>
<td></td>
</tr>
<tr>
<td>FRS2</td>
<td>Fibroblast growth factor receptor substrate 2</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine diphosphate</td>
<td></td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine exchange factor</td>
<td></td>
</tr>
<tr>
<td>GoF</td>
<td>Gain-of-function</td>
<td></td>
</tr>
<tr>
<td>GRB2</td>
<td>Growth factor receptor bound protein 2</td>
<td></td>
</tr>
<tr>
<td>GRIA1</td>
<td>Glutamate ionotropic receptor AMPA type subunit 1</td>
<td></td>
</tr>
<tr>
<td>GRM1</td>
<td>Glutamate metabotropic receptor 1</td>
<td></td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>Hepatocyte growth factor</td>
<td></td>
</tr>
<tr>
<td>HGF1</td>
<td>Hereditary gingival fibromatosis 1</td>
<td></td>
</tr>
<tr>
<td>HRAS</td>
<td>Harvey murine sarcoma virus</td>
<td></td>
</tr>
<tr>
<td>IDD5</td>
<td>Autosomal dominant intellectual disability type 5</td>
<td></td>
</tr>
<tr>
<td>IEG</td>
<td>Immediate early genes</td>
<td></td>
</tr>
<tr>
<td>IGFLR1</td>
<td>IGF like family member 1 receptor</td>
<td></td>
</tr>
<tr>
<td>KEN</td>
<td>Keratinocytic epidermal nevus</td>
<td></td>
</tr>
<tr>
<td>KENS</td>
<td>Keratinocytic epidermal nevus syndrome</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>Kirsten murine sarcoma virus</td>
<td></td>
</tr>
<tr>
<td>KSR1</td>
<td>Association with scaffolding proteins kinase suppressor of ras 1</td>
<td></td>
</tr>
<tr>
<td>LoF</td>
<td>Loss-of-function</td>
<td></td>
</tr>
<tr>
<td>MAP1B</td>
<td>Microtubule associated protein 1B</td>
<td></td>
</tr>
<tr>
<td>MAP2K</td>
<td>Mitogen activated kinase kinase</td>
<td></td>
</tr>
<tr>
<td>MAP2K1</td>
<td>Mitogen activated protein kinase kinase 1 (MEK1)</td>
<td></td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated kinase</td>
<td></td>
</tr>
<tr>
<td>MAPK1</td>
<td>Mitogen activated protein kinase (ERK2)</td>
<td></td>
</tr>
<tr>
<td>MAPK14</td>
<td>Mitogen-activated protein kinase 14 (p38)</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>MAPK2K2</td>
<td>Mitogen activated protein kinase kinase 2 (MEK2)</td>
<td></td>
</tr>
<tr>
<td>MAPK3</td>
<td>Mitogen activated protein kinase 3 (ERK1)</td>
<td></td>
</tr>
<tr>
<td>MAPK7</td>
<td>Mitogen-activated protein kinase 7 (ERK5)</td>
<td></td>
</tr>
<tr>
<td>MAPK8</td>
<td>Mitogen-activated protein kinase 8 (JNK)</td>
<td></td>
</tr>
<tr>
<td>MCS</td>
<td>Mosaic Costello syndrome</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>Mean diffusivity</td>
<td></td>
</tr>
<tr>
<td>MEK1</td>
<td>MAPK/ERK kinase 1</td>
<td></td>
</tr>
<tr>
<td>MEK2</td>
<td>MAPK/ERK kinase 2</td>
<td></td>
</tr>
<tr>
<td>MYLK</td>
<td>Myosin light chain kinase</td>
<td></td>
</tr>
<tr>
<td>NF-1</td>
<td>Neurofibromatosis type 1</td>
<td></td>
</tr>
<tr>
<td>NF1</td>
<td>Neurofibromin 1</td>
<td></td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve growth factor</td>
<td></td>
</tr>
<tr>
<td>NMDAR</td>
<td>N-methyl-D-aspartate glutamate receptor</td>
<td></td>
</tr>
<tr>
<td>NMDAR</td>
<td>N-methyl-D-aspartate receptor</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>Noonan syndrome</td>
<td></td>
</tr>
<tr>
<td>NSML</td>
<td>Noonan syndrome with multiple lentigines</td>
<td></td>
</tr>
<tr>
<td>NTF3</td>
<td>Neurotrophin 3</td>
<td></td>
</tr>
<tr>
<td>NTF4</td>
<td>Neurotrophin 4</td>
<td></td>
</tr>
<tr>
<td>NTRK1</td>
<td>Neurotrophic receptor tyrosine kinase 1</td>
<td></td>
</tr>
<tr>
<td>NTRK2</td>
<td>Neurotrophic receptor tyrosine kinase 2</td>
<td></td>
</tr>
<tr>
<td>NTRK3</td>
<td>Neurotrophic receptor tyrosine kinase 3</td>
<td></td>
</tr>
<tr>
<td>PEBP1</td>
<td>Phosphatidylethanolamine binding protein 1</td>
<td></td>
</tr>
<tr>
<td>PEBP1</td>
<td>Phosphatidylethanolamine binding protein 1</td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td>Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha</td>
<td></td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
<td></td>
</tr>
<tr>
<td>PLCγ1</td>
<td>Calcium signaling through the phospholipase C gamma 1</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>PLCG1</td>
<td>Phospholipase C gamma 1</td>
<td></td>
</tr>
<tr>
<td>PTK2</td>
<td>Protein tyrosine kinase 2</td>
<td></td>
</tr>
<tr>
<td>PTPN11</td>
<td>Protein tyrosine phosphatase, non-receptor type 11</td>
<td></td>
</tr>
<tr>
<td>PUMA</td>
<td>BCL2 binding component 3</td>
<td></td>
</tr>
<tr>
<td>PXN</td>
<td>Paxillin</td>
<td></td>
</tr>
<tr>
<td>RAS/MAPK</td>
<td>RAS-RAF-MEK-ERK cellular signaling cascade</td>
<td></td>
</tr>
<tr>
<td>RASA1</td>
<td>RAS p21 protein activator 1</td>
<td></td>
</tr>
<tr>
<td>RASA1</td>
<td>RAS p21 protein activator 1</td>
<td></td>
</tr>
<tr>
<td>RASGAP</td>
<td>RAS GTPase activating proteins</td>
<td></td>
</tr>
<tr>
<td>RASGAPs</td>
<td>RAS GTPase activating proteins</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>Radial diffusivity</td>
<td></td>
</tr>
<tr>
<td>rs-fcMRI</td>
<td>Resting state functional connectivity MRI</td>
<td></td>
</tr>
<tr>
<td>SCG</td>
<td>Superior cervical ganglion neurons</td>
<td></td>
</tr>
<tr>
<td>SFK</td>
<td>SRC family kinases</td>
<td></td>
</tr>
<tr>
<td>SH2B</td>
<td>SH2B type 1, 2, or 3, adaptor proteins</td>
<td></td>
</tr>
<tr>
<td>SHC1</td>
<td>SHC adaptor protein 1</td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>Sebaceous nevus</td>
<td></td>
</tr>
<tr>
<td>SN1</td>
<td>Segmental neurofibromatosis type I</td>
<td></td>
</tr>
<tr>
<td>SOS1</td>
<td>SOS Ras/Rac guanine nucleotide exchange factor</td>
<td></td>
</tr>
<tr>
<td>SOS2</td>
<td>SOS Ras/Rho guanine nucleotide exchange factor</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>SRC proto-oncogene, non-receptor tyrosine kinase</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Schimmelpenning syndrome</td>
<td></td>
</tr>
<tr>
<td>SYNGAP1</td>
<td>Synaptic Ras GTPase activating protein 1</td>
<td></td>
</tr>
<tr>
<td>SYNGAP1</td>
<td>Synaptic Ras GTPase activating protein 1</td>
<td></td>
</tr>
<tr>
<td>TAU</td>
<td>Microtubule associated protein tau</td>
<td></td>
</tr>
<tr>
<td>VGCC</td>
<td>Voltage gated calcium channel</td>
<td></td>
</tr>
</tbody>
</table>
PREFACE

The research in this dissertation was performed under the supervision of Dr. J.M. Newbern in the School of Life Sciences at Arizona State University between January 2014 and October 2018. All work herein is to the best of my knowledge original except where acknowledgements or references are made to previous works or the contributions of others.

The work presented in this dissertation is composed of research on both gain- and loss-of-function mutations in the RAS-RAF-MEK-ERK (RAS/MAPK) cellular signaling pathway in the central nervous system (CNS). This work is presented in the context of the RASopathies and the genetic germline mutations within the RAS/MAPK signaling pathway that are responsible for them. Chapter 1 is a literature review that encompasses the individual RASopathies and the germline genetic mutations that cause them. This is accompanied by a brief history of the RAS/MAPK signaling pathway, the core components and mechanism of the RAS/MAPK signaling pathway, and functions of the pathway within the context of the RASopathies and my own research.

Chapter 2 involves a study on the effects of loss-of-function (LoF) of cellular RAS/MAPK signaling primarily in cortical glutamatergic neurons. This chapter primarily consists of materials published in the journal eLife (Xing et al. 2016) and has been edited to highlight my own contributions except where referenced. Chapter 3 is comprised of a study on the effects of gain-of-function (GoF) RAS/MAPK signaling primarily in cortical glutamatergic neurons. This work constitutes materials that are currently in revision for publication. Chapter 4 defines the cortical layer specificity of the phenotypes involved in the gain-of-function model of RAS/MAPK cellular signaling. This work constitutes materials that are currently in revision for publication.
Chapter 5 includes concluding remarks as well as future directions and the challenges faced in the field of the RASopathies as well as possible translational implications.
CHAPTER 1

INTRODUCTION

The RASopathies

Germline genetic mutations within the genes that encode components of the RAS-RAF-MEK-ERK (RAS/MAPK) signal transduction pathway cause several human genetic syndromes collectively known as RASopathies. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML) (formerly LEOPARD syndrome), neurofibromatosis type 1 (NF-1), Costello syndrome (CS), capillary malformation-arteriovenous malformation syndrome (CM-AVM), cardio-facio-cutaneous syndrome (CFC), Legius syndrome, autoimmune lymphoproliferative syndrome (ALPS), Hereditary gingival fibromatosis 1 (HGF1), and Autosomal dominant intellectual disability type 5 (IDD5) (Tidyman and Rauen 2009; Katherine A. Rauen 2013). Caused by germline mutations, the RASopathies are classified as developmental disorders that share many overlapping clinical characteristics including craniofacial dysmorphologies, cardiovascular abnormalities, cutaneous, musculoskeletal, and ocular abnormalities, neurocognitive impairment, hypotonia, and an increased risk of cancer (Katherine A. Rauen 2013; Aoki, Niihori, S. Inoue, et al. 2016). Individually, there is a wide range of frequencies in the RASopathies with some syndromes being quite rare. For example, NS occurs in 1:1000 to 1:2500 individuals while NSML and ALPS have approximately 200 reported cases each worldwide (Gelb and Tartaglia 1993; Autoimmune lymphoproliferative syndrome 2018). Regardless of the frequencies of the individual syndromes, as a group, the RASopathies constitute one of the largest groups of developmental syndromes worldwide (Katherine A. Rauen 2013) (Table 1).
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Frequency</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Chromosome</th>
<th>Protein Function</th>
<th>Mutation Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noonan syndrome (NS)</td>
<td>1:1,000 to 1:2,500</td>
<td>PTPN11</td>
<td>Protein tyrosine phosphatase, non-receptor type 11</td>
<td>12q24.1</td>
<td>Phosphatase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOS1</td>
<td>SOS Ras/Rac guanine nucleotide exchange factor 1</td>
<td>2p22.1</td>
<td>RasGEF</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAF1 (CRAF)</td>
<td>Raf-1 proto-oncogene, serine/threonine kinase</td>
<td>3p25.1</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KRAS</td>
<td>KRAS proto-oncogene, GTPase</td>
<td>12p12.1</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRAS</td>
<td>NRAS proto-oncogene, GTPase</td>
<td>1q13.2</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHOC2</td>
<td>SHOC2, leucine rich repeat scaffold protein</td>
<td>10q25.1</td>
<td>Scaffolding</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBL</td>
<td>CBL proto-oncogene</td>
<td>11q23.3</td>
<td>Ubiquitin</td>
<td>Loss of Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRAS</td>
<td>NRAS related</td>
<td>19p13.33</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOS1</td>
<td>SOS Ras/Rac guanine nucleotide exchange factor 2</td>
<td>14q21.3</td>
<td>RasGEF</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP2K1 (MEK8)</td>
<td>Mitogen-activated protein kinase kinase 8</td>
<td>10p11.23</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRY1</td>
<td>sprouty related EVH1 domain-containing 1</td>
<td>4p28.1</td>
<td>Inhibitor</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KATS8</td>
<td>Lysine aspartate transferase 4B</td>
<td>10q22.2</td>
<td>Aspartate Transferase</td>
<td>Loss of Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LZTR1</td>
<td>Leucine zipper like transcription regulator 1</td>
<td>22q11.21</td>
<td>Adaptor</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2M1</td>
<td>Alpha-2-macroglobulin like 1</td>
<td>12q13.31</td>
<td>Release inhibitor</td>
<td>Unknown</td>
</tr>
<tr>
<td>Noonan syndrome with multiple lentigines (Prev. LEOPARD syndrome) (NSML)</td>
<td>~200 cases reported worldwide</td>
<td>PTPN11</td>
<td>Protein tyrosine phosphatase, non-receptor type 11</td>
<td>12q24.1</td>
<td>Phosphatase</td>
<td>Dysregulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAF1 (CRAF)</td>
<td>Raf-1 proto-oncogene, serine/threonine kinase</td>
<td>3p25.1</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRAF</td>
<td>B-Raf proto-oncogene, serine/threonine kinase</td>
<td>7q34</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP2K1 (MEK1)</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>15q22.31</td>
<td>Kinase</td>
<td>Activating Mutation (predicted)</td>
</tr>
<tr>
<td>Neurofibromatosis type 1</td>
<td>1:3,000 to 14,000</td>
<td>NF1</td>
<td>Neurofibromin 1</td>
<td>17q11.2</td>
<td>RasGAP</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td>Capillary malformation-arteriovenous malformation syndrome (CM-AVM)</td>
<td>1:100,000a</td>
<td>RASA1</td>
<td>RASA1 protein activator 1</td>
<td>5q14.3</td>
<td>RasGAP</td>
<td>Loss of Function</td>
</tr>
<tr>
<td>Costello syndrome (CS)</td>
<td>1:300,000 to 1:1,250,000</td>
<td>HRAS</td>
<td>HRas proto-oncogene, GTPase</td>
<td>11p15.5</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td>Autoimmune lymphoproliferative syndrome (ALPS)</td>
<td>Unknownb</td>
<td>ARAS</td>
<td>ARAS proto-oncogene, GTPase</td>
<td>1p13.2</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td>Cardio-Facio-Cutaneous syndrome (CF)</td>
<td>1:150,000 to 1:810,000</td>
<td>BRAF</td>
<td>B-Raf proto-oncogene, serine/threonine kinase</td>
<td>7q34</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP2K1 (MEK1)</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>15q22.31</td>
<td>Kinase</td>
<td>Activating Mutation (predicted)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP2K2 (MEK2)</td>
<td>Mitogen-activated protein kinase kinase 2</td>
<td>19p13.3</td>
<td>Kinase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KRAS</td>
<td>KRAS proto-oncogene, GTPase</td>
<td>12p12.1</td>
<td>GTPase</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td>Legius syndrome</td>
<td>Unknownc</td>
<td>SPRED1</td>
<td>Sprouty related EVH1 domain-containing 1</td>
<td>15q14</td>
<td>Negative Regulator</td>
<td>Loss of Function</td>
</tr>
<tr>
<td>Hereditary gingival fibromatosis 1 (HGFI)</td>
<td>Unknownd</td>
<td>SOS1</td>
<td>SOS Ras/Rac guanine nucleotide exchange factor 1</td>
<td>2p22.1</td>
<td>RasGAP</td>
<td>Activating Mutation</td>
</tr>
<tr>
<td>Autosomal dominant intellectual disability, type 5</td>
<td>1-2 percent of intellectual disability cases</td>
<td>SYNGAP1</td>
<td>Syntetic Ras GTPase activating protein 1</td>
<td>6p21.3</td>
<td>RasGAP</td>
<td>Loss of Function</td>
</tr>
</tbody>
</table>

---

a) The prevalence of this condition in populations other than people of northern European origins is unknown.
b) More than 200 affected individuals have been identified worldwide.
c) Many individuals with Legius syndrome may be misdiagnosed because the signs and symptoms are similar to NF1.

(Allanson and Roberts 1998; Friedman 1993; Gelb and Tartaglia 1993; Margaret P.Adam et al. 1993; Tidyman and Rauen 2009; Gripp 2012; Rauen 2013; Stevenson 2015; Rauen 2016; Tidyman and Rauen 2016; Bateman et al. 2017; Bleesing et al. 2017; Yates et al. 2017; Autoimmune lymphoproliferative syndrome 2018)
In addition to germline mutations of the RAS/MAPK pathway, postzygotic genetic mutations cause a mosaic genetic disorder with phenotypes that can be quite distinct from the previously defined RASopathies (Hafner and Groesser 2013). The mosaic RASopathies include Keratinocytic epidermal nevus (KEN), Keratinocytic epidermal nevus syndrome (KENS), Schimmelpenning syndrome (SS), Sebaceous nevus (SN), Mosaic Costello syndrome (MCS), Segmental neurofibromatosis type I (SN1) (Hafner and Groesser 2013). There is a wide range of symptoms for these disorders due to their mosaic nature. Symptoms range from cutaneous nevi in KEN to hemiparesis, ocular abnormalities and skeletal abnormalities including incomplete bone formation, hypertrophy or hypoplasia of bones, bone cysts, kyphoscoliosis, and vitamin-D resistant rickets in KENS and SS. Neurological defects reported in KENS and SS include seizures, intellectual disability, ventricular abnormalities, cortical atrophy, and hemimegalencephaly. Symptoms of MCS and SN1 are largely similar to their germline mutation counterparts with some CS and NF1 patients having been shown to have mosaic mutations with no significant phenotypic differences from those having germline mutations (Colman et al. 1996; Gripp et al. 2006; Hafner and Groesser 2013). Frequencies in individual diseases of mosaic RASopathies also have a large range. KEN ranges from ~1:333 to 1:1000 while MCS has only two known cases reported having been found in the relevant literature (Hafner and Groesser 2013; EN) (Table 2).

Diagnosis of the individual RASopathies is generally performed by clinical findings of key features and confirmed by genetic testing if necessary (Table 3). In some cases, clinical findings may not be sufficient and genetic testing of known genetic variants may need to be performed. Management of each syndrome within the RASopathies largely falls to surveillance and treatment of the individual manifestations (Margaret P Adam et al. 1993-2018). Some syndromes require
preventative treatments to avoid primary and secondary complications. To prevent primary complications in severe cases of ALPS for example, bone marrow transplantation is performed to prevent primary manifestations (Bleesing et al. 2017). To prevent secondary manifestations in CS and CFC cases, antibiotic prophylaxis is used to avoid bacterial endocarditis due to heart valve defects (Gripp 2012; Rauen 2016). In general, syndromes associated with developmental intellectual disabilities and cognitive impairments can be addressed by early intervention and specialized educational programs (Margaret P Adam et al. 1993). Precise and early diagnosis using clinical diagnosis and genetic testing is a critical part in monitoring and treating those afflicted with RASopathies.

**RAS/MAPK Signaling Pathway: Background**

The discovery of RAS began with the study of oncogenic retroviruses that were the cause of sarcomas infecting mice, rats, cats, monkeys, chickens, and turkeys in the early 1960s. In 1964 the potent oncogenic Harvey murine sarcoma virus (HRAS) was discovered followed by the Kirsten murine sarcoma virus (KRAS) in 1967 (Harvey 1964; Kirsten and Mayer 1967; Cox and Der 2010). These retroviruses, H-ras and K-ras, contained the potently oncogenic genetic elements that were later found to comprise the human HRAS and KRAS oncogenes (Cox and Der 2010). The link between the H-ras and K-ras retroviruses and human HRAS and KRAS oncogenes was discovered by several research groups in 1982 and 1983. At this time, it was found that DNA isolated from several different human carcinoma cell lines caused morphologic transformations in NIH/3T3 mouse fibroblasts (Der et al. 1982; Parada et al. 1982; Santos et al. 1982). Researchers discovered that a missense mutation in codon 12 of HRAS and KRAS, also found in the viral H-ras and K-ras viral genes, was the molecular basis of RAS activation and the basis of RAS
oncogenicity (Reddy et al. 1982; Taparowsky et al. 1982; O’Toole et al. 1983; Coulier et al. 1989). A third oncogenic RAS gene was soon identified in neuroblastoma-derived DNA and labeled NRAS (Hall et al. 1983). The detection of mutant RAS genes in patient’s tumors and not in normal tissues provided additional proof of the role mutant RAS has in the formation of carcinomas (Santos et al. 1984; Cox and Der 2010).

It wasn’t until about 10 years later that RAS would be associated with the EGFR tyrosine kinase (Cox and Der 2010). An important observation was made that the adapter protein growth factor receptor bound protein 2 (GRB2) provided a link between EGFR and RAS activation (Lowenstein et al. 1992; Cox and Der 2010). It was speculated that the biochemical function of the RAS protein was that of a binary switch involved in signal transduction (Hurley et al. 1984; Cox and Der 2010). This was due to the fact that RAS was able to bind both guanosine triphosphate (GTP) and guanosine diphosphate (GDP) which essentially presented RAS in either an “on” state or an “off” state respectively (Scolnick et al. 1979; Hurley et al. 1984; Cox and Der 2010). Downstream of RAS, it was discovered that the kinase RAF would bind preferentially to activated Ras-GTP hinting to a role in signal transduction from activated RAS (Warne et al. 1993; Zhang et al. 1993; Cox and Der 2010). Around a year earlier, it was recognized that there was a Ras- and Raf-dependent activation of mitogen activated protein kinases MAPK3 (ERK1) and MAPK1 (ERK2) and that Raf had the ability to activate the mitogen activated protein kinase kinases MAP2K1 (MEK1) and MAP2K2 (MEK2) (Gallego et al. 1992; Howe et al. 1992; Kyriakis et al. 1992). Together, these observations defined the basis of the RAS-RAF-MEK-ERK cellular signaling pathway from extracellular ligand binding to the final protein kinases in the pathway, ERK1 and ERK2.
**RAS/MAPK Signalling Pathway: Core Pathway**

The RAS/MAPK signaling pathway relays extracellular cues in the form of neurotrophins to affect critical cellular processes. The primary manner of activation for the RAS/MAPK pathway is by ligand binding activation of neurotrophic receptor tyrosine kinase 2 (NTRK2). There are three related yet distinct NTRK receptors, NTRK1, NTRK2, and NTRK3. Each receptor consists of a single transmembrane protein with a tyrosine kinase domain on the cytoplasmic side and each NTRK receptor has a primary affinity for specific neurotrophins. NTRK1 is primarily a receptor for the neurotrophin nerve growth factor (NGF), NTRK2 is primarily a receptor for brain derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4), and NTRK3 is primarily a receptor for neurotrophin 3 (NTF3). A large amount of structural homology in both the neurotrophins and NTRK receptors can cause cross reactivity between the neurotrophins and the receptors. In addition to the RAS/MAPK pathway, NTRK receptor signaling activates the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)/serine/threonine kinase 1 (AKT1), calcium signaling through the phospholipase C gamma 1 (PLCγ1) (Kanehisa et al. 2017). Furthermore, within the RAS/MAPK pathway, RAS signals to additional pathways, namely the p38 kinase signaling pathway with additional MAPK signaling via the PIK3CA/AKT1 pathway, and the mitogen-activated protein kinase MAPK7 (ERK5) kinase signaling pathway (Reichardt 2006; Tidyman and Rauen 2016; Kanehisa et al. 2017). In spite of the various signaling and pathway cross-talk dynamics, the common features within pathogenesis of the RASopathies are the genetic mutations within the core components of the RAS/MAPK and pathway activation of ERK1 and ERK2. (Tidyman and Rauen 2009; Katherine A. Rauen 2013; Tidyman and Rauen 2016).
RAS/MAPK signaling through NTRK2 begins with receptor activation and the phosphorylation of tyrosine residues Tyr 516 and Tyr 817 (Leal et al. 2017; The UniProt Consortium 2017). Receptor activation by BDNF/NTF4 binding induces a dimerization of the NTRK2 receptors followed by autophosphorylation of the tyrosine residues at the active sites (Reichardt 2006; Leal et al. 2017). Transactivation of NTRK2 independent of neurotrophin signaling has also been reported to occur through zinc-mediated activation of SRC family kinases (SFK) (Huang et al. 2008; Leal et al. 2017). Once NTRK2 is activated, phosphorylated Tyr 516 recruits and phosphorylates SHC adaptor protein 1 (SHC1) which in turn recruits growth factor receptor bound protein 2 (GRB2) and SOS Ras/Rho guanine nucleotide exchange factor (GEF) 1 and 2 (SOS1, SOS2) (Reichardt 2006; Leal et al. 2017). Additional scaffolding proteins can compete with SHC1 to bind at the phosphorylated Tyr 516 site on the activated NTRK2 receptor. Dimerized SH2B type 1, 2, or 3, adaptor proteins (SH2B1, SH2B2, SH2B3) can bind the phosphorylated Tyr 516 site in place of SHC that can provide a link from the activated NTRK2 receptor to GRB2/SOS (Qian et al. 1998; Reichardt 2006). The adapter molecule fibroblast growth factor receptor substrate 2 (FRS2), also competes for the phosphorylated Tyr 516 site and provides phosphorylation recruitment of adapter protein GRB2 independent of SHC or SH2B recruitment. FRS2 additionally recruits other signaling proteins including C-terminal Src kinase (CSK), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), protein tyrosine phosphatase, non-receptor type 11 (PTPN11), and CRK proto-oncogene, adaptor protein (CRK). This mixture of adapter proteins related to the activation of NTRK2 and the GRB2/SOS complex is believed to be one way to mediate signal strength and duration of signaling through the RAS/MAPK pathway (Reichardt 2006; Minichiello 2009) (Figure 1).
**Figure 1.**

**NTRK2 Recruits Various Adapter Proteins.** Several adapter proteins compete for binding at the activated NTRK2 Tyr 516 recruitment site. When bound to active NTRK2, SHC, SH2B2 dimer, and FSR2 become phosphorylated and recruit GRB2 bound to SOS. CRK recruits C3G to activate MAPK alternatively to GRB/SOS recruitment. Phospholipase C gamma 1 (PLCG1) binds to activated NTRK2 Tyr 817 and activates MAPK through an alternative pathway.
Activated SOS1 or SOS2 initiates the exchange of GDP for GTP on the membrane localized RAS protein. The exchange begins with the release of GDP through a quick succession of reactions. Once GDP is released, the series of reactions is reversed by the binding of a nucleotide, usually the RAS activating GTP due to much higher intracellular concentrations (Vetter 2001). When activated, RAS recruits RAF to the cell membrane which begins a series of complex actions to activate RAF. These actions include dimerization of RAF proteins, dephosphorylation and phosphorylation of different domains of RAF, dissociation from phosphatidylethanolamine binding protein 1 (PEBP1), and association with various scaffolding proteins. Several RAS GTPase activating proteins (RASGAPs) engage to exchange the GTP for GDP to inactivate RAS. These RASGAPs include synaptic Ras GTPase activating protein 1 (SYNGAP1), RAS p21 protein activator 1 (RASA1), and neurofibromin 1 (NF1), (Reichardt 2006; McCubrey et al. 2007). When activated, RAS is then capable of activating c-RAF which in turn phosphorylates MEK1 and/or MEK2. ERK1 and/or ERK2 are the specific targets that are then phosphorylated by MEK1 and/or MEK2 thus completing the RAS/MAPK core pathway (Figure 2).
Figure 2.

**RAS Activation by GEFs and Deactivation by GAPs.** RAS acts as a binary molecular switch that is either in an off or inactive state when bound by GDP, or in an on or active state when bound by GTP. Activation of RAS is performed by the exchange of GDP for GTP by an activated GEF (SOS1 / SOS2). In its active state, RAS can activate several different pathways including the RAS/MAPK pathway implicated in the RASopathies.
RAS/MAPK Pathway: Functions

The well conserved RAS/MAPK signaling pathway is perhaps the most studied cellular signaling pathway to date. The RAS/MAPK signaling pathway functions in many aspects of cellular mechanics including cell survival, differentiation, and proliferation. In the case of neurons, RAS/MAPK signaling pathway functions include axonal outgrowth, synaptic plasticity, synapse stabilization and removal, retrograde transport processes, and actin cytoskeleton regulation. Much of what has been studied and learned about RAS/MAPK signaling comes from cancer research studies performed on specific cell types in vitro. Neurons however, consisting of several distinct compartments and operating in a more diverse and complex manner, do not seem to have experienced that same magnitude of research. This is especially true of in vivo pathway functions under physiological or diseased conditions as is seen within the RASopathies.

Cell Survival

Early in vitro studies using PC12 cells revealed that RAS/MAPK signaling and ERK activation prevents apoptosis suggesting a means of cell survival through ERK activation and the suppression of mitogen-activated protein kinase MAPK8 (JNK) and mitogen-activated protein kinase MAPK14 (p38) signaling (Xia et al. 1995). However, later experiments deleting B-RAF in vitro and deleting B-RAF or B-RAF and C-RAF in vivo showed conflicting results concerning RAS/MAPK mediated cell survival. Using cultured embryonic sensory dorsal ganglion (DRG) neurons as well as sympathetic and motor neurons, it was demonstrated that B-RAF in vitro was needed and sufficient for cell survival (Wiese et al. 2001; Encinas et al. 2008). However, In vivo deletion of B-RAF or B-RAF and C-RAF in neurons did not lead to cell death showing that RAF signaling does not significantly mediate survival during embryonic
development (Chen et al. 2006; Zhong et al. 2007; Galabova-Kovacs et al. 2008; Pfeiffer et al. 2013; Zhong 2016). Furthermore, in retinal ganglion cells in vivo, RAS/MAPK signaling can be pro-apoptotic upon optic nerve damage or neuroprotective under ocular hypertensive conditions (Zhou et al. 2005; Luo et al. 2007). Interestingly, a prior study found that the deletion of both isoforms of ERK, ERK1 and ERK2, in sensory neurons resulted in a significant amount of cell death in vivo (O’Brien et al. 2015). An additional recent in vivo study revealed that the conditional deletion of RAS/MAPK signaling in cortical glutamatergic neurons resulted in the significant death of Layer 5 CTIP2+ neurons. The reported cell death followed temporally the failure of corticospinal tract axon elongation (Xing et al. 2016). In these cases, it is possible that cell death was primarily due to the loss of axonal connectivity and not due directly to the loss of ERK signaling.

During development and in the presence of NGF, cellular survival functions of the RAS/MAPK signaling pathway work through anti-apoptotic actions. RAS activation occurs upon TRKA receptor binding by NGF and leads to the activation of the PI3K/AKT and RAS/MAPK signaling pathways and inhibition of the JNK - p53 pro-apoptotic pathway (Mazzoni et al. 1999; Kaplan and Miller 2000; Kristiansen and Ham 2014). These actions prevent the release of cytochrome-c from the mitochondria and the subsequent release and cleaving of caspase-3 and have been reported both in vitro in sympathetic neurons and in vivo in superior cervical ganglion neurons (SCGs) (McCarthy et al. 1997; Martinou et al. 1999; Kristiansen and Ham 2014; Alberts 2015)(Kristiansen and Ham 2014; Alberts 2015). PI3K/AKT signaling inhibits the transcription factor FOXO3a which in turn inhibits the transcription of pro-apoptotic Bcl-2 homology domain 3 (BH3-only) proteins such as BCL2 like 11 (BIM) and BCL2 binding component 3 (PUMA) (Gilley et al. 2003; Zhang et al. 2011; Kristiansen and Ham 2014). PI3K/Akt signaling also inhibits the function...
of BCL2 associated agonist of cell death (BAD) by direct phosphorylation which inhibits BAD and prevents the release of BAX from a dimer complex with anti-apoptotic BCL-2 or BCL-XL (Datta et al. 1997; Kristiansen and Ham 2014). Interestingly, phosphorylation of RSK through RAS/MAPK-ERK signaling can also phosphorylate and inhibit BAD (Bonni et al. 1999). Further pro-survival activity by ERK activation of RSK comes via RSK phosphorylation of the transcription factor CREB. Upon activation, CREB initiates transcription of several anti-apoptotic factors including the BCL2 family of apoptosis regulating proteins (Riccio et al. 1999). Activated ERK is also able to directly phosphorylate and inhibit the pro-apoptotic BH3-only protein, BIM, which would otherwise bind to and inactivate pro-survival proteins BCL-2 or BCL-XL (Gilley et al. 2003; Ley et al. 2003; Zhang et al. 2011).

Embryonic Development

Several common or overlapping features of the RASopathies include craniofacial dysmorphologies, cardiac malformations, and CNS defects resulting in neurocognitive deficits (Katherine A. Rauen 2013). The development and morphogenesis of these regions are thought to be highly dependent upon fibroblast growth factor (FGF) induced ERK1/2 signaling during neural crest and neural tube formation in embryonic development (Corson et al. 2003; Samuels et al. 2009; Gilbert and Barresi 2016). Additionally, specific regions of mouse, chick, and zebrafish embryos were found to have spatially restricted areas in which ERK1/2 was detected during transient and prolonged periods of embryonic development. These spatially restricted areas are believed to develop under the influence of FGF as it was seen that ERK1/2 activation could be blocked by inhibiting FGF receptor (FGFR) function (Shinya et al. 2001; Corson et al. 2003; Lunn et al. 2007; Samuels et al. 2009). Additionally, further testing by genetic regulation of FGF8 expression in the
neural tube and neural crest also aided in defining the critical role FGF induced
ERK1/2 activation plays in development. It was shown that lowered FGF8 levels was
followed by the failure to generate a normal complement of neural crest cells. This
led severe cardiac and craniofacial defects whose severity was directly linked to the
levels of FGF8 that were shown to be reliant on ERK signaling (Meyers et al. 1998;
Kawauchi et al. 2005; Samuels et al. 2009). Normal CNS patterning is also disrupted
when FGF8 is disrupted in the developing neural tube causing the failure to develop a
cerebellum, olfactory bulb, and a normal cerebral cortex in embryonic mice (Chi et
al. 2003). Moreover, inactivation of ERK2 in the developing neural crest also results
in cardiac and craniofacial defects similar to the phenotypes seen in the FGF8
mutants and humans that are haploinsufficient for the MAPK1 gene that encodes the
ERK2 protein (Newbern et al. 2008; Samuels et al. 2009). Conditional knockouts of
Braf, Raf1, and Mek1/2, upstream elements of ERK1/2, and the transcription factor
SRF which is a downstream target of activated ERK1/2, all resulted in similar
phenotypes (Newbern et al. 2008). These links of FGF to ERK1/2 activation in vivo
gave the first evidence of the possibility of a highly selective developmental program
within specific sets of progenitors (Samuels et al. 2009).

Neural precursor cells go through mitotic division in the ventricular zone of
the newly formed neural tube. The precursor cells are attached to the inner luminal
and outer pial surfaces of the ventricular zone. Progression from G1 to S stages of
the cell cycle occurs as they migrate from the luminal surface to the pial surface. The
precursor cells then migrate back to the luminal surface during the G2 stage, lose
their attachments to the pial surface, and undergo mitosis. Cell division produces
either precursor cells or postmitotic neuroblasts then exit the cell cycle and begin
differentiation into neuronal subclasses (Purves 2012; Pillat et al. 2016). The
RAS/MAPK signaling pathway is a key source of integrating extracellular cues during
development to influence the actions of the cell cycle. In PC12 cells ERK activation is required for both proliferation and differentiation through stimulation by epithelial growth factor (EGF) or (NGF) respectively (Hallberg et al. 1994; Pouysségur et al. 2002). It has been widely reported that transient ERK activation in the cytoplasm caused by EGF stimulation, results in sustained cell cycle activity and proliferation. However, sustained ERK activation in the cytoplasm created by NGF stimulation causes nuclear re-localization of activated ERK resulting in cell cycle arrest and differentiation (Traverse et al. 1992; Vaudry 2002; von Kriegsheim et al. 2009; Pillat et al. 2016). The sustained activation of ERK is a result of signaling through RAP1-BRAF-MEK as well as RAS-RAF-MEK signaling and may include recruitment of PI3K, PKC, and the second messenger cAMP (Qui and Green 1992; York et al. 2000; Vaudry 2002; Pillat et al. 2016).

Neuron Migration and Axon Growth

Neuronal migration and axon guidance are two crucial processes in development that are highly associated with RAS/MAPK signaling. Involvement in these processes by RAS/MAPK is through not only transcriptional control by ERK phosphorylation of transcription factors, but also by direct interactions with cytoskeletal elements. Cell migration is a crucial and somewhat scheduled event during normal development. For example, during neural crest cell migration, deviation from a specific path of migration or failure to adapt to the target environment leads to elimination (Wakamatsu et al. 1998; Poelmann and Gittenberger-de Groot 1999; Cho and Klemke 2000). Work in identifying substrates of P-ERK1/2 and their roles in migration found several essential elements used in cell motility. Myosin light chain kinase (MYLK) family members involved in cell adhesion dynamics and membrane protrusion (Klemke et al. 1997; Huang et al. 2004), paxillin
(PXN) and protein tyrosine kinase 2 (PTK2) that complex to help regulate cellular adhesion dynamics (Huang et al. 2004; Valiente et al. 2011; Cooper 2013). In cortical neuron migration, it was found that hepatocyte growth factor (HGF) signaling through MET proto-oncogene, receptor tyrosine kinase (MET), Ras/MAPK, Rac1/p38, and PI3K/Akt signaling pathways are all necessary (Segarra et al. 2006). Although this study placed the dependence of Rac1/p38 signaling on the activation of Ras or PI3K, it was shown that Ras/MAPK and PI3K/Akt signaling were parallel pathways and each pathway was required for cell migration (Segarra et al. 2006).

A diverse mixture of extracellular cues, both chemical and mechanical, in the form of neurotrophins, netrins, semaphorins, cell adhesion molecules (CAMs), and ephs and ephrins, for example, work in concert in the execution of axonal outgrowth. These signaling molecules and binding receptors are under the developmental control of transcription factors that are regulated by the RAS/MAPK and protein kinase C (PKC) signaling pathways. Via TRK receptor activation and retrograde signaling, both CREB and NFAT transcription factor families are activated to express the genes necessary to produce the elements needed at the site of axonal extension and pathfinding (Lonze et al. 2002; Graef et al. 2003; Polleux and Snider 2010). In cortical spinal motor neurons, both in vitro and in vivo, IGF like family member 1 receptor (IGFLR1) activation by IGFL1, specifically activated and enhanced axonal growth through both the PI3K and RAS/MAPK signaling pathways. This study further states that in conjunction with their results and previous studies, that BDNF does not play a role in axonal outgrowth (Ozdinler and Macklis 2006). Early In vitro studies however using sympathetic neurons found that TRKB activation induced local axonal outgrowth and that elongation was dependent upon both PI3K and MEK activity (Atwal et al. 2000). The seeming contradiction in these two
conclusions only serves to highlight the cell type specific and spatio-temporal activities of RAS/MAPK signaling.

It was suggested by Atwal et al. that regulation of cytoskeletal stability was induced through PI3K by regulation of cytoskeletal elements, or by the RAS/MAPK and direct interactions of ERK with microtubule and neurofilament proteins (Atwal et al. 2000). It was later found that activated ERK did indeed act in the phosphorylation of microtubule associated protein 1B (MAP1B) and microtubule associated protein tau (TAU). MAP1B is highly enriched and localized in axons during development and has both dendritic and axonal functions in adulthood while non-phosphorylated TAU is predominately detected in the axons (Dehmelt and Halpain 2005; Ramkumar et al. 2018). NGF activation of the RAS/MAPK pathway in PC12 cells and primary neurons activates cyclin dependent kinase 5 regulatory subunit 1 (CDK5R1) that then forms an active complex to phosphorylate MAP1B. Phosphorylated MAP1B has crucial roles in microtubule dynamics that affect axonal elongation and growth cone dynamics (Harada et al. 2001; Hahn et al. 2005; Yang et al. 2012). TAU has been found to have several functions associated with microtubules: Controlling microtubule modifications, altering the mechanical properties of microtubules, spacing of microtubules, and also regulation of microtubule motor transport (Ramkumar et al. 2018). Tau is capable of being phosphorylated on 17 different sites by activated ERK1/2 resulting in Tau losing its affinity for microtubules substantially (Avila 2008; Hanger et al. 2009; Qi et al. 2016). Although ERK mediated phosphorylation of Tau results in microtubule instability, there are several different kinases phosphorylating Tau that have a stabilizing effect. This dynamic effect of stable and unstable phosphorylations could therefore be part of the dynamic assembly / disassembly mechanism that occurs during axonal growth.
Connectivity in the RASopathies

Non-invasive imaging of major white matter tracts within NF1 patients has revealed widespread abnormalities in local and global measurements using diffusion tensor imaging (DTI). DTI has been widely used to measure changes in white matter structure and the relationship to cognitive abilities in different stages of development (Assaf and Pasternak 2008; Qiu et al. 2015). DTI takes advantage of the differences of water diffusion in different directions. By measuring the extent of diffusion in all directions of a three-dimensional space, the anisotropy, or directional dependency, can be measured. In comparing this to isotropic diffusion, distinctions can be made between the elliptical shapes of oligodentricytic ensheathment of axons and the generally spherical shape of cell bodies. Measurements from the tensor model such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity or apparent diffusion coefficient (MD or ADC) are then used to indicate the underlying axonal organization and microstructure of the brain. FA values from DTI are the main measure of white matter microstructural integrity and also indicate increases in overall diffusivity. MD values are an indication of a more diffuse or less organized structure in both adults and children with NF1 (Karlsgodt et al. 2012). DTI does suffer from some drawbacks however, such as only being able to reveal one dominant fiber tract in a given voxel and the inability to distinguish areas between tracts. Even with these limitations, DTI does allow for in vivo imaging and is a very useful tool for studying brain architecture both during and after development (Assaf and Pasternak 2008; Qiu et al. 2015).

NF1 patients with megalencephaly and general learning disabilities are thought to have a possible generalized alteration of the microstructure of the brain. DTI studies have defined these significant microstructural changes in the major white matter tracts in NF1 patients in measurements of FA and MD. DTI analysis of the
corpus callosum of children with NF1, aged 3-17, indicated significantly lower FA values compared to control patients. Measurements of whole brain histograms in these children showed an overall significant increase in MD (Filippi, Watts, Lindsay A. N. Duy, et al. 2013). Another study in adolescent NF1 patients, aged 9-18, also detected significantly lower FA values and significantly higher MD values within the cingulate bundle, superior longitudinal fasciculus, and the anterior thalamic radiation compared to controls. This study also reported widespread local and global abnormalities in white matter tracts (Koini et al. 2017). Significant decreases in FA and significant increases in MD of the corpus callosum, caudate nucleus, frontal white matter, parietooccipital white matter, thalamus, pons, and other select areas of adults with NF1 (S. L. Zamboni et al. 2007). In the first brain-wide DTI study of white matter microstructure, significant reductions in FA and overall increases of MD across the brain of adults with NF1. These results were explained that diffusion was not globally increased but was less constrained along the axonal tracts indicating decreased organization of tracts, decrease of myelination, or increased axonal spacing along the tracts (Karlsgodt et al. 2012). Regulation of RAS/MAPK as well as Akt and FAK by NF1 has been shown to impact cell adhesion, cell survival, and cellular migration. The findings of these DTI studies have some consistencies with a loss of fasciculation and possibly pathfinding abilities of growing axons during development (Karlsgodt et al. 2012). To find a link with these findings, further work is needed.

Resting state functional connectivity MRI (rs-fcMRI) in NF1 adults found significantly reduced anterior-posterior connectivity compared to controls. Comparing edge (link between two nodes that have correlated activity) distribution in NF-1 and control patients, results suggested a pattern of long-range connectivity in the control group that was absent in the NF-1 group. The authors theorized that since these
connectivity differences in network structures were found in the resting state, it may predispose NF-1 patients to additional difficulties when task requirements are presented (Friston 2011; Tomson et al. 2015a). In a task-related fMRI study, key components of working memory circuits were found to be significantly hypo-activated in NF-1 patients verses healthy control subjects. A Variety of additional differential patterns of connectivity were found to be present in the NF-1 patients in direct comparison to the control group. Overall findings of this study could be speculated to show that the NF-1 patients have a less efficient pattern of neural activity (Amira F. A. Ibrahim et al. 2017).

**Immediate Early Gene ARC – Memory and Learning**

Cognitive, learning, and memory deficits are reported in many cases of RASopathy syndromes and vary widely between disorders. Cognitive impairments are reported in up to 80% of NF1 patients while approximately 25% of Noonan syndrome patients are reported to have learning disabilities (Allanson and Roberts 1993; Plasschaert et al. 2015). Learning and long-term memory formation relies on newly transcribed and translated proteins to stabilize synaptic changes. One of the most defined immediate early genes (IEG) is activity regulated cytoskeleton associated protein (Arc). Changes in the expression of ARC in regions associated with memory, learning, and plasticity are used as a widespread readout of activity in these processes (Guzowski et al. 1999; Gallo et al. 2018). The Arc gene encodes an mRNA transcript that is translocated from the nucleus to the cytosol then transported to the post-synaptic dendrites (Steward and Worley 2001). Upon synaptic activity, Arc mRNA is transported to and stabilized at active synapses indicating local translation of ARC at those sites (Steward et al. 1998; Epstein and Finkbeiner 2018). Shortly after translation, ARC is transported to the nucleus where it accumulates as
seen in neurons of the hippocampus and somatosensory cortex (Korb et al. 2013; Epstein and Finkbeiner 2018). Arc is known to play a crucial role in synaptic plasticity leading to learning and memory consolidation that when disrupted can lead to major behavioral abnormalities (Korb and Finkbeiner 2011; Shepherd and Bear 2011; Gallo et al. 2018).

Transcription of Arc is induced by a variety of signaling cascades upon neuronal activity. Calcium influx through glutamate binding of the N-methyl-D-aspartate receptor (NMDAR), glutamate metabotropic receptor 1 (GRM1) or α-aminoadrossy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), BDNF stimulation of NTRK2, and voltage gated calcium channels (VGCC) can each stimulate Arc transcription through the RAS/MAPK pathway (Epstein and Finkbeiner 2018). Stimulation of the AMPAR also leads to inhibition of Arc transcription through a G protein coupled mechanism (Rao et al. 2006; Epstein and Finkbeiner 2018). In turn, ERK itself directly phosphorylates ARC leading to the nuclear localization and the inhibition of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) (Korb et al. 2013; Nikolaienko et al. 2017; Epstein and Finkbeiner 2018). These inhibitory mechanisms lead to homeostatic scaling of synaptic activity that when dysregulated can lead to a brain that is poorly suited to form memories (Epstein and Finkbeiner 2018).

Summary

The term RASopathies was coined to encapsulate the collection of syndromes caused by germline genetic mutations specifically within the RAS/MAPK signaling pathway. The mechanisms and interactions of this pathway have been exhaustively studied and pieced together from many different cell types mainly in in vitro studies. The signaling mechanisms however are extremely specific to various factors
including cell type, environmental, temporal, signal context and duration, and spatial characteristics. The central nervous system contains a very heterogeneous mixture of cells and numerous brain structures. Recent data has implicated aberrant connectivity issues to be involved in the neurological and behavioral issues within patients with NF1. However, little is known about cell-specific and structural specific contributions within the physiological setting of the RASopathy pathologies.

To address the aberrant RAS/MAPK signaling functions in the context of connectivity, we employed an in vivo conditional RAS/MAPK signaling (MEK1) loss-and gain-of-function model to specifically target long-range cortical neurons. This allowed the determination of cell-type autonomous effects on the connectivity issues reported in the RASopathies. This conditional genetics approach was additionally used to determine the presence of any cortical layer autonomous effects in the MEK1 gain-of-function mouse. Behavioral analysis was performed using this approach to address cell-type and layer autonomous effects in motor learning acquisition.
CHAPTER 2

PROJECTION NEURON DEVELOPMENT IN A LOSS-OF-FUNCTION MEK1/MEK2 MOUSE MODEL

Layer-specific and general requirements for ERK/MAPK signaling
in the developing neocortex

Lei Xing, Rylan S. Larsen, George R. Bjorklund, Xiaoyan Li, Yaohong Wu, Benjamin D. Philpot, William D. Snider, Jason M. Newbern

1University of North Carolina Neuroscience Center, 2Department of Cell Biology and Physiology, 3Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599
4Allen Institute for Brain Science, Seattle, WA, 98109
5School of Life Sciences, Arizona State University, Tempe, AZ, 85287
*Corresponding author
**Abstract**

Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as “RASopathies” and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Mek1/2 led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Mek1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability.
Introduction

The canonical Ras/Raf/MEK/ERK (ERK/MAPK) signaling pathway is a key intracellular signaling cascade downstream of cell surface receptors critical for brain development (Samuels et al. 2009). In the developing cortex, the ERK/MAPK pathway is thought to be particularly important for neuronal responses to neurotransmitters and receptor tyrosine kinase (RTK) ligands, such as FGFs and neurotrophins. In the mature brain, it is well established that ERK/MAPK plays a central role in the activity-dependent plasticity of neural circuits (Thomas and Huganir 2004; Shilyansky et al. 2010).

Importantly, a number of human neurodevelopmental syndromes have been linked to aberrant ERK/MAPK activity. This related group of human syndromes, increasingly referred to as RASopathies, are caused by genetic mutations in core components or regulators of the ERK/MAPK signaling cascade (Rauen 2013). Macrocephaly, neurodevelopmental delay, cognitive impairment, and epilepsy are frequently observed in RASopathy patients with clinical manifestations being dependent on the precise causative mutation (Rauen 2013). RASopathies are most often associated with hyperactive ERK/MAPK signaling (e.g. Neurofibromatosis type 1 (NF1), Noonan, Costello, and Cardiofaciocutaneous (CFC) syndromes) (Rauen 2013); however, mutations that lead to diminished ERK/MAPK activation have been identified in a subset of LEOPARD and CFC syndrome patients (Kontaridis et al. 2006; Nowaczyk et al. 2014). Abnormal Ras/MAPK signaling has also been observed in models of other monogenic neurodevelopmental disorders, including Fragile X syndrome and Tuberous Sclerosis (Chévere-Torres et al. 2012; Osterweil et al. 2013; Faridar et al. 2014; Zhang et al. 2014). Recent exciting work has shown that pharmacological normalization of pathological Ras/MAPK activity is sufficient for correcting select cellular and behavioral abnormalities in Fragile X, Tuberous
Sclerosis, NF1, Noonan, and Costello syndrome mutant mice (Li et al. 2005; Cui et al. 2008; Wang et al. 2012; Osterweil et al. 2013; Lee et al. 2014; Zhang et al. 2014). However, our understanding of these disorders remains rudimentary as there is limited information on brain cell type-specific consequences of either loss- or gain-of-function through this pathway.

Accumulating evidence also suggests that pathological ERK/MAPK signaling contributes to certain forms of autism. Altered Ras/MAPK signaling has been identified as a common downstream mediator of divergent genetic mutations linked to autism, and Erk1/MAPK3 is present in a region of 16p11.2 mutated in ~1% of cases of autism (Kumar et al. 2007; Eichler and Zimmerman 2008; Weiss et al. 2008; Pinto et al. 2010; Gilman et al. 2011; Gilman et al. 2012; Pucilowska et al. 2015). Little is known about how ERK/MAPK signaling might relate to the pathogenesis of autism. An important current research theme is that the behavioral manifestations of autism spectrum disorders (ASDs) may be linked to both functional hypo- and hyper-connectivity between distinct brain regions (Geschwind and Levitt 2007; Just et al. 2007; Keown et al. 2013; Supekar et al. 2013). Furthermore, recent work in postmortem brains of autistic patients suggests that local patches of disorganization, in which cortical layers 4-5 are particularly affected, play an important role in disease pathogenesis (Stoner et al. 2014). In one study, co-expression network analyses of autism-linked genetic mutations suggested that layer 5 in prefrontal and sensorimotor cortex is a key site of convergence for pathogenesis (Willsey et al. 2013). Whether aberrant ERK/MAPK signaling might result in cortical layer disorganization and defective long-range connectivity is unknown.

To address questions of cell type specificity and consequences for circuit formation, we have defined the effects of ERK/MAPK loss- and gain-of-function on the development of cortical pyramidal neurons. Pyramidal neuron-specific functions
of ERK/MAPK signaling were assessed by deleting the upstream kinases
Mek1/MAP2K1 and Mek2/MAP2K2 (Mek1/2) or overexpressing hyperactive Mek1.
Conditional deletion of Mek1/2 led to major disruption of layer 5 with noticeably fewer Ctip2-expressing large neurons compared to controls. Further, long range axon extension of layer 5 corticospinal projection neurons during early development was markedly impaired. Subsequent to delayed entry of axons into the cervical spinal cord, many layer 5 projection neurons in sensorimotor cortices underwent apoptosis. Gain-of-function ERK/MAPK signaling also affected layer 5 CST neurons with a resultant decrease in axon elongation and associated increase in axon branching. The morphological requirement for ERK/MAPK signaling was specific for layer 5, as layer 2/3 was not disrupted and callosal projection neurons in upper cortical layers do not exhibit overt changes in axon extension or targeting following Mek1/2 deletion. In contrast to the layer-specific functions of ERK/MAPK on axonal development, we found that ERK/MAPK was required for the expression of ARC and other plasticity-associated genes across all cortical lamina. Further, loss of ERK/MAPK signaling in pyramidal neurons disrupted excitatory and inhibitory neurotransmission and altered intrinsic excitability in both layers 2/3 and 5. Our data reveal unexpectedly specific requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on the excitability of cortical pyramidal neurons in multiple layers.
Materials and Methods

Transgenic Mice

Animal experiments were performed in accordance with established protocols approved by the Institutional Animal Care and Use Committee at the University of North Carolina–Chapel Hill and Arizona State University and NIH guidelines for the use and care of laboratory animals. All mice were housed in standard conditions with food and water provided ad libitum and maintained on a 12-hr. dark/light cycle. Experiments were replicated a minimum of three times with mice derived from independent litters. Nex:Cre expression alone did not have a detectable effect on the phenotypes described in this manuscript. Thus, Cre-expressing or Cre-negative littermates were utilized as controls unless indicated otherwise. Mek1loxP/loxP mice possess a loxp flanked exon 3 while Mek2−/− mice contain a neo insertion in exons 4-6, which encodes the kinase domain (Bélanger et al. 2003; Bissonauth et al. 2006). Mek2−/− mice are viable and breed normally. Loxp-STOP-loxp-caMEK1 mice were kindly provided by Dr. Maike Krenz and Dr. Jeffrey Robbins (Krenz et al. 2008); the IGF1RloxP/loxP were kindly provided by Dr. Ping Ye (Liu et al. 2009); the Nex:Cre mice were kindly provided by Dr. Klaus Nave and Dr. Sandra Goebbels (Goebbels et al. 2006); and the Emx1:Cre mice were kindly provided by Dr. Franck Polleux (Gorski et al. 2002). “Ai3” mice were purchased from Jackson laboratories (Madisen et al. 2010). All mice in this study were of mixed genetic background.

Genomic DNA extracted from tail or toe samples was utilized for mouse genotyping by PCR using standard techniques. Primers for gene amplification are as follows (listed 5′-3′): Cre - TTCGCAAGAACCTGATGGAC and CATTGCTGTCACCTTGCTCGT amplify a 266 bp Cre allele; Mek1 – CAGAAGTTCCCAGCACAAG and GTCTGTACCTTGTCCTTGG amplifies a 372 bp wild type and a 682 bp floxed allele;
Mek2 – CTGACCTTCTGTAGGTG, ACTCACGGACATGTAGGA, and AGTCATAGCCGAACTGCTGTAGGTG amplify a 293 bp wild-type allele and a 450 bp knockout allele; caMEK1 – GTACCAGCTCGGCGGAGACCAA and TTGATCACAGCAATGCTAACTTTC amplify a 600 bp mutant allele; Ai3 – AAGGGAGCTGCAGTGGAGTA, CCGAAAATCTGTGGGAAGTC, ACATGGTCCTGCTGGAGTTC, and GGCATTAAAGCAGCGGTATCC amplify a 297 bp wild-type allele and a 212 bp Ai3 allele; IGF1R-CTTCCCAGCTTGCTACTCTAGG and CAGGCTTGCAATGAGACATGGG amplify a 124 and a 220 bp band for wild-type and floxed alleles.

**Viral and DiI Injections**

P0-P5 litters were removed as a group, cryo-anesthetized on wet-ice for 3-5 min, and immediately injected with 50-500nl of solution using a 5 uL Hamilton syringe fitted with a 32-gauge beveled needle mounted to a stereotaxic arm. For viral labeling, the AAV5-CAG-FLEX-tdTomato vector was prepared by the UNC Viral Vector Core and diluted in sterile PBS, 5% sorbitol, and 0.1% Fast Green to allow for visualization prior to injection. For DiI tracing, a 10% DiI solution (Life Technologies) was prepared in DMSO and injected into the primary motor cortex or the cervical spinal cord. Upon completion of the injection, pups recovered on a heating pad and were returned as a group to the home cage.

**Tissue Preparation**

Mice of the appropriate age were anesthetized and perfused transcardially with 4% paraformaldehyde/PBS. For cryoprotection, sub dissected samples were incubated in a graded series of 10%, 20%, and 30% sucrose/PBS at 4°C before embedding in O.C.T. compound and freezing. Cryostat sections were collected on Fisherbrand Superfrost/Plus slides (Fisher Scientific) and air-dried prior to staining.
For some experiments, brains were dissected, post fixed, and mounted in agarose prior to vibratome sectioning.

**Immunolabeling**

For immunofluorescent staining, sections were rinsed in PBS and blocked with 5% normal serum/0.1% Triton X-100/PBS at room temperature. Primary antibodies were diluted in blocking solution and incubated 1-2 days at 4°C with gentle agitation. The antibodies utilized were; rabbit anti-Parvalbumin (Swant), chicken anti-GFP (Aves Labs), rat anti-Ctip2 (Abcam), rabbit anti-Satb2 (Abcam), rabbit anti-Cux1 (Santa Cruz), mouse anti-NeuN (Chemicon), rabbit anti-Cleaved Caspase-3 (Cell Signaling Technology), rabbit anti-Iba1 (Wako), goat anti-IGF1 (R&D Research), rabbit anti-PKCγ (Santa Cruz), rabbit anti-MEK1/2 (Abcam), rabbit anti-P-ERK1/2 (Cell Signaling Technology) and rabbit anti-IGF1Rβ (Cell signaling Technology). After rinsing in PBS/T, the secondary antibody was diluted in blocking solution and added overnight at 4°C. Secondary antibodies included Alexa Fluor 488, 546 or 568, and 647 conjugated anti-rabbit, anti-mouse, anti-rat, or anti-goat IgG (Invitrogen). For some experiments, slides were then incubated in Hoechst or DAPI for nuclear labeling, rinsed, and mounted. Images were collected with a Zeiss LSM 710, 780, or Leica SP5 laser scanning confocal microscope.

**Image Analysis and Quantitation**

Confocal images of regions of interest were collected from individual brain sections for each animal. For assessment of relative neocortical volume, cortical area was measured in five anatomically matched coronal sections along the rostro-caudal axis, averaged, and normalized against the control brain. For assessment of Ctip2, Cux1, Satb2, and NeuN expressing cells, regions of primary sensory, motor, and
visual cortex from at least three anatomically matched sections of mutant and control cortices were defined using morphological and anatomical features described in Paxinos and Franklin 2001 (Franklin and Paxinos 2013). Radial columns were outlined within the cortical region of interest and measured. The total sampled area from a specific region of cortex of a single brain ranged from 1-3 mm². Individual layer boundaries were determined by the changes in density and appearance of NeuN labeling. Images were then transferred into ImageJ, a pixel intensity threshold was set manually by an observer blind to the genotype, and watershed segmentation was performed. The binary image mask was then analyzed using the particle analysis tool to count the number of events with a min-max size cutoff of 50-600 µm² for NeuN labeling and 30-300 µm² for Ctip2⁺, Cux1⁺, or Satb2⁺ labeled nuclei. For NeuN density determination, the total number of NeuN⁺ cells within a radial column was divided by the area of the column and averaged across at least three separate columns within the cortical region of interest. For determination of the relative proportion of Ctip2⁺ or Satb2⁺ cells in layer 5 or Cux1⁺ cells in layers 2-4, the number of each labeled cell within specific laminar boundaries was divided by the total NeuN count within the entire radial column to determine the proportion of each neuronal subtype per radial column. Results from this analysis were averaged across three individual radial columns per cortical region and normalized against the littermate control analyzed in parallel for each mutant. These images were also utilized for determination of the cross-sectional area of neuronal soma. Randomly selected, well-labeled NeuN expressing neurons that included a DAPI labeled nucleus were outlined manually in Photoshop and measured.

For analysis of axonal innervation, a modification of the cell counting procedure described above was utilized where images of the region of axonal innervation from at least three anatomically matched sections were collected,
manually thresholded in ImageJ, and the number of labeled pixels was measured. Representative images have been cropped and adjusted for brightness and contrast in Photoshop for presentation. Student's t-test was used for statistical analysis.

**Western Blotting**

Sensorimotor cortices were dissected from both mutant and litter mate control mice and lysed in RIPA buffer (0.05M Tris-HCl, pH 7.4, 0.5M NaCl, 0.25% deoxycholic acid, 1% NP-40, and 1mM EDTA, Millipore) supplemented with 0.1% SDS, protease inhibitor cocktail (Sigma) and phosphatase inhibitor cocktail II and III (Sigma). Lysates were cleared by centrifugation and protein concentration was determined using the Bio-Rad protein assay (Bio-Rad) using BSA as a standard. Equal amounts of protein were denatured in reducing sample buffer, separated by SDS-PAGE gels, and blotted to PVDF membranes (Bio-Rad). Blots were blocked with 5% BSA in TBS containing 0.5% Tween 20 (TBS-T) for 1 h at room temperature, then incubated overnight at 4°C with primary antibodies. The primary antibodies used were rabbit anti-phospho Erk1/2 (Thr202/Tyr204) (Cell Signaling Technology, Inc), rabbit anti-Erk1/2 (CST), rabbit anti-phospho-p90RSK (Thr573) (Cell Signaling Technology, Inc.), rabbit anti-RSK (Cell Signaling Technology, Inc.), rabbit anti-MSK1(Ser360) (Abcam), rabbit anti-MSK1 (Cell Signaling Technology, Inc.), rabbit anti-Mek1/2 (Cell Signaling Technology, Inc.), rabbit anti-Arc (Synaptic System) and anti-GAPDH (Cell Signaling Technology, Inc.). After washing with TBS-T, membranes were incubated with HRP-conjugated secondary antibodies in 5% milk in TBS-T for 2 h at room temperature. Blots were washed with TBS-T and detection was performed with SuperSignal West Pico chemiluminescent substrate (Thermo Scientific).
Results

Excitatory neuron-specific modification of ERK/MAPK activity

Previous work has shown that ERK1/2 is activated in embryonic cortical neurons, albeit at much lower levels than in the ventricular zone (Faedo et al. 2010; Toyoda et al. 2010; Pucilowska et al. 2012; Li et al. 2014). In western blots of sensorimotor cortical lysates from P1, 2, 7, 14, and 21-day old mice, it was shown that levels of pan-ERK1/2 and pan-MEK1/2 exhibit a steady but evident increase from a relatively lower level at birth. Phosphorylated-ERK1/2 and phosphorylated-MEK1/2 levels were also relatively low at birth but increased noticeably by P7 and peaked at P14 (Oliveira et al. 2008). The expression of phosphorylated ERK1/2 at P3 did not exhibit any clear-cut laminar specificity. These findings indicate that ERK/MAPK signaling is activated in the developing cortex, peaking during the second postnatal week (Xing et al. 2016).

We generated a mouse model to test the direct, neuron-autonomous role of ERK/MAPK signaling by inactivating Mek1/2 specifically in immature mouse cortical excitatory neurons. We conditionally deleted Mek1/2 with a Cre-dependent Mek1 allele, a germ-line Mek2 deletion allele, and Cre-recombinase under the control of the Nex/NeuroD6 promoter (Mek1<sup>loxp/loxp</sup> Mek2<sup>−/−</sup> Nex:Cre, referred to hereafter as Mek1/2<sup>CKO(Nex)</sup>) (Goebbels et al.). As expected, Nex:Cre activated reporter-gene expression in the Cre-dependent EYFP mouse line, Ai3, in excitatory, but not inhibitory, neurons in the neocortex (Figure 3B-C) (Madisen et al. 2010). Cre-mediated reporter gene expression was apparent by mid-embryogenesis (data not shown). Western blotting of neocortical lysates and immunolabeling show that Mek1/2<sup>CKO(Nex)</sup> mice exhibit significantly reduced MEK1 levels by birth and reduced phosphorylation of ERK/MAPK substrates, RSK, and MSK (Figure 3A). Complete loss
of MEK1 protein would not be expected in whole cortical lysates due to MEK1 expression in inhibitory interneurons and non-neuronal cell types. These data show that the Nex:Cre-mediated genetic targeting strategy is effective at inducing loss of ERK/MAPK signaling in developing cortical excitatory neurons. Mek1/2CKO(Nex) pups were born at normal Mendelian ratios without overt differences from littermate controls. However, a delay in overall growth could be detected by the end of the first postnatal week. At P14 Mek1/2CKO(Nex) mice exhibited an average reduction in body weight of 37.1 ±11.3% and neocortical volume was reduced by 23.2 ±6.4% (mean ±SEM, n=7, p<0.0001). Behaviorally, P14 Mek1/2CKO(Nex) mice exhibited spontaneous and persistent hindlimb clasping when lifted by the tail (data not shown), an indicator of neurological impairment. Lethality was invariably observed in the third to fourth postnatal week. A qualitatively similar effect on growth, neurological function, and viability was also observed in Erk1−/−Erk2loxP/loxP Nex:Cre mice (data not shown), demonstrating that phenotypes are conserved following deletion of different core components of the ERK/MAPK cascade (Xing et al. 2016).
**Figure 3**

**Mek1/2^CKO(Nex) Cortical Excitatory Neurons Specific Recombination.** (E) P1 and P14 Map2k1/2; Neurod6-Cre cortices show pronounced loss of MAP2K1 expression and reduced phosphorylation of ERK/MAPK pathway substrates, RSK and MSK (n=5). (F-G) Representative confocal images of P14 control mouse brains show that cortical excitatory neurons in the cortex and hippocampus exhibit a high level of MAP2K1 immunolabeling (E). MAP2K1 levels are profoundly reduced in the cortex (yellow arrows) and hippocampal subfields CA1-CA3 (blue arrow) in P14 Map2k1/2; Neurod6-Cre mice (G) (n=6, scale bar=2 mm).
Disruption of layer 5 and reduced number of Ctip2+ neurons after ERK/MAPK inactivation

Comprehensive analyses of layer 5 neurons have identified specific gene expression patterns, morphologies, and electrophysiological characteristics for this neuronal subtype (Leone et al. 2008; Kwan et al. 2012; Custo Greig et al. 2013). We analyzed the expression pattern of a critical transcription factor for layer 5 development, Ctip2, in control and mutant cortices (Figure 4A-B) (Arlotta et al. 2005). The appearance of co-labeled Ctip2+/NeuN+ neurons in layer 5 appeared disrupted in rostral P14 Mek1/2CKO(Nex) cortices compared to controls (Figure 4B, yellow arrows).

Ctip2+ layer 5 neurons are a small percentage of the total cortical neuron population. In the sensory cortex of control mice, we found that Ctip2+ layer 5 neurons represent only 9.61 ±0.84% (mean ±SEM, n=5) of all NeuN+ neurons within a radial column. Thus, our previous global NeuN estimates across an entire cortical column were not sensitive enough for detecting changes confined to sparse neuronal subtypes. To quantify the number of Ctip2+ neurons, we determined the relative proportion of cells in layer 5 that express Ctip2+ as a percentage of NeuN+ cells across all lamina in a radial cortical column. This measurement was performed in motor, sensory, and visual cortices. Indeed, we found that P14 Mek1/2CKO(Nex) primary motor and sensory cortices exhibit a clear decrease in the relative proportion of Ctip2+ neurons in layer 5 (Figure 5A-F, G). Qualitatively similar results were observed in P14 Mek1/2CKO(Emx1) cortices (Data not shown). The relative proportion of Ctip2+ neurons in visual cortices (Figure 5E-F, G) was not significantly diminished in Mek1/2CKO(Nex) mutants, suggesting the effect in sensory and motor cortex was due to loss of the cell type and not a result of ERK/MAPK regulation of global Ctip2
expression levels (Xing et al. 2016).

**Figure 4.**

Loss of ERK/MAPK signaling leads to a reduction in the number of Ctip+ layer 5 neurons. Immunostaining of P14 control (A) and Mek1/2CKO(Nex) (B) sagittal forebrain sections for all neurons, callosal projection neurons, and subcortical projection neurons with NeuN, Satb2, and Ctip2, respectively, revealed an aberrant pattern of Ctip2 expression in layer 5 of mutant sensorimotor cortices (yellow arrows) (n=6, scale bar = 100µm).
Loss of ERK/MAPK signaling leads to a reduction in the number of Ctip\(^+\) layer 5 neurons. Representative confocal images of Ctip2 immunolabeling in radial columns of primary motor (D-E), sensory (F-G), and visual (H-I) cortex from P14 control (D, F, H) and \(\text{Mek1/2}\text{CKO(Nex)}\) (E, G, I) brains (scale bar = 30\(\mu\)m). Quantification of the relative number of layer 5 Ctip\(^+\) neurons as a proportion of the total number of NeuN\(^+\) neurons in a cortical column revealed a substantial decrease in motor and sensory, but not visual, cortices in P14 mutant mice (J) (n=4, mean \(\pm\)SEM, \(\ast = p < 0.05\)).
Failure of CST development neurons in layer 5

Layer 5 neurons are morphologically heterogeneous with distinct subpopulations that can be differentiated by cortico-cortical or subcortical axonal projections. We examined layer 5 projections in the hindbrain corticobulbar tract (CBT) and spinal cord corticospinal tract (CST) of P14 *Mek1/2* mutant mice. Immunostaining for a well-established marker of corticospinal projections, PKCγ, and genetic labeling with *Ai3* revealed a profound decrease in the size of the CBT in P14 *Mek1/2* CKO(Nex) hindbrains (Figure 6A-B). CST labeling was also strikingly reduced in the cervical spinal cord (data not shown) and essentially absent in the lumbar spinal cord in both *Mek1/2* CKO(Nex) (Figure 6C-D) and *Mek1/2* CKO(Emx1) mutants (Figure 6E-F). Analysis of rare *Mek1/2* mutants that survived as late as P24 revealed that no CST axons were present in lumbar spinal cords (data not shown). These data provide further evidence of an overt loss of corticospinal neurons by the second postnatal week (Xing et al. 2016).

Corticospinal neurons represent a subset of the entire Ctip2+ population in sensorimotor layer 5 (Arlotta et al. 2005). The lack of layer 5 neuron loss in the *Mek1/2* CKO(Nex) visual cortex suggests that ERK/MAPK signaling is dispensable for the development of projection neurons targeting structures other than the spinal cord. Past work has shown that callosally projecting layer 5 neurons have significantly shorter and less complex apical dendritic arbors than subcortical projection neurons (Molnár and Cheung 2006; Larsen et al. 2007). To determine which of these classes was affected by *Mek1/2* deletion, a Thy1-based reporter, *YFP-16*, that fluorescently labels a small proportion of layer 5 neurons in sensorimotor cortex, was bred with *Mek1/2* CKO(Nex) mice (Feng et al. 2000).
These mutants clearly show that the fluorescently labeled layer 5 neurons in P14-P21
$\textit{Mek1/2}^{\text{CKO(Nex)}}\text{ YFP-16}$ sensorimotor cortices have substantially shorter apical
dendrites than in controls (Data not shown). The reduction in large, tufted neurons in
layer 5 of mutant mice provide further evidence for a deficit in the development of
corticospinal projection neurons (Xing et al. 2016).
Corticospinal tract defects in the Mek1/2CKO (Nex) mice. To further evaluate the loss of layer 5 projection neurons, we examined the expression of a well-established corticospinal tract marker, PKCγ. Compared to control hindbrains (A) and spinal cords (C), a profound decrease in corticospinal tract labeling was observed in the Mek1/2CKO (Nex) hindbrain (B-yellow arrows, scale bar = 200 µm) and spinal cord (D), consistent with the reduced number of Ctip2+ layer 5 neurons (df=dorsal funiculus, n=3, scale bar = 50 µm).
ERK/MAPK signaling is necessary for corticospinal axon extension

The loss of layer 5 neurons following deletion of Mek1/2 could be due to an early disruption in the initial specification of this neuronal subtype. During layer 5 neuron development, Nex:Cre is not expressed until neurons are post-mitotic (Wu et al. 2005; Goebbels et al.). However, it remained possible that post-mitotic stages of embryonic layer 5 neuron specification were altered during embryogenesis. In newborn mutant pups, we found that the expression and number of Ctip2+ neurons in presumptive layer 5 was not diminished following Mek1/2 deletion (Figure 7A-C). Thus, ERK/MAPK signaling is not required for the initial establishment of the correct numbers of the Ctip2+ deep-layer neuron population.

By P3 in wild-type neonates, corticospinal axons have projected through the ventral hindbrain, crossed the midline at the medullary/spinal cord boundary, and are extending into cervical spinal cord through the dorsal funiculus (Schreyer and Jones 1982). We asked whether ERK/MAPK signaling was required for the initial outgrowth of corticospinal projections in vivo. In vivo DiI injections into the motor cortex of P0.5 neonates were performed to assess subcortical axon growth, especially into the spinal cord (Figure 8A). Strikingly, analysis of anterogradely labeled axonal projections at P3-4 revealed a highly significant decrease in the extension of corticospinal axons into the lower cervical/upper thoracic segments of spinal cord (Figure 7D-E). Moreover, a profound decrease in the caudal extension of descending corticospinal axons into the spinal cord of P2 Mek1/2CKO(Emx1) Ai3 mice was also observed (Data no shown). DiI labeling of subcortical projections in Mek1/2CKO(Nex) mice revealed that layer 5 neuron growth into the tectum and pons/medulla was not significantly decreased (Figure 8B). These data demonstrate that the initial growth of corticospinal axons to the level of the hindbrain is not significantly disrupted in Mek1/2 mutants, however, ERK/MAPK signaling is clearly
necessary for corticospinal axon elongation into the spinal cord.

*In vitro* studies have demonstrated that IGF1 signaling acting via PI3K and ERK/MAPK promotes corticospinal axon outgrowth *in vitro* (Ozdinler and Macklis 2006). IGF1 is also focally and intensely expressed in the medulla in the presumptive inferior olivary nucleus during the precise developmental time frame (P1 – P2) that CST axons normally enter the spinal cord (Data not shown). IGF-1 expression is temporally regulated, being present by E18 and much diminished by P14 (data not shown). *Mek1/2* deletion in CST axons does not affect IGF1 expression by these cells (Data not shown). Thus, IGF-1 may act via ERK/MAPK within corticospinal neurons to regulate corticospinal outgrowth (Xing et al. 2016).
Layer 5 neuron corticospinal axon outgrowth requires ERK/MAPK signaling in vivo. Expression of a well-known master transcription factor for layer 5 neurons, Ctip2, was intact in cortical layer 5 as shown in representative confocal images of newborn control (A) and Mek1/2^{CKO(Nex)} (B) sensorimotor cortices (scale bar = 50 µm). Quantitation of the number of Ctip2-expressing nuclei in cortical layer 5 did not reveal a significant difference in Ctip2^{+} neuron density between control and mutant neonates (C) (n=3, mean ± SEM, p = 0.89). In vivo DiI injections into the sensorimotor cortex of P0.5 control and Mek1/2^{CKO(Nex)} neonates were performed and mice were collected three days after injection. The extent of anterograde DiI labeling was analyzed in coronal sections through the spinal cord (D). We observed a significant decrease in the extent of corticospinal (cst) elongation in mutant mice, especially in the lower cervical/thoracic spinal cord segments (yellow arrows in D) (n=3, scale bar = 100 µm). Quantitation of CST length relative to the medullary decussation revealed a significant decrease in corticospinal axon growth in mutant spinal cords (E) (n=3, mean ± SEM, * p = 0.02).
The rostro caudal elongation of layer 5 axons in the spinal cord requires ERK/MAPK. A-B. In vivo DiI injections into the sensorimotor cortex were performed in P0.5 control and Mek1/2CKO(Nex) neonates to label subcortical projection neuron afferents (A). Mice were collected three days after injection and the extent of DiI labeling in multiple subcortical targets was analyzed in coronal sections through the brain (B). A substantial difference in the innervation of the thalamus (th), cerebral peduncle (cp), superior colliculus (sc), or pons (po) was not detected in mutants (B) (n=3, scale bar=100 µm).
Caspase-3 activation in Layer 5 neurons after ERK/MAPK deletion

By P3 we noted a dramatic increase in the number of activated caspase-3 labeled neurons in layer 5 in Mek1/2\textsuperscript{CKO(Nex)} mutants when compared to controls (Figure 9A-B, E). Modest caspase-3 activation was also observed in layer 6, but not in upper layers 1-4 (Figure 9E). In line with the elevation of caspase-3 activity, we observed Iba1\textsuperscript{+} microglia in P3 Mek1/2\textsuperscript{CKO(Nex)} cortices with a ramified morphology that appeared to be engulfing Ctip2\textsuperscript{+} neurons (Figure 9C-D). To further confirm the absence of corticospinal neurons, we retrogradely labeled corticospinal projection neurons by injecting DiI into the cervical spinal cord in Mek1/2\textsuperscript{CKO(Nex)} neonates at P3, the time point when dying cells could initially be detected in the cortex. Analysis of retrogradely labeled corticospinal neurons in the primary motor cortex at P7 revealed a significantly reduced number of DiI labeled cells consistent with the death of these neurons during this time period (Data not shown). Interestingly, retrograde DiI labeling of P5 layer 5 neurons that project into the contralateral hemisphere did not reveal a substantial decrease in P9 mutants relative to controls (Data not shown). These data indicate that loss of Mek1/2 results in overt caspase-3 activation and corticospinal neuron death that can be first detected at P3-4.

We examined the possibility that transformation of Ctip2\textsuperscript{+} corticospinal neurons into an alternative phenotype during the neonatal period contributes to the reduction in Ctip2\textsuperscript{+} layer 5 neuron number observed at P14. We tested whether Ctip2\textsuperscript{+} layer 5 neurons might be transforming into a callosal phenotype by quantifying the proportion of cortical neurons that express Satb2, an important transcription factor for the differentiation of callosal neurons (Alcamo et al. 2008; Britanova et al. 2008). Since Satb2 is co-expressed by a minority of Ctip2\textsuperscript{+} neurons and Satb2 plays a transient role in corticospinal differentiation, we only assayed Satb2\textsuperscript{+} layer 5 neurons that were Ctip2\textsuperscript{-} (Leone et al. 2015; McKenna et al. 2015). A
significant decrease in the proportion of Satb2+ / Ctip2- neurons in layer 5 could be detected in motor cortex, but not sensory cortex, in P14 Mek1/2CKO(Nex) mice when compared to controls (Figure 9F). These findings demonstrate that the reduced number of Ctip2+ neurons in layer 5 does not coincide with a compensatory increase in the proportion of Satb2+/Ctip2-, presumably callosal, layer 5 neurons.
Initiation of layer 5 neuron death by P3 in Mek1/2CKO(Nex) mutants. Representative confocal images of immunolabeling for cleaved activated caspase-3, a well-known marker of neuronal apoptosis in P3 control (A) and Mek1/2CKO(Nex) (B) sensorimotor cortices. Note the extensive increase in the number of activated caspase-3+ cells co-labeled with Ctip2 in layer 5 of mutant cortices (B, yellow arrows) (n=4, scale bar = 50 µm). Quantification of activated caspase-3+ cells in upper layers (layer 1-4), layer 5 (Ctip2+) and layer 6 revealed a pronounced elevation in the number of apoptotic cells in layer 5 in P3 Mek1/2CKO (Nex) mice relative to controls (E). The numbers of activated caspase-3+ cells are comparable in upper layers and doubled in layer 6 relative to controls (E) (n=4, mean ± SEM, * p<0.05). Quantification of the relative number of layer 5 Satb2+/Ctip2- neurons as a proportion of the total number of NeuN+ neurons in a cortical column revealed a substantial decrease in motor, but not sensory, cortices in mutant mice (F) (n=3, mean ±SEM, * p=0.003). Relative to controls many microglia (Iba1+) were observed with processes surrounding Ctip2 labeled neurons in Layer 5 of mutant cortices (C-D) (n=3, scale bar=5 µm).
Gain-of-function ERK/MAPK signaling reduces CST elongation, but enhances branching

Many neurodevelopmental syndromes that involve mutations in canonical members of the ERK/MAPK cascade exhibit enhanced ERK/MAPK activity (Rauen 2013). Thus, we assessed effects of hyper-activation of the ERK/MAPK pathway on developing cortical excitatory circuits. A Cre-dependent constitutively-active Mek1^{S217/222Q} (caMEK1) overexpressing line was crossed with Nex:Cre (caMEK1^{Nex}) and Emx1:Cre (caMEK1^{Emx1}) mice to induce gain-of-function ERK/MAPK signaling (Krenz et al. 2008). Immunolabeling for MEK1 confirmed overexpression of the caMEK1 allele in the caMEK1^{Nex} cortex (Figure 10). In contrast to the loss-of-function mutants, caMEK1^{Nex} mice are viable and able to breed but are reduced in weight. Adult male control mice weighed 41.01±1.17g while mutants were 27.68±0.67g (mean ±SEM, n=14 controls, 11 mutants). CaMEK1^{Emx1} are viable and grossly normal, but exhibit lethality between 6 and 10 weeks of age.

We first asked whether ERK/MAPK hyperactivation led to defects in lamination, particularly in layer 5. Ctip2 labeling of mature sensorimotor cortices showed no overt defects in the specification or number of layer 5 neurons in caMEK1^{Nex} mice (Figure 11 A-C). Based on our previous results, we hypothesized that hyperactivation of ERK/MAPK would lead to enhanced corticospinal axon growth into the spinal cord. In vivo DiI injections of P0.5 motor cortices were performed to assess the extent and pattern of layer 5 subcortical axon outgrowth. Innervation of the thalamus and medulla appeared normal in P3.5 gain of function mutants (Data not shown). Surprisingly, we detected a marked decrease in the initial extension of DiI labeled corticospinal afferents into the spinal cord in P3-4 caMEK1^{Nex} mutants (Figure 12 A-B). Further, genetic labeling of corticospinal projections revealed a significantly diminished CST size in the spinal cord dorsal funiculus of both
caMEK1\textsuperscript{(Emx1)} and caMEK1\textsuperscript{(Nex)} mutants (Data not shown). These data show that enhanced ERK/MAPK signaling results in a decrease in the elongation of corticospinal axons into the spinal cord that persists into adulthood.

We tested whether the final pattern of axonal elongation and arborization was altered in caMEK1\textsuperscript{(Nex)} mutants using a Cre-dependent, tdTomato-expressing viral vector (AAV5-CAG-FLEX-tdTomato). Following unilateral injection of AAV into primary motor cortex at P1, the extent of axonal labeling was assessed in the white matter tract and grey matter in hindbrain (Figure 13, A-F) and spinal cord (Figure 14, G-J) sections. To determine the amount of axonal elongation that occurred between the hindbrain and the spinal cord, high resolution confocal imaging and measurement of axonal RFP labeling in the white matter of the hindbrain corticobulbar tract (CBT) (Figure 13, C-D) and cervical spinal cord CST (Figure 14, I-J) was performed. We then calculated the amount of RFP labeling in the spinal cord white matter tract relative to the amount of labeling in the hindbrain white matter tract within individual mice to provide a measure of axonal elongation. While control mice showed little reduction in the extent of labeling in the spinal cord white matter tract relative to the hindbrain, caMEK1\textsuperscript{(Nex)} mutant mice exhibited a significant 60.14±8.3% reduction in labeling in the spinal cord CST relative to the hindbrain (Figure 14, M). These findings provide further support for a substantial and persistent decrease in the elongation of corticospinal axons following hyperactivation of ERK/MAPK.

In striking contrast to the decreased axonal elongation into the spinal cord, we noted a significant increase in the density of axonal labeling in the hindbrain grey matter of caMEK1\textsuperscript{(Nex)} mutants (Figure 13, A-B, E-F). The hindbrain reticular nucleus is known to receive input from the primary motor cortex (Esposito et al. 2014). The ratio of axonal labeling in the hindbrain grey matter relative to labeling in the
hindbrain white matter (CBT) provided quantitative evidence of enhanced axonal arborization in the \textit{caMEK1}\textsuperscript{(Nex)} mutants (Figure 14, N). We also tested whether increased arborization could be detected in the spinal cord. The absolute level of axonal labeling density in the spinal cord grey matter was reduced in mutant mice (Figure 14, I and K, J and L). However, a comparison of the ratio of axonal labeling in the spinal cord grey matter relative to axonal labeling in the spinal cord white matter tract suggests that CST axon arborization is increased per axon (Figure 14, N). A similar result was also observed in the spinal cord of \textit{showncaMEK1}\textsuperscript{(Emx1)} \textit{Ai3} mutants (Data not shown). In sum, our findings show that ERK/MAPK hyperactivation reduces the number of axons that extend longitudinally down the spinal cord, but the extent of arborizing axonal outgrowth into the hindbrain and spinal cord grey matter is enhanced.
Figure 10.

Mouse model for excitatory neuron specific gain-of-ERK/MAPK signaling in the cortex. Representative confocal images of forebrain sections from controls (A) and caMEK1$^{(Nex)}$ mutants (B) demonstrate that the expression of MEK1 is substantially higher in excitatory neurons across all layers of the cortex, but not in the striatum (n=4, scale bar = 100 µm).
No overt defects in the specification or number of layer 5 neurons in caMEK1(Nex) mice detected. Representative confocal images of sensory cortices show that the expression and distribution of the callosal projection neuron marker, Satb2, and subcerebral projection neuron marker, Ctip2, in caMEK1(Nex) forebrains (B) appears normal when compared to littermate controls (A) (n=4, scale bar=100µm). The relative proportion of Ctip2^+ layer 5 neurons as a percentage of NeuN^+ neurons within a radial unit did not show a significant difference between adult mutant and control motor cortices (C) (n=3, mean ± SEM, p=0.2).
Figure 12.

Gain of function ERK/MAPK signaling in caMEK1\textsuperscript{(Nex)} mice decreases corticospinal extension into the spinal cord. In vivo DiI injections into P0 neonates were performed to label corticospinal axons during initial stages of elongation into the spinal cord (D). Analysis of DiI labeling in the spinal cord dorsal funiculus at P3 revealed a significant decrease in the extent of axonal elongation in mutant spinal cords relative to controls (E) (n=3, mean ± SEM, * p = 0.033, scale bar = 100 µm).
Hyperactivation of ERK/MAPK enhances axonal branching in the hindbrain and spinal cord. AAV5-FLEX-tdTomato injections into control (Nex:Cre) and caMEK1\textsuperscript{(Nex)} motor cortices at P1 (inset in A-B) results in labeling of subcerebral axon projections in P30 hindbrains (A-F). The extent of axonal branching was measured by comparing the amount of axonal labeling in the hindbrain (A-B, zoom in E-F), to the amount of axonal labeling in the corresponding white matter tract, the CBT (C-D), respectively. We observed a significant increase in the relative ratio of grey/white matter labeling in caMEK1\textsuperscript{(Nex)} mutant hindbrains (n=4, mean ± SEM, * p < 0.05) when compared to controls (Figure 10b, N).
Hyperactivation of ERK/MAPK enhances axonal branching in the hindbrain and spinal cord. AAV5-FLEX-tdTomato injections into control (Nex:Cre) and caMEK1(Nex) motor cortices at P1 (inset in Figure 10a, A-B) spinal cords (G-L). To measure axonal elongation from the hindbrain to spinal cord, high resolution confocal images of the extent of axonal labeling in sections of the hindbrain corticobulbar tract (cbt, C-D) and brachial spinal cord corticospinal tract (cst, I-J) were collected and compared. The ratio of corticospinal to corticobulbar tract axonal labeling was significantly decreased in caMEK1(Nex) mutants (M), providing further evidence for a reduction in corticospinal axon elongation at P30 (n=3, mean ± SEM, * p < 0.01, scale bar = 500 µm).

The extent of axonal branching was measured by comparing the amount of axonal labeling in the spinal cord grey matter (zoom in K-L), to the amount of axonal labeling in the corresponding white matter tract, CST (I-J). We observed a significant increase in the relative ratio of grey/white matter labeling in caMEK1(Nex) mutant spinal cords (n=3, mean ± SEM, * p < 0.05) when compared to controls (N).
Discussion

The pathogenesis of neurological deficits in neurodevelopmental syndromes associated with altered ERK/MAPK signaling is poorly understood, due to the lack of knowledge regarding cell-type specific effects of loss and gain of function through the ERK/MAPK pathway. Here, we have identified a striking dependence on levels of ERK/MAPK signaling for the development of large Ctip2+ neurons in layer 5. Both high and low levels of ERK/MAPK signaling disrupted corticospinal axon projections. Interestingly, ERK/MAPK signaling does not appear to be a key regulator of projections for all excitatory neuron subtypes as axons of callosally projecting layer 2/3 neurons extend and target normally in the absence of ERK/MAPK signaling. In contrast to the neuronal subtype-specific effects on axonal outgrowth, the expression of plasticity associated proteins and neuronal intrinsic excitability were dependent on ERK/MAPK signaling in multiple cortical layers.

Specific regulation of layer 5 CST neuron morphology

In vitro analyses have suggested that ERK/MAPK signaling acts as an important regulator of cortical neuron dendritic and axonal morphogenesis (Dijkhuizen and Ghosh 2005; Kumar et al. 2005; Wu et al. 2005). However, our in vivo data reveal a remarkably specific requirement for the ERK/MAPK pathway in the morphological development of layer 5 long range projection neurons. ERK/MAPK signaling is dispensable for the early phases of CST neuronal differentiation, axon growth all the way to the medulla, and even responsiveness to midline guidance cues. However, a drastic delay in corticospinal axon growth was observed in Mek1/2 mutants between P2-4 when CST axons in control mice start to invade the spinal cord. By P14 in controls, CST axons have reached the lumbar spinal cord. In P14 mutant mice, only a few corticospinal axons were present in the cervical spinal cord.
and no axons reached lumbar segments.

Trophic cues linked to ERK/MAPK activation, specifically, BDNF, IGF1, IGF2, GDNF, and pleiotrophin, have been shown to regulate developing corticospinal neuron growth (Giehl et al. 1998; Ozdinler and Macklis 2006; Dugas et al. 2008; Ueno et al. 2013). IGF1 has been described as a particularly potent growth factor for CST development both in vitro and in vivo (Ozdinler and Macklis 2006). IGF1 protein levels are higher in the spinal cord than the brain in the early postnatal stage (Rotwein et al. 1988) and we identified a focal pattern of IGF1 protein expression in the ventral medulla near the location where developing corticospinal axons enter the cervical spinal cord. However, we quite surprisingly found that deletion of IGF1R in long-range projection neurons did not lead to the predicted failure of CST development. Our results suggest that CST axon growth in the spinal cord may be orchestrated by multiple growth factors or via non-neuronal actions of IGF1. For example, vascular endothelial cells also express IGF1R and endothelial cell-derived trophic cues are potent regulators of corticospinal neuron survival and outgrowth in vitro (Dugas et al. 2008). Overall our data support the view that multiple cues converge upon ERK/MAPK to regulate transcriptional and cell biological processes required for extension of long axons.

Following the delayed entry of axons into the spinal cord in Mek1/2 mutants, we detected layer 5 neurons undergoing apoptosis in a restricted time frame during the first postnatal week. Counts revealed loss of roughly half of the Ctip2-expressing layer 5 neurons, which reflects a substantial proportion of the CST population. The reduced number of CST neurons in ERK/MAPK mutants is reminiscent of the loss of CST neurons after lesions to developing corticospinal projections in the neonatal period (Tolbert and Der 1987; Merline and Kalil 1990). Loss of trophic support from the spinal cord could plausibly account for these findings; an effect that might be
exacerbated by known consequences of ERK/MAPK disruption on retrograde transport of growth factor signaling components including signaling endosomes (Mitchell et al. 2012). We cannot completely exclude that the reduced number of Ctip2+ neurons in layer 5 results, in part, from conversion into an alternative neuronal type. For example, loss of Fezf2 results in conversion of corticospinal neurons into a callosal fate (B. Chen et al. 2005; J.-G. Chen et al. 2005; Molyneaux et al. 2007). Our assessment of Satb2+/Ctip2- layer 5 neurons did not reveal a coincident increase in the number of presumed callosally fated layer 5 neurons in Mek1/2CKO(Nex) mice. Interestingly we did not find similar layer 5 apoptosis occurring in conditional IGF1R mutants, placing our results at odds with a recent study suggesting that microglia-derived IGF1 is required for the survival of layer 5 long range projection neurons (Ueno et al. 2013). Whatever the mechanism, our data show that layer 5 corticospinal neurons are remarkably vulnerable to loss of ERK/MAPK signaling during the neonatal period and our results may be relevant to motor system dysfunction in RASopathy patients and layer 5 disorganization observed in ASDs.

Perhaps surprisingly, rostro caudal corticospinal axon extension was also highly diminished in the setting of enhanced ERK/MAPK signaling. At every stage examined from P3 onward, the number of CST axons in the dorsal funiculus in response to gain of ERK/MAPK signaling was reduced. A distinct feature of axon growth in gain of function mutants was enhanced axonal branching in the hindbrain. Normally, over the first two postnatal weeks, ERK/MAPK activation is upregulated, coincident with increased BDNF/TrkB expression (Maisonpierre et al. 1990; Timmusk et al. 1994). BDNF/TrkB signaling has been shown to promote corticospinal axon branching in vitro (Ozdinler and Macklis 2006). We suggest that hyperactivation of ERK/MAPK triggers mechanisms normally associated with BDNF induced corticospinal
branching, possibly resulting in premature closure of the period of rostro caudal axon elongation. Reduced axon extension of layer 5 projection neurons in the setting ERK/MAPK hyperactivation would likely have major implications for cortical circuit development in the human brain where distances are vastly longer than in rodents.

Global regulation of neuronal excitability

In addition to effects on axonal connectivity, dysregulated ERK/MAPK signaling is likely to disrupt glutamatergic signaling (Di Cristo et al. 2001; Thomas and Huganir 2004). Studies have demonstrated that mature RASopathy mouse models exhibit reduced hippocampal LTP and spatial memory impairment (Costa et al. 2002; Cui et al. 2008; Lee et al. 2014). Our findings provide genetic confirmation for prior work using pharmacological inhibitors demonstrating ERK/MAPK regulation of plasticity-associated genes induced by excitatory activity, including Arc, Egr2, and Fos (Waltereit et al. 2001; Majdan and Shatz 2006; Tropea et al. 2006; Panja et al. 2009). Further, we establish a link between ERK/MAPK and expression of Npas4, Nrn1/Cpg16, and Nptx2/Narp in vivo (Coba et al. 2008). Unexpectedly, hyperactivation of ERK/MAPK signaling with the caMEK1S217/221Q mutation had little effect on the expression of these same plasticity associated genes. These findings are in line with a past study of hippocampal gene expression in a different caMEK1 mouse mutant (Nateri et al. 2007). The severity of effects on expression of plasticity associated genes is likely correlated with the magnitude of ERK/MAPK hypo- or hyper-activity in response to specific mutations.

Since ERK/MAPK dependent changes in plasticity associated gene expression were widespread, we asked whether ERK/MAPK has general or layer-specific effects on developing projection neuron excitability and synaptic transmission. Our work demonstrates that complete loss of ERK/MAPK signaling leads to increased intrinsic
excitability of both layer 2/3 and layer 5 pyramidal neurons. Further, we show that 
Mek1/2 deleted layer 2/3 neurons exhibited increased excitatory synaptic strength.
We conclude that ERK/MAPK signaling contributes to excitatory/inhibitory balance 
during the early postnatal period by reducing the excitability of cortical excitatory 
neurons. Changes in excitatory drive in a subset of layer 2/3 neurons have been 
shown to trigger a compensatory homeostatic increase in inhibitory drive, thus 
maintaining a stable synaptic excitatory/inhibitory ratio (Xue et al. 2014).
Remarkably, layer 2/3 pyramidal neurons lacking Mek1/2 exhibit reduced inhibitory 
synaptic input in the absence of a fully compensatory change in excitation. Loss of 
ERK/MAPK activity in cortical pyramidal neurons may disrupt the homeostatic 
balance between synaptic excitation and inhibition, a mechanism hypothesized to 
form the neurological basis of autism (Rubenstein and Merzenich 2003). ERK/MAPK 
may also regulate the release of BDNF from excitatory neurons, a well-known 
regulator of inhibitory synapse formation (Huang et al. 1999; Kohara et al. 2007; 
Porcher et al. 2011).
During postnatal cortical pyramidal neuron development, input resistance 
decreases and the frequency of GABAergic and amplitude of glutamatergic 
spontaneous neurotransmission increase (Desai et al. 2002; Morales et al. 2002). 
Our findings are consistent with pyramidal neurons lacking Mek1/2 failing to undergo 
these developmental alterations and further suggest that loss of ERK/MAPK signaling 
may arrest normal physiological development. Importantly, the alterations in action 
potential threshold in neurons lacking Mek1/2 may secondarily result from increased 
sodium channel density due to the smaller neuronal size or the observed increase in 
membrane resistance, which may also influence quantal amplitude measurements. 
Our observations that disruption of ERK/MAPK signaling alters excitatory/inhibitory 
balance and the expression of select plasticity associated genes, coupled with known
effects on Hebbian forms of synaptic plasticity (Thomas and Huganir 2004), suggest that alterations in ERK/MAPK signaling are likely to dramatically disrupt network activity and cortical re-wiring.

**Circuit abnormalities in RASopathies**

Hypotonia, muscle weakness, and delay in motor milestones are often observed in RASopathy patients (Dileone et al. 2010; Mejias et al. 2011; Tidyman et al. 2011; Oberman et al. 2012; Stevenson et al. 2012). Although some of these symptoms may be due to alterations in muscle development, we have shown here that upper motor neuron and corticospinal tract development are especially sensitive to both gain and loss of ERK/MAPK activity. Thus, deficits in motor function or motor learning in Ras/MAPK Syndromes may be explained, in part, by altered corticospinal connectivity. Importantly, our data point to distinct effects in gain vs loss of function mutants. Our results therefore argue for a mutation-specific approach to correct neurological dysfunction within the RASopathy spectrum. Aberrant long-range circuit development has also been proposed as a defining feature of ASD pathogenesis and that layer 5 may be a focal point (Stoner et al. 2014; Willsey et al. 2013). An interesting possibility is that altered activation of ERK/MAPK at early developmental stages in response to certain ASD linked mutations (*Fmr1, Mecp2, Tsc1/2*) and environmental insults (hypoxia, inflammation, etc.) might contribute to select cortical circuit abnormalities, especially for neurons projecting over long distances.
Acknowledgements

We are grateful to E. Anton, F. Polleux, and the members of the Snider and Philpot labs for many helpful discussions and providing transgenic mice. We thank Vladimir Ghukasyan, Colin Parker, Becca Reinking-Herd, Sam Lusk, Anna Krueger, Julia Pringle, Meghan Morgan-Smith, and Cyril Justin Dizon for technical assistance and Ping Ye (UNC-Chapel Hill) for generously sharing the IGF1R conditional knockout mice.

Contributions

Viral and DiI injections:

George Reed Bjorklund and Lei Xing.

Tissue prep and Immunolabeling:

George Reed Bjorklund, Xiaoyan Li, and Yaohong Wu.

Image analysis and quantitation:

George Reed Bjorklund, Lei Xing, and Jason M Newbern

Western Blotting:

George Reed Bjorklund and Lei Xing

Experimental conception and design:

George Reed Bjorklund, Lei Xing, and Jason M Newbern

Drafting or revising the article:

Lei Xing, Rylan S. Larsen, George R. Bjorklund, Xiaoyan Li, Yaohong Wu, Benjamin D. Philpot, William D. Snider, and Jason M. Newbern.
Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning in a layer autonomous manner.
Abstract

Germline mutations within the components of the RAS-RAF-MEK-ERK (RAS/MAPK) pathway form a group of neurodevelopmental disorders collectively known as RASopathies. A large portion of these mutations result in an upregulation of signaling. Here, we used cre-loxp technologies to hyperactivate the RAS/MAPK pathway in cortical glutamatergic neurons to determine developmental effects on long-range axonal projections by inserting a constitutively active MEK1 construct. In hyperactive mutants, cortical glutamatergic neurons displayed an increased level of activated ERK1/2 in axons, but a surprising reduction in the cell body. The expression of RAS/MAPK substrates in the soma important for plasticity, such as ARC, were also reduced in the neurons. We further identified significant deficits in corticocortical and corticostriatal axonal innervation and branching and a significant reduction of corticospinal tract elongation. In addition to the connectivity issues, hyperactivation of RAS/MAPK signaling also led to motor learning acquisition deficits in an accelerating rotarod test and a fine reaching and grasping task. These data suggest that the pathogenesis of cognitive deficits in RASopathies involves changes in the development of neuronal connectivity and the expression of plasticity associated genes at an early stage of cortical formation and subsequent developmental stages.
Introduction

The RAS-RAF-MEK-ERK (RAS/MAPK) signaling pathway plays a crucial role in the development and maintenance of the central nervous system. Extracellular cues in the form of neurotrophins are transmitted through the pathway to activate a variety of transcription factors and influence cellular processes in the cytoplasm (Mebratu and Tesfaigzi 2009). Several cellular processes that rely on the RAS/MAPK pathway include; cellular proliferation and differentiation, cell growth and survival, axon growth and pathfinding, neurite arborization, and dendritic spine formation (Jeanneteau et al., 2010; Kalil and Dent, 2014; Mebratu and Tesfaigzi, 2009; Nowaczyk et al., 2013; Polleux and Snider, 2010). Additionally, RAS/MAPK signaling in the mature brain is essential for activity-dependent plasticity and associative learning and consolidation (Atkins et al., 1998; Thomas and Huganir, 2004; Gómez-Palacio-Schjetnan and Escobar, 2013).

Several germline mutations found in the RAS/MAPK signaling pathway are the source of many well-defined genetic syndromes collectively referred to as RASopathies (Rauen, 2012). Many of these syndromes such as Noonan Syndrome (NS), Legius Syndrome (formally known as NF1-like syndrome), Costello Syndrome (CS), Neurofibramatosis type 1 (NF1), Capillary Malformation-Arteriovenous Malformation (CM_AVM), and Cardio-facio-cutaneous (CFC), result in hyperactivity of the RAS/MAPK signaling pathway (Rauen, 2012). Mutations that lead to downregulation of the RAS/MAPK pathway include subsets of Noonan Syndrome with Multiple Lentigines (formerly referred to as LEOPARD syndrome) (NSML), and CFC syndrome (Nowaczyck et al., 2013; Rauen, 2012). While some of these syndromes such as CS and CFC are quite rare, up to 1:810,000 and 1:380,000 respectively (Allanson and Roberts, 1993; Gripp and Lin, 2012), others, such as NS and NF1, are more prevalent and affect ~1:1000 - 1:2500 and ~1:2500 - 1:3000 individuals.
worldwide respectively (Rauen, 2012; Williams et al., 2009). Specific genetic mutations in the individual components of the signaling pathway are found in upstream elements of MAPK3/MAPK1 (ERK1/2) (Rauen, 2012). Additional monogenic neurodevelopmental disorders that ultimately lead to activation of MAPK signaling includes Fragile X syndrome, Tuberous Sclerosis and 16p11.2 deletion syndrome (Subramanian et al., 2015). The result of these syndromic genetic mutations are several neurodevelopmental disorders that include macrocephaly, neurodevelopmental and intellectual disabilities, neurocognitive impairment and delay, motor delay, seizures, learning disabilities and an increasing association with Autism spectrum disorders (ASD) (Axelrad et al., 2011; Jozwiak et al., 2008; Rauen, 2012; Subramanian et al., 2015).

Current evidence indicates widespread abnormal structural changes in the white matter tracts of NF1 patients. Diffusion tensor imaging (DTI) studies in children with NF1, have detected these abnormal structural changes in the corpus callosum and in the brains microstructures (S L Zamboni et al. 2007; Filippi, Watts, Lindsay A.N. Duy, et al. 2013; Aydin et al. 2016). DTI analysis of select brain regions in mature NF1 patients, indicate basic and diffuse changes in cerebral microstructure in the caudate and lentiform nuclei, thalamus, pons, frontal and parietooccipital white matter, and the corpus callosum (S L Zamboni et al. 2007). Functional magnetic resonance imaging (fMRI) and functional connectivity magnetic resonance imaging (fcMRI) studies in subjects with NF1 indicated altered neural activity and network connectivity (Tomson et al. 2015b; Amira F.A. Ibrahim et al. 2017). DTI analysis in mouse models of NF1, revealed significant differences in three main structures of interest, prefrontal cortex, caudate putamen, and the hippocampus. Additionally, widespread cortical and subcortical changes in white matter diffusivity patterns with no major disruption or disorganization of axons is also reported in the
DTI study of this mouse model (Fame et al. 2011). These imaging techniques have provided a wide view of global differences in major white and gray matter areas. However, very little is known of the specific effects of RAS/MAPK signaling misregulation on system wide connectivity and long-range axonal circuit formation during and after development. Furthermore, DTI imaging gives a broad view of structural anomalies in relation to white matter tracts (oligodendrocytes/myelination) but does not directly address any underlying axonal contribution to these anomalies. This is especially true of cell and circuit specific effects during and after development.

Previously, we reported a critical requirement for RAS/MAPK signaling in loss- and gain-of-function as it applies specifically to cortical pyramidal neurons (Xing et al., 2016). Deletion of Map2k1/2 (Mek1/2) in cortical glutamatergic neurons resulted in the absence of large CTIP2+ neurons in cortical layer 5 and the impairment of corticospinal tract (CST) axonal extension in the dorsal funiculus of the cervical and lumbar spinal cord (Xing et al., 2016). Up-regulation of ERK/MAPK signaling in cortical glutamatergic neurons also decreased CST axonal elongation but markedly increased axonal branching in the gray matter of the spinal cord and the gray matter of the hind brain (Xing et al., 2016). Nonetheless, further research is needed to assess aberrant RAS/MAPK signaling on cortical glutamatergic neuronal projections in the forebrain and sub-cortical projections, cortical layer specific effects, activated ERK1/2 levels and localization patterns, or behavior and learning phenotypes.

To address these issues, we created mouse models with a constitutively active Mek1 (caMek1) gene construct driven by CRE to hyperactivate MEK1 in cortical glutamatergic neurons. Our connectivity and innervation analysis focused on all cortical layers of the primary motor cortex to address the learning disabilities associated with motor function and motor delay. Furthermore, we were able to
analyze subcortical projections to lower motor and CST extension that could further lead to the neurodevelopmental phenotypes seen in human RASopathy patients.

We first analyzed the developmental and mature levels of activated ERK1/2 (P-ERK1/2) and localization pattern. MEK1 hyperactivation led to a succinct localization of P-ERK1/2 in the axonal projections of post-mitotic glutamatergic neurons in embryonic tissue that persisted in adult mice. Analysis of contralateral cortical projections and cortico-striatal projections revealed a significant decrease in axonal innervation and branching. Behavioral testing in the open-field, rotarod, and reaching and grasping task revealed no overt motor control deficiencies but did show a significant impairment in motor control learning. Analysis of activity dependent gene expression showed a surprisingly low level of expression of gene products that are highly dependent on the activation the RAS/MAPK pathway. The use of these conditional genetic tools allowed the analysis of cell specific effects and contributions to the pathologies reported in RASopathy patients.
Materials and Methods

Transgenic Mice

All animal experiments were performed in accordance with established procedures approved by the Institutional Animal Care and Use Committee of Arizona State University and NIH guidelines for the use and care of laboratory animals. Mice used in this work were of a mixed genetic background and housed in standard conditions. The mice were kept on a 12-hour light/dark cycle with food and water provided ad libitum. Each experiment was replicated a minimum of three times using littermates or mice from independent litters. No detectable effects on the phenotypes described in this manuscript were observed from Cre expression alone. Therefore, Cre-expressing or Cre-negative mice were used as controls. Map2k1\textsuperscript{4217/222} mice were furnished by Dr. Maike Krenz and Dr. Jeffrey Robbins (Krenz et al., 2008). NeuroD6-Cre mice were provided by Dr. Klaus Nave and Dr. Sandra Goebbels (Goebbels et al., 2006). Rbp4:Cre mice were purchased from the Mutant Mouse Resource & Research Centers (RRID:MMRRC_036400-UCD).

Tissue Preparation

Transcardial perfusions were performed on mice using a 4% paraformaldehyde/PBS solution with dissected brains being post-fixed in the same solution overnight at 4°C. Dissected brains were then serially incubated in 15% and 30% sucrose/PBS solutions prior to embedding in Tissue-Tek O.C.T. (Tissue-Tek 4583) and freezing. Cryostat sectioning was performed with sections being collected on Fisherbrand Superfrost/Plus slides (Fisher Scientific 12-550-15) and air-dried prior to staining. Alternatively, cryostat sections were collected in well plates with cold PBS for free-floating staining as appropriate. For some experiments, brains were mounted in agarose after post-fixation in preparation for vibratome sectioning.
**Viral Injections**

P1 pups were removed from their home cage as a group and were individually cryo-anesthetized on ice for 4-6 minutes. Viral injections were then performed immediately with 50-80nl of solution using a 32-gauge beveled needle fitted to a Hamilton 5µl neuros syringe mounted on a stereotaxic arm. After injections, pups were placed on a 37°C heated surface for recovery and returned to their home cage as a group. Adeno Associated Viral vectors, RAAV9/AAV-Flex-tdTomato and RAAV8/CAG-Flex-tdTomato were purchased from the UNC Viral Vector Core and used for all viral tracing experiments.

**Behavioral Assays**

A single-pellet reaching and grasping task test was performed using both male and female *Nex:Cre/caMek1* mice and male *RBP4:Cre/caMek1* mice. Mice were mildly food restricted throughout training to maintain at least 90% of their baseline weight which amounted to free feeding between 2 and 6 hours daily. Sucrose pellets (TestDiet 1811555) were used for this test and the mice were acclimated to the pellets in their home cages. After pellet acclimation, mice were then placed in the testing chamber, an acrylic chamber 15cm X 10cm X 20cm, with pellets either singly or in pairs depending on their housing for further acclimation. After acclimation, forelimb dominance was determined by placing a single pellet on the food platform (10cm high) outside a single slit (5cm wide) in one end of the test chamber. Once a mouse has conducted at least 20 reaching attempts within 20 mins with at least 70% of those reaches made with one hand, that mouse was moved on to testing. Testing consisted of placing a single pellet on the food platform in front of the slit, right or left, corresponding with the preferred paw. Testing was performed for 10 minutes.
daily for 5 days. Scoring was performed as follows; Success: if the mouse reached with its preferred paw, retrieved the pellet, and fed the pellet into its mouth. Drop: If the mouse grasped the pellet but drops it before reaching its mouth. Fail: If the mouse reached for the pellet but failed to grasp it or knocked it out of position. Mice were scored on the rate (metric/attempt) for each of these metrics.

Open field testing was performed in an open top opaque plexiglass box measuring 38cm X 38cm X 30cm. The area within the box is illuminated by a single 40-watt spotlight approximately 2 meters overhead and centered within the area. Recording of mouse movements is done using a Microsoft LifeCam or Logitech HD Webcam and VirtualDub video capture software. Open field quantitation was performed using the MouseMove (Samson et al. 2015) plugin for ImageJ (Schindelin et al. 2012).

Rotarod analysis for the NexCre/caMek1 mice was performed on a Ugo Basile (Stoelting Co.) accelerating rotarod. Animals were given three trials in the first test session, with 45 seconds between each trial. Two additional trials (Test 2) were given 48 hours later. RPMs (revolutions per minute) increased from 3 to 30 RPMs over the 5-minute trial period. Measures were taken for latency to fall from the top of the rotating barrel. Nine to ten weeks following the first two tests, a subset of mice were given an additional two trials (Test 3). In the last test (Test 4), mice were given 2 trials using a reversed-rotation procedure, in which the direction of the barrel rotation was periodically altered.

In the elevated plus maze task, mice were given one five-minute trial on the plus maze which had two walled arms (the closed arms, 20 cm in height) and two open arms. The maze was elevated 50 cm from the floor, and the arms were 30 cm long. Animals were placed on the center section (8 cm x 8 cm) and allowed to freely
explore the maze. Measures were taken of time on, and number of entries into, the open arms of the maze.

The Morris water maze task consisted of a large circular pool (diameter = 122 cm) partially filled with water (45 cm deep, 24-26°C), located in a room with numerous visual cues. The procedure involved three different phases: a visual cue test with a visible platform, acquisition in the hidden platform task, and a test for reversal learning. Only mice that performed well in the visual cue test were further evaluated in the acquisition and reversal tests. Three to four days following the visible platform task, mice were tested for their ability to find a submerged, hidden escape platform (diameter = 12 cm). Each animal was given 4 trials per day, with 1 minute per trial, to swim to the hidden platform. Mice were tested until the group reached learning criterion, with a maximum of 9 days of testing. When criterion was reached, mice were given a one-minute probe trial in the pool with the platform removed. Selective quadrant search was evaluated by measuring the percent of time spent in the target (platform quadrant) and opposite quadrants. Following the acquisition phase, mice were tested for reversal learning, using the same procedure as described above except the hidden platform was re-located to the opposite quadrant in the pool. As before, measures were taken of swim distance to find the platform. Once the criterion for learning was met, the platform was removed from the pool, and the group was given a probe trial to evaluate reversal learning as previously described.

Immunochemistry

Tissue sections were rinsed with PBS/0.1% Triton X-100 (PBST) and blocked with 5% normal donkey serum in PBST at room temperature for ~1 hour. Primary antibodies were diluted in PBST/5%NDS and incubated overnight at 4°C with gentle
shaking. Primary antibodies used were; rabbit anti-MEK1 (Abcam ab32091), rabbit anti-phosph-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (Cell Signalling 4370), rabbit anti-ERK2 (Abcam ab32081), rabbit anti-ARC (Synaptic Systems 156 003), mouse anti-β 3 Tubulin (TUBB3) (Bioloegend 801202), rabbit anti-RFP (Rockland 600-901-379), chicken anti-RFP (Rockland 600-401-379), mouse anti-neun (Millipore Sigma MAB377), and DAPI (Sigma Aldrich 10236276001). After rinsing in PBST 3X, secondary antibodies diluted in PBST/5%NDS were added and incubated overnight at 4°C with gentle shaking. Secondary antibodies included Alexa Fluor 488, 546 or 568, and 647 conjugated anti-rabbit, anti-mouse, or anti-goat IgG (Invitrogen). Imaging was performed using a Zeiss LSM 800 laser scanning confocal microscope (LSCM), or a Leica SP5 LSCM.

**Western Blotting**

Cortices were collected from mutant and control mice and lysed in a buffer containing 50mM Tris-CL, 150mM NaCl, 0.1%triton x-100, Protease Inhibitor (Sigma-Aldrich P2714), and Phosphatase Inhibitor (Sigma-Aldrich P5726) either by sonication or with a syringe. Lysates were then cleared by centrifugation and total soluble protein concentrations determined by Bradford Assay using a Peirce Protein Assay Kit (Thermo Scientific 23200). Proteins were denatured in equal amounts of 2X Laemmli sample buffer (BioRad 161-0737), separated by SDS-PAGE using either 10% or 4-20% Mini-PROTEAN TGX precast gels (BioRad 456-1035 and 456-8095), then transferred to PVDF membranes (BioRad 162-0177). Membranes were blocked with 5% non-fat dry milk (NFDM) in TBS with 0.5% Tween (TBST) for 1 hour at room temperature followed by overnight incubation at 4°C with primary antibodies in 5% bovine serum albumin. Primary antibodies used were; rabbit anti-MEK1 (Abcam ab32091), rabbit anti-phosph-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (Cell
Signalling 4370), rabbit anti-ERK2 (Abcam ab32081), rabbit anti-ARC (Synaptic Systems 156 003), rabbit anti-GAPDH (Cell Signalling 2118), goat anti β-Actin (Cell Signaling 8457), and rabbit anti-β actin (Cell Signalling 8457). Secondary antibodies used were anti-rabbit HRP and anti-goat HRP (Jackson Immunoresearch 711-035-152 and 705-035-147). Membranes were then washed in TBST and incubated with HRP-conjugated secondary antibodies in 5% NFDM/PBST for 1 hour at room temperature. Membranes were washed in TBST, developed with Pierce ECL Western Blotting Substrate (Thermo Scientific 32106), and exposed to radiographic film (Thermo Scientific 34089).

Quantification of Western Blots was performed using a high-resolution scanned image of the exposed radiographic film in a grayscale TIFF file format. The file was then transferred to Imagej were a region of interest was created to encompass individual bands for all mutant, control and loading control samples. The mean gray value of each band was then recorded along with a background measurement for each band. All values were inverted (subtracted from 255) and the background values were subtracted from the band values. The net band values were then reported as a ratio of net band value over net loading control value.

**Image Analysis and Quantitation**

For quantitation of axonal innervation and branching in the cortex and striatum, a radial section of the cortex encompassing all layers within the primary motor cortex was used. A minimum of 4 sections from each mutant and control animal centered about the rostral-caudal area of the injection site was analyzed. The area in µm² of this region was measured in Photoshop and the image was then transferred to Imagej. Once in Imagej, pixel intensities were adjusted using the Otsu Auto Threshold component, total pixels counted, and multiplied by the images pixel...
size to obtain the total µm² of pixels in the ROI. The total µm² was then divided by the number of transfected cells that were manually counted in an identical ROI in the ipsilateral (RFP injected) cortical hemisphere to obtain the axonal labeling per transduced cell. Spinal cord arborization was measured in the same manner except the µm² of pixels was normalized to the CST to obtain a spinal cord arborization ratio.

The CBT was measured using at least three anatomically matched hind brain sections from each mutant and control animal. The CBT was outlined using the difference of appearance in NEUN or DAPI and the image was transferred to Imagej. A pixel intensity threshold was manually set by an observer blinded to the genotype. The number of labeled pixels was then measured and multiplied by the images pixel size to obtain the µm² of pixels in the CBT. The µm² of pixels was then normalized to the number of transfected cells in the injection site ROI to obtain the CBT axonal labeling per transduced cell. The CST in the dorsal funiculus was measured in the same manner except the µm² of pixels was normalized to the CBT to obtain the CST elongation ratio.

Representative images have been cropped and adjusted for brightness and contrast in Photoshop for presentation. All images used for comparison analysis where collected using the same microscope settings and all adjustments made were done equally between images.

Statistical Analysis

Data analysis was performed using SPSS software (IBM Analytics). Statistical methods used included Student’s t-test (unpaired, two-tailed), ANOVA, repeated measures ANOVA, and multivariate ANOVA. F-test results, p-values, and tests used are reported where appropriate.
Results

MEK1 hyperactivation results in increased levels of P-ERK in the axons of cortical excitatory neurons

To evaluate the effects of up-regulation of the RAS/MAPK pathway in cortical excitatory neurons and long-range axonal projections, we generated an ERK/MAPK gain-of-function mouse by crossing a Map2k1<sup>S217/222</sup> (caMek1)(Krenz et al., 2008) mouse with a NeuroD6-Cre (NexCre) (Goebbels et al., 2006) mouse. The resulting mouse line, NexCre/caMek1, is designed to express a constitutively active MEK1 construct primarily in cortical glutamatergic neurons. Nex promoter activity is detected as early as E11.5 in the telencephalon with prominent levels of CRE recombinase being produced at around E13.5 (Goebbels et al., 2006). Western Blot analysis of cortical lysates from E 14.5 NexCre/caMek1 embryos confirmed highly elevated levels of MEK1 with a fold change of +14.99 ± 2.00 when compared to controls (Mean ± SEM, GAPDH normalized, p=0.002, n=5, Student’s t-test) (Figure 15A). Immunohistochemical (IHC) analysis of MEK1 expression in cortical samples of E14.5 embryos confirmed a robust level of MEK1 in cortical glutamatergic neurons in the cortical plate and axonal processes in the intermediate zone (Figures 16A-F) (n=5).

Having verified a strong presence of MEK1 in E14.5 embryos, we next examined the NexCre/caMek1 embryos at E14.5 for activated ERK1/2 (P-ERK1/2). At this time-point in development, layer VI corticothalamic projection neurons (CThPN) and layer V subcerebral projection neurons (SCPN) will have been generated in the cortex along with a portion of layer II/III callosal projection neurons (Greig et al., 2013). Western Blot analysis confirmed significantly elevated levels of P-ERK1/2 with a fold change of +1.47 ± 0.20 over controls (Mean ± SEM, ERK2 normalized, p=0.043, n=5, Student’s t-test) (Figures 15C-D). ERK2 Western Blotting showed no
significant difference between the *NexCre/caMek1* and control mice (controls = 1.00 ± 0.00 SEM, mutants = 1.06 ± 0.05 SEM, p=0.245, n=5) (Figure 15C).

Histochemical analysis revealed a pattern of P-ERK1/2 localized to the intermediate zone, a region in the embryonic cortex that contains the axonal processes of cortical glutamatergic neurons (n=5) (Figures 15E-L).

Adult *NexCre/caMek1* cortical lysate Western Blotting revealed a significant fold change of +1.61 ± 0.20 of MEK1 detection over controls (Mean ± SEM, GAPDH normalized, p=0.041, n=3, Student's t-test) (Figures 17A-B). IHC analysis confirmed the specificity and increased levels of MEK1 expression in *NexCre/caMek1* cortical glutamatergic neurons (Figures 17E-H) (n=3). No significant difference was found in P-ERK1/2 levels between adult *NexCre/caMek1* and control mice (controls = 1.00 ± 0.00 SEM, mutants = 0.95 ± 0.21 SEM, p=0.832, n=3, Student's t-test) when normalized to ERK2 levels (controls = 1.00 ± 0.00 SEM, mutants = 1.07 ± 0.08 SEM, β-actin normalized, p=0.389, n=3, Student's t-test) (Figures 17C-D). IHC analysis of the adult *NexCre/caMek1* however revealed distinctly lower levels of P-ERK1/2 in the neuronal cell bodies through all layers of the cortex when compared to controls (n=3) (Figures 17I-L and 18Q, R). Importantly, white matter tracts in the adults showed the same P-ERK1/2 localization that was seen in the E14.5 samples (n=3) (Figures 17I-L and 2b, M-P). High resolution confocal imaging of white matter tracts showed a pattern of P-ERK1/2 co-localizing with the neuron specific class III β-tubulin, TUJ1 (n=3) (Figures 18M-P).
Additional white matter tracts that showed comparable localization of P-ERK1/2 included the anterior commissure and hippocampal commissure tracts, and the cerebral peduncle and corticospinal tracts in the midbrain (n=3) (Figure 19A-D and 20E-H). These data indicate that hyperactivation of MEK1 in cortical glutamatergic neurons results in a significant change in the compartmental localization of P-ERK1/2 that is evident in both embryonic and adult mice.
MEK1 hyperactivation results in increased levels of P-ERK1/2 in the axons of cortical excitatory neurons. Western Blot analysis of E14.5 cortical lysates showed a MEK1 fold increase in the NexCre/camK1 mice when compared to controls of +14.99 ± 2.00 (Mean ± SEM, GAPDH normalized, p=0.002, n=5, Student’s t-test) (A-B). P-ERK1/2 levels in the E14.5 cortical lysates revealed a MEK1 fold change in the NexCre/caMek1 mice when compared to controls of +1.47 ± 0.20 (Mean ± SEM, p=0.043, n=5, Student’s t-test). No significant change in protein expression levels of ERK2 was detected (controls = 1.00 ± 0.00 SEM, mutants = 1.06 ± 0.05 SEM, p=0.245, n=5, Student’s t-test) (C-D). Immunohistochemical (IHC) analysis of E14.5 NexCre/caMek1 cortical samples (G-L, H,L yellow arrows) exhibits a P-ERK1/2 localization in the region of the embryonic cortex that contains axonal projections of cortical glutamatergic neurons that was not detected in control mice (E-K) (IZ = Intermediate zone, VZ = ventricular zone, n=5, scale bars: 1E through 1H = 200µm, 1I through 1L = 50µm).
Enhanced MEK1 expression is detected in the somatosensory cortex of embryonic NexCre/caMek1 mice. Immunostaining of E14.5 somatosensory cortex reveals a substantial up-regulation of MEK1 expression in the intermediate zone (white matter tracts) and the cortical plate (glutamatergic neuronal bodies) of the NexCre/caMek1 (D-F) when compared to controls (A-C) (IZ = Intermediate zone, VZ = ventricular zone, cp = cortical plate, n=5, scale bars: A, D = 200 µm, B,C,E,F = 50µm).
Increased levels of P-ERK1/2 in the axons and reduced somal detection of P-ERK1/2 persists in adult NexCre/caMek1 mice. Western Blots of adult cortical lysates revealed a MEK1 fold increase in the NexCre/caMek1 when compared to control mice of +1.61 ± 0.20 (Mean ± SEM, GAPDH normalized, p=0.041, n=3, Student’s t-test) (A-B). No significant differences in P-ERK1/2 expression levels between the NexCre/caMek1 and control mice were detected (controls = 1.00 ± 0.00 SEM, mutants = 0.95 ± 0.21 SEM, p=0.832, n=3, Student’s t-test) when normalized to ERK2 levels (controls = 1.00 ± 0.00 SEM, mutants = 1.07 ± 0.08 SEM, β-actin normalized, p=0.389, n=3, Student’s t-test) (C-D). IHC analysis of MEK1 shows the increased expression in the targeted cortical glutamatergic neurons of the NexCre/caMek1 mice (G-H) when compared to controls (E-F) (M1 = primary motor cortex, cc = corpus callosum, st = striatum, n=3, scale bars = 500µm). P-ERK1/2 localization to white matter tracts as described in the embryonic NexCre/caMek1 (Fig. 1) persists in the adult NexCre/caMek1 (K-L) when compared to control mice (I-J). Additionally, a reduction of somal P-ERK1/2 was detected throughout all cortical layers of the NexCre/caMek1 when compared to controls (I-L) (M1 = primary motor cortex, cc = corpus callosum, st = striatum, n=3, scale bars = 500µm).
**Figure 18.**

<table>
<thead>
<tr>
<th>Corpus Callosum</th>
<th>M1 Layer II</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Control</strong></td>
<td><strong>NexCre/caMek1</strong></td>
</tr>
<tr>
<td><img src="M" alt="Control" /></td>
<td><img src="O" alt="NexCre/caMek1" /></td>
</tr>
<tr>
<td><img src="N" alt="Control" /></td>
<td><img src="P" alt="NexCre/caMek1" /></td>
</tr>
<tr>
<td><img src="Q" alt="Control" /></td>
<td><img src="R" alt="NexCre/caMek1" /></td>
</tr>
</tbody>
</table>

*Increased levels of P-ERK1/2 in the axons and reduced somal detection of P-ERK1/2 persists in adult NexCre/caMek1 mice.* High resolution confocal imaging of the corpus callosum revealed an increased level of punctate patterned P-ERK1/2 co-localizing with axonal TUJ1 in the *NexCre/caMek1* (O-P, yellow arrows) when compared to controls (M-N) (Scale bars, M, O = 10 µm, N, P = 2.5µm, n = 3). High resolution confocal images of neuronal bodies in the cortex showed the punctate pattern of P-ERK1/2 immunolabeling in the soma with a marked reduction of the number of somas expressing P-ERK1/2 in the *NexCre/caMek1* mice (R, yellow arrows) when compared to controls (Q) (Scale bars = 10µm, n = 3).
P-ERK1/2 localizes to white matter tracts in NexCre/caMek1 mice when compared to controls. Additional white matter tracks in the forebrain of the NexCre/caMek1 (C-D) that exhibit increased levels of P-ERK1/2 when compared to controls (A-B) include the anterior commissure and the hippocampal commissure (scale bars = 100µm, n=3, ac = anterior commissure, bst = bed nuclei of the stria terminalis, hpc = hippocampal commissure).
P-ERK1/2 localizes to white matter tracts in NexCre/caMek1 mice when compared to controls. Subcortical CST projections of the NexCre/caMek1 (G-H) mice in the cerebral peduncle also exhibit increased levels P-ERK1/2 when compared to control mice (E-F) (scale bars=250µm, n=3, cst = corticospinal tract).
Corticocortical and corticostriatal innervation and branching patterns are disrupted by constitutively active MEK1

The current findings regarding the localization patterns of P-ERK1/2, led us to question what effect MEK1 glutamatergic hyperactivation has on corticocortical and corticostriatal axonal branching and innervation. We had previously reported a reduction of corticospinal tract (CST) elongation in the NexCre/caMek1 mice. Additionally, we also found enhanced branching and innervation of CST axons in the gray matter of the spinal cord and the hind brain when compared to control mice (Xing et al., 2016). Axonal targets of the projection neurons of the mouse cortex have been established to be primarily layer specific. The deficits found in the CST, spinal cord, and hind brain in our previous study, predominately originate from cortical layer V (Fame et al. 2011). A smaller number of layer V neurons, ~20%, also project to the contralateral cortex (Sohur et al. 2014). Corticostriatal projection neurons (CStrPNs) that innervate the contralateral dorsolateral striatum, mainly originate from layers II/III and V with a smaller portion occupying layer VI (Sohur et al. 2014). Due to the detected abnormalities in long-range cortical projection axons in the spinal cord and hind-brain, and the increased levels of P-ERK1/2 detected in the axonal compartments, we hypothesized that there would also be an increased or hyperactivated branching pattern in the contralateral cortex and contralateral dorsal striatum.

To investigate this hypothesis, we utilized an anterograde tracing approach to transfec the glutamatergic neurons of the primary motor cortex of one cortical hemisphere, with an Adeno Associated Virus that expresses a CRE dependent td-Tomato vector (AAV:CAG-FLEX-tdTomato). Then, using high resolution confocal images, we measured the axonal innervation of the contralateral cortical hemisphere and the contralateral dorsal striatum. Corticocortical axonal projections of the
glutamatergic neurons in motor and somatosensory cortices are homotopic and therefore innervate corresponding areas in the contralateral cortical hemisphere (Lee et al. 2005; Katherine A Rauen 2013; Aoki, Niihori, S.I. Inoue, et al. 2016). Additionally, corticostriatal axonal projections from these neurons innervate the dorsal medial-lateral striatum both contralaterally and ipsilaterally (Jindal et al. 2015). Accordingly, we used similar areas in the primary motor cortex and the dorsal medial to dorsal lateral striatum to measure specific differences in the amount of axonal innervation in the NexCre/caMek1 and control mice. The raw axonal pixilation was then normalized to the number of transfected cells in the comparable site from the injection hemisphere for each of the serial slices measured.

The AAV:CAG-FLEX-tdTomato injections were done in the primary motor cortex of P1 NexCre/caMek1 and control mice. Analysis of contralateral cortical and dorsal striatum axonal innervation was performed at P30 in serial sections of mouse cortex (Figure 21A). Cell counts in the injection hemispheres revealed no significant difference between the NexCre/caMek1 and control mice (NexCre/caMek1 = 224.73 ± 26.73 SEM, control =189.96 ± 14.20 SEM, n=5, p=0.284, Student’s t-test) (Figure 21B-D). Measurements of axonal density in the contralateral cortex revealed a significant reduction in axonal branching and innervation. Axonal innervation and branching measured 631.68 ± 27.51 SEM pixels²/transfected cell in the NexCre/caMek1 mice and 791.79 ± 42.88 SEM pixels²/transfected cell in the control mice. This translated to a 19.57% ± 4.30 reduction in the NexCre/caMek1 mice when compared to the controls (Mean ± SEM, p=0.014, n=5, Student’s t-test) (Figures 22E, F, H, I, K). Contralateral dorsal striatal innervation was also significantly reduced in the NexCre/caMek1 mice measuring 155.44 ± 21.18 SEM pixels²/transfected cell (n=5) and controls measuring 255.67 ± 23.64 SEM pixels²/transfected. This translated to a 37.50% ± 9.14 reduction in axonal innervation.
innervation in the *NexCre/caMek1* mice when compared to controls (Mean ± SEM, p=0.013, n=5, Student’s t-test) (Figure 3b, E, G, H, J, L).

These results indicate that MEK1 hyperactivation not only affects extreme long-range cortical axonal projections in the hindbrain and CST, as found in our previous study, but also affects the innervation of relatively close targets innervated by corticocortical and corticostriatal projections. Additionally, these deficits in axonal projections coupled with the results indicating the localization of P-ERK1/2 in the axonal compartments, provides evidence that excess P-ERK1/2 disrupts the normal development of axonal innervation and branching.
Corticocortical and corticostriatal innervation and branching patterns are disrupted by hyperactivated MEK1. Adeno associated viral vector AAV:CAG-Fllex-tdTomato was injected in the primary motor cortex of P1 mice followed by analysis of contralateral cortical and dorsal striatum axonal innervation and branching at P30. Axonal innervation and branching in the contralateral primary motor cortex and dorsal striatum was measured and normalized to the number of transfected cells in the injection site. Serial section images of the AAV:CAG-Fllex-tdTomato injection site showing both rostral-caudal and medial-lateral positions of the AAV-tdTomato labeled cells (A). Representative images of the AAV injection site in the primary motor cortex of the NexCre/caMek1 (C) and control (B) contralateral to cortical hemispheres used for the axonal innervation analysis. Viral-labeled cells were counted in the primary motor region of each section used for contralateral innervation analysis. No significant differences in labeled cell counts between NexCre/caMek1 and control mice were detected (NexCre/caMek1 = 224.73 ± 26.73 SEM, control =189.96 ± 14.20 SEM, n=5, p-value ≤ 0.2839, Student’s t-test) (D).
Corticocortical and corticostriatal innervation and branching patterns are disrupted by hyperactivated MEK1. Representative images of contralateral axonal innervation and branching in the cortex and dorsal striatum of the *NexCre/caMek1* (H-I) and control mice (E-F). Contralateral cortical axonal innervation measured 631.68 ± 27.51 SEM pixels²/labeled neuron in the *NexCre/caMek1* mice (n=5) and 791.79 ± 42.88 SEM pixels²/labeled neuron in the control mice (n=5). This translated to a 19.57% ± 4.30 reduction in axonal innervation in the *NexCre/caMek1* contralateral primary motor cortex when compared to control mice (Mean ± SEM, p=0.014, n=5, Student’s t-test) (K). Contralateral axonal innervation of the dorsal striatal measured 155.44 ± 21.18 SEM pixels²/labeled neuron in the *NexCre/caMek1* mice (n=5) and 255.67 ± 23.64 SEM pixels²/labeled neuron in the control mice (n=5). This translated to a 37.50% ± 9.14 reduction in axonal innervation in the *NexCre/caMek1* contralateral dorsal striatum when compared to control mice (Mean ± SEM, p=0.013, n=5, Student’s t-test) (L). (M1 = primary motor cortex, st = striatum, scale bars: A, B-D, G = 500µm, E, F-H, I = 100µm).

*ARC protein levels are negatively affected by MEK1 hyperactivation*
It is well established that ERK/MAPK is a major factor in regulating neuronal activity and synaptic plasticity (Impey et al., 1999; Thomas and Huganir, 2004), and that the transcriptional activity of these processes are regulated or targeted by the ERK/MAPK pathway and other pathways (Bramham et al. 2010). ARC is an immediate early gene (IEG) whose transcription is controlled by ERK/MAPK and the activation of the glutamate receptor N-methyl-D aspartate following LTP induction (NMDAR) (Cao et al. 2015). ARC is also identified as a crucial part of learning consolidation in motor cortex required learning paradigms, specifically, secondary motor cortex (M2) requirements for motor learning in the rotarod task (Petrella et al. 2016). Motor and learning delays and cognitive impairments reported in RASopathy patients in conjunction with our findings on the axonal localization of P-ERK1/2, led us to hypothesize that there would be a disruption in the amount of ARC protein being produced.

When measured in the basal state, Western Blots of whole cortical lysates revealed a significant decrease of ARC expression in the NexCre/caMek1 mice (control = 1.00 ± 0.00 SEM, n=3, NexCre/caMek1 = 0.22 ± 0.02 SEM, n=3, p<0.005, Student’s t-test) (Figure 23A-B). Immunostaining of cortical samples confirmed the substantial decrease of cortical ARC expression (n=4) (Figures 23C-F).

Having detected these significantly reduced amounts of ARC protein levels in the basal state, we tested to determine if expression and translation levels of ARC would be detected at a normal or hyperactivated level in stimulated mice. To test this, we examined cortical samples of NexCre/caMek1 and control mice by IHC in the stimulated state 2 hours after performance on the rotarod. These samples also revealed a marked reduction of ARC expression in the NexCre/caMek1 mice when compared to control mice (Figure 24G-4J).
These findings revealed that hyperactivation of the ERK/MAPK pathway may disrupt an internal pathway equilibrium that results in the downregulation of transcription or translation of ARC mRNA or ARC protein in both the basal and stimulated states.
**Figure 23.**

**Adult Cortex - Basal**

<table>
<thead>
<tr>
<th>DAPI/ARC</th>
<th>ARC</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
</tbody>
</table>

**ARC protein levels are negatively affected by MEK1 hyperactivation.** Western Blot analysis of whole cortical lysates showed a significant reduction in *NexCre/caMek1* ARC levels when compared to control mice (control = 1.00 ± 0.00 SEM, n=3, *NexCre/caMek1* = 0.22 ± 0.02 SEM, p<0.005, n=3, Student’s t-test) (A-B). Immunolabeling showed substantial reduction of ARC throughout all layers of the *NexCre/caMek1* cortex (E-F) in the basal state when compared to controls (C-D) (n=4, scale bars = 250µm).
Figure 24.

**ARC protein levels are negatively affected by MEK1 hyperactivation.** Immunolabeling of ARC expression after rotarod stimulation also showed a marked reduction in the *NexCre/caMek1* cortices (I-J) when compared to controls (G-H) (n=5, scale bars = 250µm).
Motor learning and motor skill acquisition is disrupted by MEK1 hyperactivation in cortical glutamatergic neurons

Having identified deficiencies in long range axonal projections originating in cortical glutamatergic neurons and the decrease of ARC detection in the cortex, we next questioned if these findings would impair motor function or motor learning acquisition. Impairments in motor coordination and motor learning, motor delays, and learning disabilities are common elements in the RASopathies (Davis et al. 2000; Monje et al. 2005; Blüthgen et al. 2017). These issues have also been identified in mouse models created to study the effects of disease subsets within the RASopathies (Greig et al. 2013). Therefore, we hypothesized that the *NexCre/caMek1* mice would show significant deficits in these areas. To analyze this, we employed the open field test for gross locomotor function and movement, the accelerating rotarod test for locomotor function and motor learning acquisition, and a fine reaching and grasping task for fine locomotor function and motor learning acquisition. Additionally, to test the for anxiolytic phenotypes, we used the open arm maze and measure of center time in the open field test.

The *NexCre/caMek1* mice display no obvious physical defects other than a slightly smaller size and ~28% less weight. Our first step however was to assess the gross locomotor functions of the mutant mice visually and in an open field test (Crawley, 1999). Open field testing revealed no significant difference in total distance traveled between the *NexCre/caMek1* and control mice (controls = 1834.88cms ± 172.29cms SEM n=12, *NexCre/caMek1* = 2162.80cms ± 218.72cms SEM n=12, p=0.252, Student’s t-test) (Figure 25A). Measurements of percent center time also showed no significant differences between the *NexCre/caMek1* and control mice (% center time, controls = 32.40% ± 3.75% SEM, n=12, *NexCre/caMek1* = 26.50% ± 2.56% SEM, p=0.208, n=12, Student’s t-test) (Figure 25A). Results of the open field
test and visual observation of the *NexCre/camk1* mice indicated no gross motor or locomotion defects that would hinder their physical performance in subsequent testing.

*NexCre/camk1* and control mice were then tested for motor coordination and learning on an accelerating rotarod. During Test 1, the *NexCre/camk1* mice showed significantly better motor coordination than the control mice (main effect of genotype, \(F(1,22)=5.85, p=0.0243\), \(n=12\)) (Figure 25B).

To test for any anxiety-like effects, we used an elevated plus maze to test the *NexCre/camk1* and control mice. In the elevated plus maze, the *NexCre/camk1* had similar levels of activity to the control but showed a decrease in anxiety-like behavior for both percent of open arm time (genotype, \(F(1,23)=8.57, p=0.008\) \(n=13\) controls, \(n=11\) mutants) and percent open arm entries \(F(1,23)=5.91, p=0.023\) \(n=13\) controls, \(n=11\) mutants) (Figure 25C).

Additional testing of motor skill learning acquisition was performed using a skilled reaching and grasping task. This test was designed and used to assay fine motor skills and motor learning acquisition of the *NexCre/camk1* and control mice. Additionally, the use of this test will serve to assess learning acquisition independent of the size differences in the mice. The first days testing showed that both the mutants and controls had approximately the same level of skill and ability in base performance of this test (Figure 25D). Over the course of the five-day trial however, the control mice showed significant improvements in their ability to successfully grasp and retrieve the pellet starting with \(12.39 \pm 4.50\) successful attempts on day one and increasing to \(27.06 \pm 5.11\) successes on day five (mean, \(\pm\) SEM, \(F(1,10)=5.531, p=0.041\) Wilks’ \(\Lambda=0.644\), partial \(\eta^2=0.644\), \(n=11\)) (Figures 25D - E). The *NexCre/camk1* mice made no improvements over the trial period starting with \(11.70 \pm 5.32\) successful grabs on day one and ending with \(8.88 \pm 3.44\) on day
five (mean, ± SEM, \(F(1,7)=0.450, p=0.524\) Wilks’ \(\Lambda=0.940\), partial \(\eta^2=0.060\), \(n=8\)) (Figures 25D - E). A significant effect of genotype was also detected between the \textit{NexCre/caMek1} and control mice (genotype, \(F(5,12)=3.165, p=0.047\), Wilks’ \(\Lambda=0.431\), partial \(\eta^2=0.569\), \(n=11\) controls, \(n=7\) mutants). These results indicate that the \textit{NexCre/caMek1} mice exhibit an impairment in motor learning acquisition when compared to control mice.

To test the question of motor coordination and motor learning acquisition effects due to hyperactivation of MEK1 in lower motor neurons (LMNs), we used a \textit{ChAT-IRES-Cre} mouse bred with a \textit{caMEK1} mouse (\textit{ChAT:Cre}) to express the constitutively active MEK1 construct in the cholinergic LMNs of the hind brain spinal cord (Rossi et al., 2100, Krenz et al., 2008). The \textit{ChAT:Cre} and control mice were then subjected to open field and accelerating rotarod testing. When compared to control mice, the \textit{ChAT:Cre} mice showed a significantly lowered difference in total distance traveled (control = 2262.4cms ± 143.96cms SEM, \(n=9\), \textit{ChAT:Cre} = 1779.32cms ± 93.31cms SEM, \(n=14\), \(p=0.008\), Student’s t-test) and no difference in percent center time (control = 40.79\% ± 2.21\% SEM, \(n=9\), \textit{ChAT:Cre} = 41.06\% ± 5.45\% SEM, \(n=14\), \(p=0.969\) Student’s t-test) (Figure 26F). The Results of rotarod testing showed that both the \textit{ChAT:Cre} and control mice groups were able to significantly improve in performance over the five-day testing period. The \textit{ChAT:Cre} mice improved their latency to fall from 65.67secs ± 3.96 to 136.95secs ± 4.18 (latency to fall, \(F(4,52)=15.238, p<0.005\), repeated measures ANOVA, \(n=42\)) (Figure 26G) and the control group improved their latency to fall from 78.15secs ± 6.01 to 130.18secs ± 6.02 (latency to fall, \(F(4,36)=11.208, p<0.005\), repeated measures ANOVA, \(n=30\)) (Figure 26G).
No significant effect of genotype between the $ChAT:Cre$ and control group was detected (genotype x latency to fall, $[F(4,88)=0.673, p=0.613$, repeated measures ANOVA]). The data from these tests demonstrate that hyperactivation of MEK1 in the LMNs had some effect on voluntary locomotor activity but no direct effect on motor coordination or motor skill learning.
Motor learning and motor skill acquisition is disrupted by MEK1 hyperactivation in cortical glutamatergic neurons. Open field testing of the NexCre/caMek1 and control mice revealed no significant difference in distance traveled over the testing period indicating an intact motor system in the NexCre/caMek1 mice (controls = 1834.88cm ± 172.29 SEM, n=12, NexCre/caMek1 = 2162.80cm ± 218.72 SEM, p=0.252, n=12, Student’s t-test) (A). Center time measurements also revealed no significant differences between NexCre/caMek1 and control mice (% center time, controls = 32.40% ± 3.75% SEM, n=12, NexCre/caMek1 = 26.50% ± 2.56% SEM, p=0.208, n=12, Student’s t-test). Accelerating rotarod testing revealed inconsistent results possibly due to size differences in the mutant and control mice. (B). In the elevated plus maze, the NexCre/caMek1 had similar levels of activity to the control but showed a decrease in anxiety-like behavior for both percent of open arm time (genotype, [F(1,23)=8.57, p=0.008] n=13 controls, n=11 mutants) and percent open arm entries [F(1,23)=5.91, p=0.023] n=13 controls, n=11 mutants). C). In a single pellet reaching and grasping task, the control group significantly improved over the course of the trial increasing from 12.39 ± 4.50 to 27.06 ± 5.11 successful attempts (mean, ± SEM, [F(1,10)=5.531, p=0.041 Wilks’ Λ=0.644, partial η²=0.644], n=11). The NexCre/caMek1 however made no improvements over the trial period starting with 11.70 ± 5.32 and ending with 8.88 ± 3.44 successful attempts (mean, ± SEM, [F(1,7)=0.450, p=0.524 Wilks’ Λ=0.940, partial η²=0.060], n=7) (D-E). A significant effect of genotype was also detected between the NexCre/caMek1 and control mice (genotype, [F(5,12)=3.165, p=0.047, Wilks’ Λ=0.431, partial η²=0.569], n=11 controls, n=7 mutants) (D-E).
Motor learning and motor skill acquisition is disrupted by MEK1 hyperactivation in cortical glutamatergic neurons. Open field testing of ChAT:Cre and control mice groups showed a significant difference in total distance traveled (control = 2262.4cms ± 143.96cms SEM, n=9, ChAT:Cre = 1779.32cms ± 93.31cms SEM, n=14, p=0.008, Student’s t-test) and no difference in percent center time (control = 40.79% ± 2.21% SEM, n=9, ChAT:Cre = 41.06% ± 5.45% SEM, n=14, p=0.969 Student’s t-test) (F). Rotarod testing showed that both the ChAT:Cre and control mice groups were able to significantly improve in performance over the five-day testing period. The ChAT:Cre mice improved their latency to fall from 65.67secs ± 3.96secs to 136.95secs ± 4.18secs ([F(4,52)=15.238, p<0.005, repeated measures ANOVA], n=42) and the control group improved from 78.15secs ± 6.01secs to 130.18secs ± 6.02secs ([F(4,36)=11.208, p<0.005, repeated measures ANOVA], n=30) (G). No significant effect of genotype between the ChAT:Cre and control group was detected (genotype x latency to fall, [F(4,88)=0.673, p=0.613, repeated measures ANOVA]) (G).
Hippocampal MEK1 gain-of-function downregulates P-ERK1/2 expression levels in the dentate gyrus and CA3 regions but upregulates in hippocampal associated white matter tracts

In addition to cortical glutamatergic neurons, NEX promoter activity is detected in dentate gyrus granule cells and mossy fibers that extend to the CA3 region (Goebbels et al. 2006). Immunostaining for P-ERK1/2 showed a distinct downregulation in the cell bodies and the processes associated with them in the NexCre/camK1 when compared to controls (N=3) (Figure 27A - D). However, the fimbria of the hippocampus and the stria terminalis show a substantial amount of P-ERK1/2 labeling (Figure 27A - D). Due to the P-ERK1/2 localization detected here, we wanted to determine if there would be any effects on spatial learning associated with the hippocampus. For this analysis we used the Morris water maze tests.

NexCre/camK1 and control mice were first subjected to a visual cue test with a visible platform. No effects of genotype were found between the NexCre/camK1 and control mice. A total of 5 mice (3 NexCre/camK1 and 2 controls) had poor performance in finding the visible platform and were excluded from the acquisition and reversal phases of the water maze. In the acquisition phase, the NexCre/camK1 and control mice showed similar spatial learning in the hidden platform test (Figure 28E). In the reversal phase, no effect of genotype was detected between the NexCre/camK1 and control mice (Figure 28G). Although no effect of genotype was detected between the two groups, the NexCre/camK1 mice failed to reach the criteria for learning while the control group reached that criteria from days 3 to 5 (Figure 28G). Furthermore, the NexCre/camK1 mice had significantly longer swim paths than the control mice (main effect of genotype, [F(1,16)=5.31], p=0.0349) (Figure 28G). This indicated a decreased ability to locate the new position of the hidden platform in the reversal phase.
In the probe trial following acquisition, a significant effect of quadrant was detected between NexCre/caMek1 and control mice (effect of quadrant, [F(1,16)=8.91], p=0.0088) repeated measures ANOVA) (Figure 28F). No effect of genotype was detected (Figure 28F). Significant quadrant preference was observed in the control mice (quadrant preference, [F(1,9)=8.83], p=0.0156) but not in the NexCre/caMek1 mice (Figure 28F). During the reversal probe trial, the control mice showed a shift in quadrant preference to the new location (quadrant preference, [F(1,9)=14.39], p=0.0043) (Figure 28H). In contrast, NexCre/caMek1 mice failed to show quadrant selectivity (Figure 28H). A significant effect of genotype was detected between the NexCre/caMek1 and control mice in quadrant selectivity (genotype x quadrant interaction, [F(1,16)=4.63], p=0.047, repeated measures ANOVA) (Figure 28H).

Swimming distance to the escape platform is dependent upon swimming velocity during the timed water maze test. Both the NexCre/caMek1 and control mice performed comparably in the visual cue test, for the acquisition, reversal and acquisition probe trial, the NexCre/caMek1 mice displayed significantly increased swim speeds (overall effect of genotype, [F(1,15)=4.56], p=0.0497, post-hoc tests following repeated measures ANOVA) (effect of phase of testing, [F(4,60)=21.06], p<0.0001, post-hoc tests following repeated measures ANOVA) (Figure 28I).
Subcortical recombination of caMEK1 selectively affects P-ERK1/2 detection in the NexCre/caMek1 mice. Immunostaining of NexCre/caMek1 and control mice revealed a lack of P-ERK detection in the granule layer of the dentate gyrus and axonal extension into the CA3 region of the hippocampus (n=3) (A-D). Additionally, a substantial increase in P-ERK1/2 detection was noted in the fimbria and the stria terminalis that contain white matter tracts originating in MEK1 hyperactivating regions (n=3) (A-D). (scale bars = 500µm, DG = dentate gyrus, fi = fimbria, st=stria terminalis).
Subcortical recombination of caMEK1 selectively affects P-ERK1/2 detection in the NexCre/caMek1 mice. Hidden platform test in the Morris water maze indicated similar spatial learning in the NexCre/caMek1 and control mice with no genotype differences detected (controls n=10, NexCre/caMek1 n=8) (E). In the probe trial following acquisition, no effect of genotype was found controls n=10, NexCre/caMek1 n=8). However, only the control mice showed a higher percent of time in the target quadrant (within genotype analysis [F(1,9)=8.83, p=0.016], n=10) while the NexCre/caMek1 mice showed no significant preference, n=8) (F). In the reversal phase, only the control mice reached the criterion for learning (controls n=10, NexCre/caMek1 = n=8). During this phase, the NexCre/caMek1 mice had significantly longer swim paths than the control mice (controls n=10, NexCre/caMek1 n=8) (G). In the probe trial following reversal, the control mice displayed a shift in quadrant preference to the new location (within genotype analysis [F(1,9)=14.39, p=0.004], repeated measures ANOVA, n=10). The NexCre/caMek1 mice however failed to show any quadrant preference (H). NexCre/caMek1 mice displayed significantly increased swim speeds on the first days of acquisition and reversal training, and during the acquisition probe trial (main effect of genotype, F(1,15)=4.56, p=0.0497, and phase of testing, F(4,60)=21.06, p<0.0001], post-hoc tests following repeated measures ANOVA, controls n=10, NexCre/caMek1 n=8) (I).
Discussion

The ERK/MAPK signaling pathway is perhaps the most studied cellular signaling pathway to date. The majority of this research however has been performed in the context of cancers and specific cell types in culture. In the field of neurodevelopment and neurodevelopmental syndromes however, there is a lack of knowledge regarding the effects of aberrant ERK/MAPK signaling within a biological system. This absence is particularly noticeable concerning the formation and maintenance of cell-type specific connectivity under normal and syndromic conditions. In this study, we have identified the effects of hyperactivating MEK1 in the ERK/MAPK signaling pathway on the development of cortical glutamatergic axonal outgrowth and plasticity associated genes and its effect on motor learning acquisition.

caMEK1 hyper-phosphorylates axonal but not somal ERK

The classic RAS/MAPK signaling pathway ends with the dual phosphorylation of ERK1/2 at tyrosine and threonine residues. Phosphorylated ERK (P-ERK1/2) then acts upon several substrates within the cytosol, the nuclear membrane, and in the case of neurons, axons, dendrites and synaptic boutons. Substrates that are affected by P-ERK1/2 include cytoskeletal elements, cytoplasmic kinases, nuclear substrates, membrane proteins, and even upstream components of its own signaling chain. In the cytosol and nucleus, P-ERK1/2 is dephosphorylated or sequestered by dual specificity phosphatases (DUSPs). It is currently unclear whether this same method of deactivation is present in the axonal or dendritic compartments of the neuron.

This current investigation involves the use of Cre-Loxp recombination to conditionally activate a constitutively active MEK1 construct (caMEK1) to hyperphosphorylate ERK1/2 specifically in cortical glutamatergic neurons. Transcription of
caMEK1 is controlled by the NEUROD6 promoter which initially begins being transcribed in post-mitotic glutamatergic neurons at approximately E11.5. We began by testing for production of the caMEK1 construct at E14.5 by immunohistochemical (IHC) analysis of the cortex and Western Blotting of whole cortical lysates. Western Blot results indicated a robust production of caMEK1 accompanied by a significant upregulation of P-ERK1/2 at this embryonic stage. IHC analysis of the embryonic cortices showed a high level of P-ERK1/2 localized to the trailing processes of the nascent glutamatergic neurons but no clear evidence of enrichment in the somal bodies. In Western Blots of adult mouse whole cortical lysates however, caMEK1 detection remained at significantly increased levels and P-ERK1/2 surprisingly showed no differences in detected levels. IHC examination of the adult caMEK1 mice however revealed an extremely high level of P-ERK1/2 detection in the axonal compartments coupled with very little P-ERK1/2 detection in the somas. This finding was surprising and contrary to our expectations of hyper-phosphorylation of ERK1/2 being detectable in all areas of the affected glutamatergic neurons. At this point we speculated that the early hyper-phosphorylation of ERK may have led to an upregulation of DUSP6 which is a P-ERK1/2 specific phosphatase. Western Blots and immunostaining however showed no evidence of upregulated DUSP6. There are several more phosphatases, pathway feedback mechanisms, and cellular transport systems specific to the regulation of P-ERK1/2 to investigate in future investigations.

In our previous investigations, we found that the loss of MEK1/2 signaling in cortical glutamatergic neurons led to early cell death in the mutated neurons and the mice were not viable past approximately P21. The MEK1/2 loss-of-function (LoF) cell death was most notably evident in layer V CTIP2⁺ sub-cerebral projection neurons (SCPNs) and temporally followed disruption of cortico-spinal tract axonal extension. Here, in comparison, we found that the hyperactivation of MEK1 disrupts the
phosphorylation of ERK1/2 in the somas, greatly enhances P-ERK1/2 detection in axons, disrupts the elongation of the cortico-spinal tract, but does not lead to cell death. Most importantly though, these mice are viable long term thus allowing for further connectivity analysis and behavioral testing as adults. The comparison between our previous LoF MEK mice and the apparent down-regulation of somal expression of P-ERK1/2 in the caMEK1 mice leads to some interesting questions. Is there a basal level of P-ERK1/2 operating or necessary in the glutamatergic neuron necessary to support cell survival? Does the upregulation of P-ERK1/2 in the axon regulate or conduct survival cues independent of the RAS/MAPK pathway to the soma and nucleus? Further work with the Nex:CRE/caMEK1 model will be necessary to elucidate the specific nuances in this surprising compartmentalization effect of P-ERK1/2.

Key synaptic plasticity and immediate early gene ARC is downregulated

In addition to the somal down-regulation of P-ERK1/2 in the caMEK1 mice, Western Blots of whole cortical lysates also revealed a significant reduction in activity-regulated cytoskeleton-associated protein (ARC). IHC analysis of basal state adult mouse cortices showed that this reduction is primarily detected in the soma with the dendritic compartment showing robust levels in both the control and caMEK1 mice. When stimulated with physical activity on the rotarod, ARC detection by IHC in the cortex becomes more pronounced in the caMEK1 mice yet still does not reach the level of ARC expression in activity stimulated control mice or even the basal state control mice. IHC detection of P-ERK1/2 in the activity induced mice revealed no changes in expression levels over basal caMEK1 mice.

The amount of ARC detected in the soma and dendrites of the glutamatergic neurons in the caMEK1 mice reveals that a basal level of Arc is both transcribed and
translated. However, it is unknown what level of either Arc mRNA or ARC protein in our mutants can be attributed to P-ERK1/2 in either the somal or dendritic compartment. Several reports of the transcriptional dependence of Arc transcription on P-ERK1/2 in cultures and in hippocampal *in vivo* studies suggest that P-ERK1/2 is required for Arc transcription in general or Arc transcription above a basal level. Due to extensive pathway convergence and cross-talk, it is unclear if our data would suggest that Arc is transcribed at a basal level or that the caMEK1 affected neurons contain a basal level of P-ERK1/2 to activate transcription of Arc. Further detailed studies would need to be performed to describe fully ARCs dependence on this caMEK1 mutation.

*Long range axonal connectivity is disrupted*

We previously found deficits in axonal elongation of the cortico-spinal tract and arborization in the gray matter of the spinal cord and the hindbrain in the *Nex:CRE/caMEK1* mice (Xing et al. 2016). In this current study, we describe a surprising change in the levels of P-ERK1/2 in the soma and the axons of the cortical glutamatergic neurons of the *Nex:CRE/caMEK1* mice as well as reduced expression of select immediate early genes. Additionally, in this current study, we further analyzed axonal innervation deficits by analyzing corticocortical and corticostriatal axonal innervation and branching patterns.

The analysis of corticocortical and corticostriatal innervation was performed by injecting an AAV virus that expresses a CRE dependent tdTomato construct in a single hemisphere of the primary motor cortex. The AAV injections were performed at P1 and all analysis was performed at P30. Analysis of the contralateral cortex and dorsal striatum allowed the precise quantitation of axonal innervation and branching in the *Nex:CRE/caMEK1* mice. Our analysis found a significant reduction of axonal
innervation in both the contralateral motor cortex and the dorsal striatum. A significant reduction of tubulin beta 3 class III (TUBB3) in Western Blots of whole cortical lysates in the adult Nex:CRE/caMEK1 mice was also detected which supports the finding of reduced axonal innervation. Unlike the loss-of-function mice in our previous paper, we detected no loss of cortical glutamatergic neurons in the Nex:CRE/caMEK1 mice (Xing et al. 2016). While we can attribute the axonal deficits to the mis-regulation of P-ERK1/2 in general, it is unclear at this point whether it is the apparent low levels of P-ERK1/2 in the soma, or the high levels of P-ERK1/2 within the axons that is the main element of these deficits. Considering the high complexity of ERKs involvement in the axonal growth program; neurotrophin induced axon assembly (Atwal et al. 2000), ERKs links to microtubule associated proteins 1 and 2 (MAP1 and MAP2) (Ray and Sturgill 1987; Goold and Gordon-Weeks 2005), ERK regulation of actin filaments (Atwal et al. 2003), growth cone local protein regulation by ERK (Campbell and Holt 2003), and not least of all ERKs influence on gene transcription, further work will be needed to elucidate the exact cause or causes of these findings.

Motor learning acquisition is disrupted

With the discovery of these specific axonal extension, innervation, and branching deficits and the findings of the IEG ARC disruptions, we next subjected the mutant and control mice to motor learning acquisition testing. We began with the open field test to determine if overall motor function was impaired. The Nex:CRE/caMEK1 mice showed no difference from control mice for voluntary motor function in total distance traveled or in center time in the open field. This finding indicated that the Nex:CRE/caMEK1 mice did not have any physical impediments to voluntary motor function.
The *Nex:CRE/caMEK1* mice were also subjected to an elevated plus maze test to test for any anxiolytic-like phenotypes. In general, it is reported that individuals with a RASopathy, especially NF1 and CS patients, are at a higher risk for anxiety disorders. This anxiety type may not be due to a personality shift or driven by neuroticism, but is suggested that it may be a distinct subtype of anxiety (Bizaoui et al. 2018). Our results indicated that the *Nex:CRE/caMEK1* showed no anxiolytic-type behavior and actually made significantly more entries into the open arms and spent significantly more time on the open arms of the maze. To make any determination concerning an anxiety-like phenotype of any kind in this mouse model, much more specific behavioral tests should be performed.

Accelerating rotarod testing for motor testing acquisition showed a surprising set of results for the *Nex:CRE/caMEK1* mice. The mice were significantly better at performing on the rotarod than the control mice in initial performance. We theorized that this result was caused by the smaller size of the *Nex:CRE/caMEK1* mice allowing them to better balance on the rotating rod than the larger control mice. In order to negate any effects of size differences between the mutant and control mice, we subjected the mice to a skilled reaching and grasping task. In this task, the *Nex:CRE/caMEK1* mice showed no ability to improve over the course of the trial. In fact, their ability to succeed in this task actually dropped over the course of the trial. These results for the *Nex:CRE/caMEK1* mice indicate deficits in motor learning acquisition such as seen in the RASopathies.

*ChAT:Cre/caMEK1* mice (Rossi et al. 2011) were also subjected to the open field and accelerating rotarod. This allowed for the analysis of motor learning acquisition due to the hyperactivating mutation on lower motor neurons. Within some of the RASopathies, common neurological issues include motor development delays and deficits and motor skill deficits associated with learning and cognition.
Open field analysis of the $ChAT:Cre/caMEK1$ mice revealed a significant deficit in total distance traveled when compared to control mice with no difference in center time. However, testing on the accelerating rotarod revealed no difference between mutant and control mice indicating the open field results to be a voluntary motor issue. Both the mutants and controls significantly improved their performance over the course of the test indicating no impairments in motor skill acquisition. These tests indicated that caMEK1 mutations in cholinergic lower motor neurons have little to no effect on motor behaviors.

Recombination of the caMEK1 construct in the $Nex:CRE/caMEK1$ mice also affected regions of the hippocampus. This allowed us to test the $Nex:CRE/caMEK1$ mice for associative and spatial learning in the Morris water maze. No significant differences were found between the mutants and controls in the acquisition phase as measured by swimming distance. However, in the probe trial following acquisition, the $Nex:CRE/caMEK1$ mice failed to establish a quadrant preference with the platform removed. In the reversal phase, there was also a significant difference between the $Nex:CRE/caMEK1$ and control mice in learning the new placement of the hidden platform. In the probe trial following reversal learning, the $Nex:CRE/caMEK1$ mice again failed to establish a quadrant preference. It is interesting to note that again the $Nex:CRE/caMEK1$ mice outperformed the control mice in swimming speed. These results indicate a deficit in associative and spatial learning in the $Nex:CRE/caMEK1$ mice due to the caMEK1 mutation.
Conclusion

Our results here are the first to detect a compartmentalization effect of P-ERK1/2 by a hyperactivating MEK1 mutation in a mammalian system. This work further defines that the axonal extension aberrations as well as the learning phenotypes described here, stem from within a single cell type indicating a cell-autonomous effect.

These results provide a basis for further examination of current clinical treatments of RAS/MAPK activating mutations. Furthermore, the down-regulating effect on detectable P-ERK1/2 within the somas questions a crucial aspect of clinical treatment of RASopathic genetic mutations. Is the treatment of an activating RAS/MAPK mutation by administering MEK inhibitors to ameliorate physical symptoms of the disease worsening the symptoms of the neurodevelopmental aspects of the disease? Can the neurodevelopmental symptoms be treated separately or even shielded in some way from the physiological treatments available? Is it possible or feasible to treat separate compartments of a single cell (i.e. cell body versus the axon versus the dendrite)? Further in vivo testing is needed to address these issues and to help develop effective strategies in treatment for the ongoing neurological symptoms of the RASopathies.
Acknowledgments

We wish to thank Noah Fry, Becca Reinking-Herd, and Sarah Bjorklund for their technical assistance.

Contributions

Viral and DiI injections:

George Reed Bjorklund.

Tissue prep and Immunolabeling:

George Reed Bjorklund, Sarah Bjorklund and Becca Reinking-Herd.

Image analysis and quantitation:

George Reed Bjorklund and Jason M Newbern.

Western Blotting:

George Reed Bjorklund.

Experimental conception and design:

George Reed Bjorklund and Jason M Newbern.

Behavioral analysis:

George Reed Bjorklund, Sheryl Moy, Lauren Hewitt, and Kenji Nishimura

Drafting or revising the article:

George Reed Bjorklund.
CHAPTER 4

CORTICAL LAYER SPECIFICITY IN A GAIN-OF-FUNCTION
CAMEK MOUSE MODEL

Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning in a layer autonomous manner
Abstract

Germline mutations within the components of the RAS-RAF-MEK-ERK (RAS/MAPK) pathway form a group of neurodevelopmental disorders collectively known as RASopathies. A large portion of these mutations result in an upregulation of signaling. Previously we have described that a cell-type specific MEK1 hyperactivating mutation leads to significant axonal connectivity issues and deficits in motor learning acquisition in a biological system. Here, we used cre-loxp technologies to hyperactivate the RAS/MAPK pathway in cortical glutamatergic neurons in a layer specific manner to affect only cortical layer 5. We have identified significant deficits in corticocortical, and corticostriatal axonal innervation and branching and a significant reduction in the expression of the immediate early gene ARC in a cell and layer autonomous manner. Unlike MEK1 hyperactivation of glutamatergic neurons across all cortical layers, layer 5 specific hyperactivation does not lead to motor learning deficits. These data reveal specific cortical layer requirements for RAS/MAPK signaling during development for axonal innervation and connectivity and further indicate that behavioral plasticity depends upon RAS/MAPK expression in cortical projection neurons other than layer 5.
**Introduction**

Previously, we reported a critical requirement for RAS/MAPK signaling in loss- and gain-of-function as it applies specifically to cortical pyramidal neurons (Xing et al., 2016). Deletion of Map2k1/2 (Mek1/2) in cortical glutamatergic neurons resulted in the absence of large CTIP2+ neurons in cortical layer 5 and the impairment of corticospinal tract (CST) axonal extension in the dorsal funiculus of the cervical and lumbar spinal cord (Xing et al., 2016). Up-regulation of ERK/MAPK signaling in cortical glutamatergic neurons also decreased CST axonal elongation but markedly increased axonal branching in the gray matter of the spinal cord and the gray matter of the hind brain (Xing et al., 2016). The hyperactivating mutations also created a paradoxical change in the expression patterns of cellular P-ERK1/2. In the axonal compartment of the cortical glutamatergic neurons we detected a high level of P-ERK1/2 while the somas contained a highly reduced expression level. Furthermore, corticocortical and corticostriatal axonal innervation was significantly reduced and indications of motor learning acquisition deficits were found upon hyperactivation of MEK1.

In this study we have employed an Rbp4:Cre mouse crossed with the caMek1 mouse to restrict Mek1 over-expression to layer 5 glutamatergic neurons. The layer 5 specific hyperactivation will address specifically any layer autonomous effects with CST extension and further delineate the previous cell-type autonomous effect that was detected in the Nex:CRE/caMEK1 mice. An NF1 conditional knock-out mouse model was also used to further assess CST elongation phenotypes. The NF1 conditional knock-out mouse is thought to more closely replicate the human condition in a cell-specific manner (Gutmann and Giovannini 2002). The use of these conditional genetic tools will allow the analysis of cell specific effects and contributions to the pathologies reported in RASopathy patients.
Analysis of contralateral cortical projections and cortico-striatal projections revealed a significant decrease in axonal innervation and branching while corticobulbar projections showed little change in the hindbrain. Much like the Nex:Cre/caMek1 mouse however, there was a significant decrease in CST elongation in the cervical and lumbar spinal cord and a significant increase in axonal branching in the spinal cord gray matter. Behavioral testing of the Rbp4:Cre/caMEK1 mice showed no gross motor defects but did display an apparent deficit in voluntary locomotor function. However, unlike the Nex:Cre/caMek1 mice, the Rbp4:Cre/caMEK1 mice showed no deficits in motor learning and acquisition. Furthermore, reduction of activity regulated gene expression appeared localized to layer V with no apparent effect on other regions. These results indicate that layer V hyperactivation of MEK1 is sufficient to cause the deficits detected in long range glutamatergic axonal projections. However, layer V hyperactivation is not sufficient to cause the motor learning acquisition disruptions as detected in the Nex:Cre/caMek1 mice indicating behavioral plasticity depends upon RAS/MAPK expression in cortical projection neurons other than layer 5.
Materials and Methods

Transgenic Mice

All animal experiments were performed in accordance with established procedures approved by the Institutional Animal Care and Use Committee of Arizona State University and NIH guidelines for the use and care of laboratory animals. Mice used in this work were of a mixed genetic background and housed in standard conditions. The mice were kept on a 12-hour light/dark cycle with food and water provided ad libitum. Each experiment was replicated a minimum of three times using littermates or mice from independent litters. No detectable effects on the phenotypes described in this manuscript were observed from Cre expression alone. Therefore, Cre-expressing or Cre-negative mice were used as controls. Map2k1<sup>16217/222</sup> mice were furnished by Dr. Maike Krenz and Dr. Jeffrey Robbins (Krenz et al., 2008). Rbp4:Cre mice were purchased from the Mutant Mouse Resource & Research Centers (RRID:MMRRC_036400-UCD).

Tissue Preparation

Transcardial perfusions were performed on mice using a 4% paraformaldehyde/PBS solution with dissected brains being post-fixed in the same solution overnight at 4°C. Dissected brains were then serially incubated in 15% and 30% sucrose/PBS solutions prior to embedding in Tissue-Tek O.C.T. (Tissue-Tek 4583) and freezing. Cryostat sectioning was performed with sections being collected on Fisherbrand Superfrost/Plus slides (Fisher Scientific 12-550-15) and air-dried prior to staining. Alternatively, cryostat sections were collected in well plates with cold PBS for free-floating staining as appropriate. For some experiments, brains were mounted in agarose after post-fixation in preparation for vibratome sectioning.
**Viral Injections**

P1 pups were removed from their home cage as a group and were individually cryo-anesthetized on ice for 4-6 minutes. Viral injections were then performed immediately with 50-80nl of solution using a 32-gauge beveled needle fitted to a Hamilton 5µl neuros syringe mounted on a stereotaxic arm. After injections, pups were placed on a 37°C heated surface for recovery and returned to their home cage as a group. Adeno Associated Viral vectors, RAAV9/AAV-Flex-tdTomato and RAAV8/CAG-Flex-tdTomato were purchased from the UNC Viral Vector Core and used for all viral tracing experiments.

**Behavioral Assays**

A single-pellet reaching and grasping task test was performed using male RBP4:Cre/caMek1 mice. Mice were mildly food restricted throughout training to maintain at least 90% of their baseline weight which amounted to free feeding between 2 and 6 hours daily. Sucrose pellets (TestDiet 1811555) were used for this test and the mice were acclimated to the pellets in their home cages. After pellet acclimation, mice were then placed in an acrylic chamber 15cm X 10cm X 20cm, with pellets either singly or in pairs depending on their housing for further acclimation. After acclimation, forelimb dominance was determined by placing a single pellet on the food platform (10cm high) outside a single slit (5cm wide) in one end of the test chamber. Once a mouse has conducted at least 20 reaching attempts within 20 mins with at least 70% of those reaches made with one hand, that mouse was moved on to testing. Testing consisted of placing a single pellet on the food platform in front of the slit, right or left, corresponding with the preferred paw. Testing was performed for 10 minutes daily for 5 days. Scoring was performed as follows; Success: if the mouse reached with its preferred paw, retrieved the pellet, and fed the pellet into its
mouth. Drop: If the mouse grasped the pellet but drops it before reaching its mouth. Fail: If the mouse reached for the pellet but failed to grasp it or knocked it out of position. Mice were scored on the rate (metric/Attempts) for each of these metrics.

Open field testing was performed in an open top opaque plexiglass box measuring 38cm X 38cm X 30cm. The area within the box is illuminated by a single 40-watt spotlight approximately 2 meters overhead and centered within the area. Recording of mouse movements is done using a Microsoft LifeCam or Logitech HD Webcam and VirtualDub video capture software. Open field quantitation was performed using the MouseMove (Samson et al. 2015) plugin for ImageJ (Schindelin et al. 2012).

Rotarod analysis for the RBP4:Cre/caMEK1 mice was performed using a San Diego Instruments Rotor-Rod. Prior to testing, mice were habituated by being placed on an approximately 5.0cm diameter foam roller followed by the standard 3.175cm diameter knurled plastic rollers. The mice were allowed three attempts on each rod to reach 180 seconds on the foam rollers and 90 seconds on the plastic rollers. All habituation is performed at a constant 4 RPMs. Rotarod testing is performed starting the first day following habituation. The mice are placed on the plastic rollers and the machine measures the latency to fall under accelerating conditions from 4 RPMs to 40 RPMs for a maximum of 5 minutes. The testing period consisted of three trials per day for 5 consecutive days. Mice were allowed 5-10 minutes between trials for rest.

**Immunohistochemistry**

Tissue sections were rinsed with PBS/0.1% Triton X-100 (PBST) and blocked with 5% normal donkey serum in PBST at room temperature for ~1 hour. Primary antibodies were diluted in PBST/5%NDS and incubated overnight at 4°C with gentle shaking. Primary antibodies used were; rabbit anti-MEK1 (Abcam ab32091), rabbit
anti-phosph-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (Cell Signalling 4370), rabbit anti-ERK2 (Abcam ab32081), rabbit anti-ARC (Synaptic Systems 156 003), mouse anti-β 3 Tubulin (TUBB3) (Bioloegend 801202), rabbit anti-RFP (Rockland 600-901-379), chicken anti-RFP (Rockland 600-401-379), mouse anti-neun (Millipore Sigma MAB377), and DAPI (Sigma Aldrich 10236276001). After rinsing in PBST 3X, secondary antibodies diluted in PBST/5%NDS were added and incubated overnight at 4°C with gentle shaking. Secondary antibodies included Alexa Fluor 488, 546 or 568, and 647 conjugated anti-rabbit, anti-mouse, or anti-goat IgG (Invitrogen). Imaging was performed using a Zeiss LSM 800 laser scanning confocal microscope (LSCM), or a Leica SP5 LSCM.

**Western Blotting**

Cortices were collected from mutant and control mice and lysed in a buffer containing 50mM Tris-CL, 150mM NaCl, 0.1%triton x-100, Protease Inhibitor (Sigma-Aldrich P2714), and Phosphatase Inhibitor (Sigma-Aldrich P5726) either by sonication or with a syringe. Lysates were then cleared by centrifugation and total soluble protein concentrations determined by Bradford Assay using a Peirce Protein Assay Kit (Thermo Scientific 23200). Proteins were denatured in equal amounts of 2X Laemmli sample buffer (BioRad 161-0737), separated by SDS-PAGE using either 10% or 4-20% Mini-PROTEAN TGX precast gels (BioRad 456-1035 and 456-8095), then transferred to PVDF membranes (BioRad 162-0177). Membranes were blocked with 5% non-fat dry milk (NFDM) in TBS with 0.5% Tween (TBST) for 1 hour at room temperature followed by overnight incubation at 4°C with primary antibodies in 5% bovine serum albumin. Primary antibodies used were; rabbit anti-MEK1 (Abcam ab32091), rabbit anti-phosph-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (Cell Signalling 4370), rabbit anti-ERK2 (Abcam ab32081), rabbit anti-ARC (Synaptic Systems 156 003), mouse anti-β 3 Tubulin (TUBB3) (Bioloegend 801202), rabbit anti-RFP (Rockland 600-901-379), chicken anti-RFP (Rockland 600-401-379), mouse anti-neun (Millipore Sigma MAB377), and DAPI (Sigma Aldrich 10236276001). After rinsing in PBST 3X, secondary antibodies diluted in PBST/5%NDS were added and incubated overnight at 4°C with gentle shaking. Secondary antibodies included Alexa Fluor 488, 546 or 568, and 647 conjugated anti-rabbit, anti-mouse, or anti-goat IgG (Invitrogen). Imaging was performed using a Zeiss LSM 800 laser scanning confocal microscope (LSCM), or a Leica SP5 LSCM.
Systems 156 003), rabbit anti-GAPDH (Cell Signalling 2118), goat anti β-Actin (Cell Signaling 8457), and rabbit anti-β actin (Cell Signalling 8457). Secondary antibodies used were anti-rabbit HRP and anti-goat HRP (Jackson Immunoresearch 711-035-152 and 705-035-147). Membranes were then washed in TBST and incubated with HRP-conjugated secondary antibodies in 5% NFDM/PBST for 1 hour at room temperature. Membranes were washed in TBST, developed with Pierce ECL Western Blotting Substrate (Thermo Scientific 32106), and exposed to radiographic film (Thermo Scientific 34089).

Quantification of Western Blots was performed using a high-resolution scanned image of the exposed radiographic film in a grayscale TIFF file format. The file was then transferred to Imagej where a region of interest was created to encompass individual bands for all mutant, control and loading control samples. The mean gray value of each band was then recorded along with a background measurement for each band. All values were inverted (subtracted from 255) and the background values were subtracted from the band values. The net band values were then reported as a ratio of net band value over net loading control value.

**Image Analysis and Quantitation**

For quantitation of axonal innervation and branching in the cortex and striatum, a radial section of the cortex encompassing all layers within the primary motor cortex was used. A minimum of 4 sections from each mutant and control animal centered about the rostral-caudal area of the injection site was analyzed. The area in µm² of this region was measured in Photoshop and the image was then transferred to Imagej. Once in Imagej, pixel intensities were adjusted using the Otsu Auto Threshold component, total pixels counted, and multiplied by the images pixel size to obtain the total µm² of pixels in the ROI. The total µm² was then divided by
the number of transfected cells that were manually counted in an identical ROI in the ipsilateral (RFP injected) cortical hemisphere to obtain the axonal labeling per transduced cell. Spinal cord arborization was measured in the same manner except the µm² of pixels was normalized to the CST to obtain a spinal cord arborization ratio.

The CBT was measured using at least three anatomically matched hind brain sections from each mutant and control animal. The CBT was outlined using the difference of appearance in NEUN or DAPI and the image was transferred to Imagej. A pixel intensity threshold was manually set by an observer blinded to the genotype. The number of labeled pixels was then measured and multiplied by the images pixel size to obtain the µm² of pixels in the CBT. The µm² of pixels was then normalized to the number of transfected cells in the injection site ROI to obtain the CBT axonal labeling per transduced cell. The CST in the dorsal funiculus was measured in the same manner except the µm² of pixels was normalized to the CBT to obtain the CST elongation ratio.

Representative images have been cropped and adjusted for brightness and contrast in Photoshop for presentation. All images used for comparison analysis where collected using the same microscope settings and all adjustments made were done equally between images.

**Statistical Analysis**

Data analysis was performed using SPSS software (IBM Analytics). Statistical methods used included Student’s t-test (unpaired, two-tailed), ANOVA, repeated measures ANOVA, and multivariate ANOVA. F-test results, p-values, and tests used are reported where appropriate.
Results

ERK/MAPK gain-of-function in layer V excitatory neurons reduces CST elongation and increases spinal cord axonal innervation but does not affect CBT elongation or hind brain axonal innervation

In our previous study, we found that both MEK1 loss-of-function mice, Map2k1;Neurod6-Cre, and MEK1 gain-of-function mice, NexCre/caMek1, exhibited CST elongation deficiencies. The MEK1 loss-of-function mutation was lethal at ~P21 and prevented further characterization. However, the gain-of-function NexCre/caMek1 mouse was viable and exhibited additional deficiencies in CBT elongation and enhanced innervation and branching of the spinal cord and hindbrain (Xing et al. 2016). Our current work further defines deficits in corticocortical and corticostriatal axonal innervation and branching in the NexCre/caMek1 mouse. At this point we wanted to further explore layer specific contributions to the abnormalities that we have documented.

Generally, callosal projection neurons (CPNs) residing in cortical layers II/III, and to a lesser extent in layers V and VI, project to mirrored areas in the contralateral cortex. Subcerebral projection neurons (SCPN) from M1 project to the brainstem motor nuclei and spinal cord motor neurons (Greig et al. 2013). With our NexCre/caMek1 deficits in mind, we wanted to test the possibility of a layer autonomous role when MEK1 is hyperactivated in layer V glutamatergic neurons only. A loss-of-function mouse designed by crossing an Erk1-/-,Erk2fl/fl mouse with an Erk1-/-,Erk2wt/fl;RBP:Cre mouse that would specifically knock-out Erk1/2 function in cortical layer V. Unfortunately, this appeared to be an embryonic lethal mutation even though we restricted the knock-out of ERK1/2 function to layer V glutamatergic neurons only. Over the course of ~85 live births, no mice were born with Erk1-/-,Erk2fl/fl;RBP:Cre genotype when we should have expected
~21 by Mendelian ratios (1 in 4). For the gain-of-function mouse we used an 
RBP4:Cre mouse crossed with the caMEK1 mouse (RBP4:Cre/caMEK1), to produce a 
mouse that will hyperactivate ERK/MAPK primarily in cortical layer V glutamatergic 
neurons. With this mouse, we employed the previously described method of using 
the AAV:CAG-FLEX-tdTomato viral vector to trace and quantify the developed axons. 
As previously performed on the NexCre/caMek1 mice, the RBP4:Cre/caMEK1 mice 
were injected in the primary motor cortex at P1 with a CRE dependent AAV-tdTomato 
with axonal extension and innervation analyzed at P30.

Analysis of the CBT in the RBP4:Cre/caMEK1 mice was performed by 
measuring the amount of RFP labeling in the tract and normalizing to the number of 
tdTomato labeled glutamatergic neurons in the primary motor cortex injection site. 
Cell counts between the RBP4:Cre/caMEK1 and control mice revealed no significant 
differences (labeled cells, RBP4Cre/caMEK1 = 96.30 ± 10.38 SEM, n=5, control = 
85.60 ± 6.12 SEM, n=5, p=0.400, Student’s t-test) (Figures 32A-C). In contrast to 
our previous findings when hyperactivating all cortical glutamatergic neurons in the 
NexCre/caMek1 mice, layer V specific hyperactivation in the RBP4:Cre/caMEK1 mice 
showed no significant differences in CBT elongation when compared to control mice 
(CBT labeling per tdTomato labeled neuron, RBP4Cre/caMek1 = 319.38 ± 77.74 
SEM, n=4, control = 298.46 ± 38.95 SEM, n=4, p=0.818, Student’s t-test) 
(Supplemental Figure 31D - E, H). Additionally, analysis of axonal innervation in the 
contralateral side of matched sections of the hindbrain in RBP4:Cre/caMEK1 and 
control mice also revealed no significant differences (innervation factor,
RBP4Cre/caMek1 = 4366.57 ± 742.36 SEM, n=4, control = 5061.28 ± 1103.85 SEM, 
n=4, p=0.620, Student’s t-test) (Supplemental Figures 31C - D, F, I).

CST elongation was determined by measuring the area and extent of labeling 
of the CST in the dorsal funiculus between C5 and T1 (Figures 29A, C - D, F). The
RBP4:Cre/caMEK1 mice were found to have a significantly lower amount of labeling in the CST as a percentage of labeling in the CBT (Figures 29I, L) (labeling/%CBT, RBP4:Cre/caMEK1 26.23 +/- 1.69 SEM, n=4, controls = 45.62 +/- 7.01 SEM, n=4, p=0.036, Student’s t-test) (Figure 29G). We next measured the amount of axonal labeling in the spinal cord gray matter in relation to the white matter of the CST in the RBP4:Cre/caMEK1 mice (Figures 29A - C, E). We found that the RBP4:Cre/caMEK1 mice had a significant increase in the amount of axonal innervation in the ipsilateral grey matter in relation to CST elongation (arborization/CST, control = 100.00% +/- 0.00 SEM, n=4, RBP4:Cre/caMEK1 = 206.83 +/- 24.59 SEM, n=4, p=0.015, Student’s t-test) (Figure 29H). These findings show that layer 5 specific hyperactivation of MEK1 leads to a reduction in the number of axons extending down the CST yet enhances the extent of innervation (per axon) in the grey matter of the spinal cord.

Having determined a layer V specific effect on CST elongation in the RBP4:Cre/caMEK1 mice, we next wanted to determine if a direct mutation in the RAS/MAPK pathway would phenocopy those results. For this we used the layer V glutamatergic specific RBP4:Cre mouse crossed with an NF1 mouse. The NF1 mouse produces a mutation in the NF1 gene that encodes neurofibromin which is a RasGAP upstream of MEK and ERK in the RAS/MAPK pathway. Neurofibromin is a GTPase-activating protein that is a negative regulator of Ras ultimately causing an upregulation in ERK/MAPK signaling. CST elongation in the RBP4:Cre/NF1 mouse was also significantly reduced as measured in the lumbar spinal cord (Figures 30J - K, M - O). These results indicate a substantial reduction in the elongation of the CST due to the hyperactivation of MEK1 or the knock-out of NF1 selectively in cortical layer V glutamatergic neurons.
Corticospinal tract elongation is decreased but corticospinal axonal innervation is increased in layer V specific MEK1 hyperactivation. Axonal innervation of corticospinal tract elongation and innervation analysis was performed on cross sections of RBP4Cre/caMEK1 (D-F) and control mice (A-C) cervical spinal cords. High resolution confocal microscopy shows a reduction of corticospinal axonal elongation in the dorsal funiculus of the RBP4Cre/caMEK1 (F) when compared to control mice (C). Increased axonal innervation of spinal cord gray matter was detected RBP4Cre/caMEK1 mice when compared control mice (B, E) (scale bars = A,D=200µm, B,E=50µm, D,F=20µm n=4, dh = dorsal horn, df = dorsal funiculus, iz = intermediate zone, vh = ventral horn). Quantification of corticospinal tract elongation revealed a significant reduction in the RBP4Cre/caMEK1 mice when compared to control mice (labeling/%CBT, RBP4:Cre/caMEK1 26.23% +/- 1.69% SEM, n=4, controls = 45.62% +/- 7.01% SEM, n=4, p=0.036, Student’s t-test) (G).
Corticospinal tract elongation is decreased but corticospinal axonal innervation is increased in layer V specific MEK1 hyperactivation. Axonal innervation of spinal cord gray matter revealed an increase in the RBP4Cre/caMEK1 mice when compared to control mice (axonal arborization/CST, % of control, RBP4Cre/caMEK1 = 206.83% +/- 24.59% SEM, n=4, control = 100.00% +/- 0.00% SEM, n=4, p-value ≤ 0.0148) (H). Axonal innervation of RBP4:Cre/NF1loxp/loxp revealed a similar reduction in CST innervation in the CBT in the hind brain (I and L), and the dorsal funiculus of the cervical spinal cord (J and M). Additionally, the dorsal funiculus of the lumbar spinal cord also showed a reduction of elongation (K and N) (LEI - n=?). CST labeling of the lumbar spinal cord was significantly reduced when measured as a % of the CBT (O).
Corticobulbar tract axonal extension and hindbrain innervation not affected in the RBP4Cre/caMek1 mice. Confocal imaging of the corticobulbar tract and axonal innervation of the hind brain revealed little to no differences between the RBP4Cre/caMek1 (D-F) and control mice (A-C) (scale bars, A,D=500µm, B,E=100µm, C,F=50µm). Quantification of tdTomato labeled axons in the corticobulbar tract revealed no significant differences between the RBP4Cre/caMek1 and control mice (CBT labeling/tdTomato labeled neuron, RBP4Cre/caMek1 = 319.38 ± 77.74 SEM, n=4, control = 298.46 ± 38.95 SEM, n=4, p=0.818, Student’s t-test) (H). Axonal innervation of the hind brain also revealed no significant differences between the RBP4Cre/caMek1 and control mice (innervation factor, RBP4Cre/caMek1 = 4366.57 ± 742.36 SEM, control = 5061.28 ± 1103.85 SEM, n=4, p=0.620, Student’s t-test) (I).
Hyper-activation of ERK/MAPK in layer V excitatory neurons significantly reduces contralateral axonal innervation and contralateral striatal innervation

By using a layer V specific mouse model to hyperactivate MEK1, we expected to find little to no change in the axonal projections and branching patterns in the contralateral primary motor cortex and contralateral dorsal striatum. To test this, we analyzed high resolution confocal images of serial sections of the forebrains of the AAV:CAG-Flex-tdTomato injected P30 RBP4:Cre/caMEK1 and control mice. Axonal labeling was measured in the primary motor cortex and the dorsal ventral to medial ventral area of the striatum. These measurements were normalized to the area measured and the number of transfected cells in the contralateral injection site.

As in the NexCre/caMek1 mice, we controlled the injection area in both the rostral-caudal and medial-lateral position (Figure 32A-B). Labeled cell counts in the primary motor cortex of the injected hemisphere showed no significant differences between the RBP4Cre/caMEK1 and control mice (labeled cells, RBP4Cre/caMEK1 = 96.30 ± 10.38 SEM, n=5, control = 85.60 ± 6.12 SEM, n=5, p=0.400, Student’s t-test) (scale bars = 500µm) (Figure 32C). Contralateral cortical innervation labeling in the RBP4:Cre/caMEK1 mice was significantly reduced when compared to control mice (axonial labeling/transduced cell, RBP4Cre/caMEK1 = 173.21 ± 15.20 SEM, n=5, control = 234.83 ± 14.69 SEM, n=5, p=0.019, Student’s t-test) (Figures 33D, G, H, K, M). Contralateral dorsal striatum labeling was also significantly reduced in the RBP4:Cre/caMEK1 mice when compared to controls (axonial labeling/transduced cell, RBP4Cre/caMEK1 = 89.54 ± 18.69 SEM, n=5, control = 189.82 ± 20.67 SEM, n=5, p=0.007, Student’s t-test) (Figures 33 - F, I, J, N). These results indicate that ERK/MAPK is necessary for corticocortical and corticostriatal innervation by cortical layer V glutamatergic axonal extensions irrespective of all other cortical layers.
Corticocortical and corticostriatal innervation and branching is reduced in a layer V autonomous manner. To analyze corticocortical and corticostriatal innervation and branching, \textit{RBP4Cre/caMEK1} and control mice were injected at P1 in the primary motor cortex with an AAV: \textit{CAG-Flex-tdTomato}. Contralateral primary motor cortex and dorsal striatum were analyzed at P30 to determine the amount of labeling in axonal innervation and branching. Injection locations were controlled in both the medial-lateral and rostral-caudal positions (A-B) (scale bars = 500µm). Labeled cell counts in the primary cortex region showed no significant differences between the \textit{RBP4Cre/caMEK1} and control mice (labeled cells, \textit{RBP4Cre/caMEK1} = 96.30 ± 10.38 SEM, n=5, control = 85.60 ± 6.12 SEM, n=5, p=0.400, Student’s t-test) (scale bars = 500µm) (C).
Corticocortical and corticostriatal innervation and branching is reduced in a layer V autonomous manner. Representative samples of diminished tdTomato labeling in the contralateral cortex and dorsal striatum of the RBP4Cre/caMEK1 mice (H-K) compared to control mice (D-G) (scale bars = D,E,H,I = 500µm, F,G,J,K=150µm, n=5, M1 = primary motor cortex, st = striatum). A significant reduction of tdTomato labeled axons from contralateral layer V glutamatergic neurons was detected in the cortex of the RBP4Cre/caMEK1 mice when compared to controls (axonal labeling/transduced cell, RBP4Cre/caMEK1 = 173 ± 15.20 SEM, control = 235.00 ± 14.69 SEM, n=5, p=0.019, Student’s t-test) (M). A significant reduction was also detected in the dorsal striatum of the RBP4Cre/caMEK1 (axonal labeling/transduced cell, RBP4Cre/caMEK1 = 90.00 ± 18.69 SEM, control = 190.00 ± 20.67 SEM, n=5, p=0.007, Student’s t-test) (N).
**ARC protein levels are selectively affected by MEK1 hyperactivation in layer V cortical glutamatergic neurons**

Having detected reduced levels of ARC in all glutamatergic neurons in the *NexCre/caMek1* mice cortices, we wanted to see if the effects of hyperactivating MEK1 solely in layer V or if there is an effect on other layers also.

IHC analysis of basal state *RBP4:Cre/caMEK1* mice revealed a localized down-regulation of ARC protein detected in layer V when compared to control mice (Figure 34A-F). These data show that hyperactivating MEK1 solely in layer V glutamatergic neurons has little to no effect on ARC detection in other layers.
ARC levels reduced specifically in layer V glutamatergic neurons in the 
*RBP4Cre/caMEK1* mice. Immunostaining of adult cortex revealed a specific and 
marked reduction of ARC levels in layer V glutamatergic neurons in the 
*RBP4Cre/caMEK1* mice (D-F) when compared to controls (A-C) (scale bars = 
200µm).
MEK1 hyperactivation in layer V cortical glutamatergic neurons is not sufficient to disrupt skilled motor learning

In the behavioral analysis of the NexCre/caMek1 mice, we found that hyperactivation of MEK1 in all glutamatergic neurons of the cortex led to disruption of motor skill learning and acquisition. Here we wished to determine if the RBP4:Cre/caMEK1 mice would exhibit the same deficits in motor learning acquisition as the NexCre/caMek1 mice did.

Like the NexCre/caMek1 mice, the RBP4:Cre/caMEK1 mice also displayed no overt physical defects other than a smaller size than wild-type mice. However, since the RBP4 Cre recombinase is active in liver hepatocytes and adipose tissue (Thompson et al. 2017), the RBP4:Cre/caMEK1 mice were in some cases much more sensitive to the standard food restriction paradigm. In the case of the RBP4:Cre/caMEK1 and their control mice, food restriction was changed to allow free-feeding for 6 hours per day approximately 3-4 hours after behavioral testing. This allowed the mice to maintain a healthy body weight and helped prevent any health issues arising.

Open field testing of the RBP4:Cre/caMEK1 mice showed a significant decrease in overall distance traveled when compared to control mice (cm traveled, controls = 2818.77cm +/- 132.28 SEM, n=19, RBP4:Cre/caMEK1 = 2069.23cm +/- 228.61 SEM, n=12, p=0.005, Student’s t-test) and a significant difference in percent center time (control = 26.46% ± 22.50% SEM, n=19, RBP4Cre/caMEK1 = 14.36% ± 1.68% SEM, n=, p=0.001 Student’s t-test) (Figure 35G). In the accelerating rotarod test however, the RBP4:Cre/caMEK1 mice displayed no significant difference from the control mice in either overall performance or motor skill acquisition and learning in the five-day trial (genotype x latency to fall, [F(1,38)=0.237, p=0.629], repeated measures ANOVA) (Figure 35H). Over the course of the trial, both the
BP4Cre/caMek1 and control groups made significant improvements (RBP4Cre/caMek1 45.02secs ± 8.58 SEM to 75.80secs ± 8.29 SEM, [F(1,11)=12.501, p=0.005, n=12, controls = 40.85secs ± 6.51 SEM to 70.59secs ± 6.73 SEM, [F(1,27)=19.943, p<0.005, n=18, repeated measures ANOVA) (Figure 35H).

In the skilled reaching and grasping task, the RBP4:Cre/caMEK1 mice also performed as well as the control mice as measured by the increase in successful attempts over the course of the trial (retrievals/overall attempts, RBP4Cre/caMek1 = 17.44% ± 4.43 SEM to 35.94% ± 5.50 SEM, [F(1,11)=5.275, p=0.042], n=12, controls = 20.67% ± 3.69 SEM to 32.33% ± 5.51 SEM, [F(1,13)=8.641, p=0.011], n=14, ANOVA) (Figure 35I). In measurements of drop rate and miss rate however, only the RBP4Cre/caMek1 made a significant improvement in reducing the rate of dropped pellets (drop/overall attempts, RBP4Cre/caMek1 = 12.21% ± 3.79 SEM to 3.13% ± 1.43 SEM, [F(1,11)=9.607, p=0.010], n=12, ANOVA) (Figure 35J).

These results indicate that layer V specific hyperactivation of MEK1 in glutamatergic neurons is insufficient to disrupt motor skill learning and acquisition. However, open field testing alone indicates a deficit in voluntary locomotor activity and the possibility of an anxiety-like phenotype.
ARC levels reduced specifically in layer V glutamatergic neurons in the 
\textit{RBP4Cre/caMEK1} mice. Open field testing revealed a significant difference in total distance traveled between \textit{RBP4Cre/caMek1} and control (controls = 2818.77cm ± 132.28 SEM, n=19, \textit{RBP4Cre/caMek1} = 2069.23cm ± 228.61 SEM, n=12, p=0.005, Student’s t-test) and a significant difference in percent center time (control = 26.46% ± 22.50% SEM, n=19, \textit{RBP4Cre/caMek1} = 14.36% ± 1.68% SEM, n=12, p=0.001 Student’s t-test) (G). Rotarod performance revealed no significant differences between the \textit{RBP4Cre/caMek1} and control groups (genotype x latency to fall, \[F(1,38)=0.237, p=0.629\], repeated measures ANOVA). Both the \textit{RBP4Cre/caMek1} and control groups made significant improvements over the course of the trial (latency to fall, \textit{RBP4Cre/caMek1} = 45.02secs ± 8.58 SEM to 75.80secs ± 8.29 SEM, \[F(1,11)=12.501, p=0.005\], n=12, control = 40.85secs ± 6.51 SEM to 70.59secs ± 6.73 SEM, \[F(1,27)=19.943, p<0.005\], n=18, ANOVA) (H). In the skilled reaching and grasping task, no significant differences were found between the \textit{RBP4Cre/caMek1} and control groups (genotype x success rate, \[F(1,24)=0.050, p=0.825\]) (I). Both the \textit{RBP4Cre/caMek1} and control groups made significant improvements in their success rates over the course of the trial (success rate, \textit{RBP4Cre/caMek1} = 17.44% ± 4.43 SEM to 35.94% ± 5.50 SEM, \[F(1,11)=5.275, p=0.042\], n=12, controls = 20.67% ± 3.69 SEM to 32.33% ± 5.51 SEM, \[F(1,13)=8.641, p=0.011\], n=14, ANOVA) (I – J). In measurements of drop rate and miss rate, only the \textit{RBP4Cre/caMek1} made a significant improvement in reducing the rate of dropped pellets (\textit{RBP4Cre/caMek1} = 12.21% ± 3.79 SEM to 3.13% ± 1.43 SEM, \[F(1,11)=9.607, p=0.010\], n=12, ANOVA) (J).
Discussion

The ERK/MAPK signaling pathway is perhaps the most studied cellular signaling pathway to date. The majority of this research however has been performed in the context of cancers and specific cell types in culture. In the field of neurodevelopment and neurodevelopmental syndromes however, there is a lack of knowledge regarding the effects of aberrant ERK/MAPK signaling. This absence is particularly noticeable concerning the formation and maintenance of cell-type specific connectivity under normal and syndromic conditions. In this study, we have identified the effects of hyperactivating MEK1 in the ERK/MAPK signaling pathway on the development of cortical glutamatergic axonal outgrowth and plasticity associated genes and its effect on motor learning. Furthermore, we have also identified a cortical layer autonomous effect on cortical axonal projections and innervation patterns, ARC expression, and motor learning acquisition. Interestingly, when MEK1 is hyperactivated in glutamatergic neurons across all layers of the cortex, we detect similar deficits with corticocortical, corticostriatal, and corticospinal axonal projections and innervation as when MEK1 hyperactivation is restricted to only layer V cortical glutamatergic neurons. In contrast to these projection deficits, we find a deficit in motor learning acquisition with cortex wide MEK1 glutamatergic hyperactivation whereas no motor learning deficit was detected in layer V specific MEK1 hyperactivation.

Key synaptic plasticity and immediate early gene ARC is downregulated

Interestingly, when MEK1 was hyperactivated in layer V glutamatergic neurons in the RBP4:CRE/caMEK1 mice, the reduction of ARC expression was isolated to only those glutamatergic neurons located in cortical layer V. This cell and layer autonomous effect shows that the reduction of ARC levels is a direct
consequence of the reduction of P-ERK1/2 levels and the \textit{RBP4:CRE/caMEK1} cell specific mutation.

\textit{Long range axonal connectivity is disrupted}

We previously found deficits in axonal elongation of the cortico-spinal tract and arborization in the gray matter of the spinal cord and the hindbrain in the \textit{Nex:CRE/caMEK1} mice (Xing et al. 2016). Additionally, we found significant deficits with corticocortical and corticostriatal innervation, deficits in motor learning acquisition, and a cell-autonomous effect in the down-regulation of ARC. Due to this cell-autonomous effect, we began address a layer specific hyperactivating mutation on axonal projections of cortical layer 5 glutamatergic neurons independent of any other cortical layers excitatory or inhibitory effects. The \textit{RBP4:CRE/caMEK1} mice were subjected to the same AAV injection scheme and analysis controls as the \textit{Nex:CRE/caMEK1} with the CRE-dependent tdTomato expressing AAV injected at P1 in one hemisphere of the primary motor cortex and analysis performed at P30. Analysis of CST extension and innervation of the cervical spinal cord showed a very similar and significant deficit in axonal elongation coupled with an increased amount of innervation in the spinal cord gray matter. Interestingly, a mouse model of NF1 also expressed a significant deficit in CST axonal extension as measured in the lumbar spinal cord. As NF1 is an activating mutation resulting in an overall increase in GTP bound RAS (Katherine A. Rauen 2013), this finding served to reinforce the results of both the \textit{Nex:CRE/caMEK1} and \textit{RBP4:CRE/caMEK1} mouse models.

We next investigated the contralateral axonal innervation of the contralateral cortex and dorsal striatum and the gray matter axonal innervation in the hind brain of the \textit{RBP4:CRE/caMEK1} mice. Unlike the \textit{Nex:CRE/caMEK1}, the \textit{RBP4:CRE/caMEK1} mice displayed no changes in either cortico-bulbar tract extension or axonal gray
matter innervation when compared to control mice as had been previously found. Axonal innervation of the contralateral cortex though revealed a significant reduction of axonal innervation and branching as did the dorsal striatum. These results again showed that the caMEK1 mutation expressed in a single layer, layer 5 in this instance, acts in an autonomous fashion in regard to axonal extension, innervation, and branching. Nevertheless, in order to determine a probable cause of the hind brain innervation differences between the Nex:CRE/caMEK1 and the RBP4:CRE/caMEK1 mice, more work will be necessary.

Motor learning acquisition is disrupted

Unlike the Nex:CRE/caMEK1 mice, the RBP4:CRE/caMEK1 showed a significant deficit in voluntary movement over the course of the test as measured by total distance traveled. While the Nex:CRE/caMEK1 appeared unhindered in locomotor function, the RBP4:CRE/caMEK1 appeared to lack either motivation or perhaps had an unknown impairment. However, much unlike the Nex:CRE/caMEK1 mice, the RBP4:CRE/caMEK1 revealed no differences from control mice over the course of the accelerating rotarod test. This indicated that the performance of the RBP4:CRE/caMEK1 mice in the open field test was not due to a motor or physical impairment. Both groups, the RBP4:CRE/caMEK1 and control mice, also showed a significant level of improvement over the course of the test indicating the ability to acquire the motor skills needed to perform this task.

In the skilled reaching and grasping task, the RBP4:CRE/caMEK1 mice again revealed no differences from control mice. The RBP4:CRE/caMEK1 and control mice both showed significant increases in their success rates and the RBP4:CRE/caMEK1 mice also significantly decreased their drop rate. These results indicated that a layer 5 specific MEK1 hyperactivation had no effect on motor learning acquisition.
The combined results from the *Nex:CRE/caMEK1* and the *RBP4:CRE/caMEK1* shows that RAS/MAPK signaling plays an important bi-directional and cortical projection neuron autonomous role in axonal outgrowth and motor learning *in vivo*. Furthermore, cortical layer 5 specific RAS/MAPK mutants exhibit no change in motor learning, indicating behavioral plasticity depends upon RAS/MAPK expression in cortical projection neurons other than layer 5. Overall, our research suggests that the pathogenesis of cognitive deficits in RASopathies involves changes in the development of neuronal connectivity and the expression of plasticity associated genes at an early stage of cortical formation and subsequent developmental stages.
Acknowledgments

We wish to thank Noah Fry, Becca Reinking-Herd, and Sarah Bjorklund, for their technical assistance.

Contributions

Viral and DiI injections:
  George Reed Bjorklund.

Tissue prep and Immunolabeling:
  George Reed Bjorklund, Sarah Bjorklund, and Becca Reinking-Herd.

Image analysis and quantitation:
  George Reed Bjorklund and Jason M Newbern.

Western Blotting:
  George Reed Bjorklund.

Experimental conception and design:
  George Reed Bjorklund and Jason M Newbern.

Behavioral analysis:
  George Reed Bjorklund, Colton Smith, and Kenji Nishimura

Drafting or revising the article:
  George Reed Bjorklund.
CHAPTER 5
CONCLUSION

Recent findings of diffusion tensor imaging (DTI) of major white matter (WM) tracts as well as functional magnetic resonance imaging (fMRI) in neurofibromatosis (NF-1) patients has highlighted connectivity issues within the RASopathies. These studies have allowed a non-invasive look into the composition, construction, and integrity of connectivity in normal and diseased brains. While these studies have shown major areas of connectivity disorganization in the brains of NF1 patients, they have not addressed the molecular causes at the root of these problems. Birchmeier and colleagues studied the effects of a constitutively active form of MEK1 in the myelinating cells of the peripheral nervous system, Schwann cells. They found that continuous MEK1 signaling was able to overcome the termination of myelin growth during development by protein synthesis stimulation (Sheean et al. 2014). The failure to terminate myelin growth in turn created a significantly increased amount of WM. Bansal and colleagues found similar results in the oligodendrocytes of the central nervous system by hyperactivation of MEK1 (Ishii et al. 2016). While this may explain the WM aberrations in DTI studies of NF-1 patients, either in part or in whole, it does not address connectivity issues or pathologies associated with the underlying axons themselves. In our studies, we have sought to address the cell-type specific contributions to the reported connectivity issues as well as the pathophysiology of the axons themselves within the WM tracts.

The RASopathies contain both loss- and gain-of function (LoF and GoF) mutations within the Ras/MAPK intracellular signaling pathway. In these in vivo mouse studies, we used both a MEK1/2 conditional knockout or a constitutively active MEK1 (caMEK1) construct activated in cortical glutamatergic neurons. As these
neurons provide long-range connectivity both within the cortex and sub-cortically, we were able to determine the effects of both LoF and GoF RAS/MAPK signaling in a cell-autonomous manner. In addition to cell-autonomous effects, we also analyzed cortical layer autonomous effects by inducing the GoF caMEK1 mutation solely in layer 5 glutamatergic neurons. We further moved to address behavioral and cognitive issues, particularly motor learning acquisition, as reported within the RASopathies with these mouse models.

Much like the referenced DTI and fMRI studies in NF1 patients, we found widespread aberrations in cortical and subcortical connectivity in addition to cell survival and behavioral deficits. In the LoF model, we found a significant cell-death phenotype most notably in cortical layer 5 CTIP2+ neurons as well as significant deficits in corticospinal tract (CST) elongation. In the cortex wide GoF in cortical glutamatergic neurons model, we found a surprising down-regulation of phosphorylated ERK1/2 (P-ERK1/2) in the soma and a high amount of P-ERK1/2 in the axons compared to controls. We additionally found significant deficits in corticocortical and corticostriatal axonal innervation, a significant deficit in CST elongation with hyperactivated innervation in spinal cord and hind brain gray matter, a reduction in the expression of immediate early gene (IEG) ARC, and a deficit in motor learning acquisition. When the GoF mutation was restricted to layer 5 glutamatergic neurons we also found significant deficits in corticocortical and corticostriatal axonal innervation, and a significant deficit in CST elongation with hyperactivated innervation in the spinal cord. However, we did not detect any changes in hind brain gray matter and the reduction in the expression of immediate early gene (IEG) ARC was restricted to layer 5 glutamatergic neurons. Furthermore, we detected no deficits in motor learning acquisition of the layer 5 specific GoF mutation mice.
Overall, this research shows that RAS/MAPK signaling plays an important bi-directional and cortical projection neuron autonomous role in axonal outgrowth and motor learning in vivo. These data suggest that the pathogenesis of cognitive deficits in RASopathies involves changes in the development of neuronal connectivity, but not neuronal number, at an early stage of cortical formation and the expression of plasticity associated genes during subsequent developmental stages.

Our LoF model used a CRE activated conditional knockout of MEK1/2 that was activated in post-mitotic neurons at approximately E11.5 due to embryonic lethality of germline mutations. In our study, we found that the initial complement of cortical glutamatergic neurons was fully intact at P1. At P3 we found a significant deficit in CST elongation. By P14 we found a significant amount of cell death most notably in layer 5 glutamatergic neurons. Analyzing the cell death at earlier time points we found a peak at approximately P5. This mutation however was lethal at about P21 so we were unable to further investigate connectivity, behavioral, or the cell death phenotypes in this model.

Our early discovery concerning deficits in CST elongation addressed partially the involvement of RAS/MAPK in axonal extension during this early developmental period. However, we were unable to observe RAS/MAPK signaling requirements or consequences in the period after development. To address this issue, we have designed experiments that creates a MEK1/2 LoF mutation in the primary motor cortex (M1) of one cortical hemisphere. With this model, we will be able to analyze axonal elongation of the CST as well as corticocortical and corticostriatal axonal projections and innervation. IEG expression will also be analyzed in dual expression labeling experiments of the affected neurons. Motor learning acquisition may not be able to be addressed due to the mono-hemisphere and single structure mutation, however, motor function will be assessed by analyzing the lateralization of motor
skills. Insights gained from these experiments will further add to our knowledge of RAS/MAPK LoF beyond early development.

Our GoF mouse model relied on the same post-mitotic activation of CRE to transcribe the caMEK1 construct. Unlike the LoF mice however, the GoF mice were viable and vital with the exception of a smaller size. This model allowed not only the identification of CST elongation deficits early in development but also the post-developmental P-ERK1/2 localization/expression phenotype, corticocortical and corticostriatal innervation deficits, and motor learning deficits.

One of the most surprising findings of the GoF analysis proved to be the apparent down-regulation of P-ERK1/2 in the bodies of the caMEK1 mutated neurons accompanied by an accumulation in the axons. This phenotype has not appeared in the known literature and the cause of it is a very interesting area for further research and possible therapeutic targets in the RASopathies. Two areas that would be of immediate promise to focus on for this phenotype would be axonal transportation mechanisms and P-ERK1/2 regulation. Retrograde transport of P-ERK1/2 from the distal axon to the nucleus is critical to evoke transcriptional programs and changes in development. Several phosphatases have been identified to deactivate P-ERK1/2 and their activities are thought to be compartment specific. We tested for one of the most commonly reported neuronal phosphatases but found no evidence of changes. This leaves the question of additional phosphatases that may be active and their compartmental specificity as well as transcriptional programs that control their expression.

Our in vivo connectivity analysis also confirmed the widespread WM aberrations and functional disorganization detected in DTI and fMRI studies in NF1 patients. Furthermore, these deficits were detected in a cell-autonomous manner within a biological system and may solely be a function of axonal dynamics. Much
further analysis however is needed to pinpoint the cause or causes of these connectivity issues. Due the many functions and cross-talk characteristics of the RAS/MAPK signaling pathway, there are many areas to be analyzed. A major area to address would be transcription programs affected by the apparent loss of somal P-ERK1/2. It is thought that the disorganization seen in the DTI studies may be a function of loosely packed or non-fasciculated axons. This may indicate the loss of cellular adhesion and-or pathfinding molecules needed by the axons during elongation and growth. Additionally, the build-up of P-ERK1/2 in the axonal compartment is also a major consideration in axonal elongation and innervation during development. P-ERK1/2 interactions with MAP1B and TAU serve to stabilize microtubules and neurofilaments. However, axonal elongation and branching rely on the dynamic actions of de-stabilization and stabilization. Therefore, the accumulation of P-ERK1/2 in the axons may in fact be causing a scenario of over stabilization interfering with growth cone and axonal branching dynamics. There are several different aspects within these identified phenotypes that need further investigation to identify.

The cortex-wide expression of the caMEK1 mutation in glutamatergic neurons also affected motor learning acquisition. We also detected a significant down-regulation of ARC which is known to play an important role in synaptic plasticity. Whether the deficits in motor learning are a consequence of ARC down-regulation or due to a loss in axonal innervation is unknown at this point. Western Blot results of whole cortical lysates show a significant reduction of ARC in the Nex:Cre/caMEK1. Immunostaining for ARC confirms this reduction and it appears that the majority of ARC loss is in the neuronal bodies of glutamatergic neurons. Additionally, while ARC expression is still detected in the dendritic compartments, it is unclear at this point if those are the dendrites of the mutated glutamatergic neurons. Glutamate activation
of NMDA and AMPA receptors in the post-synaptic density are required for Arc induction and Arc regulation respectively. NMDAR activation leads to Arc transcription through several signaling pathways including the RAS/MAPK pathway. Arc transcription can be further accelerated through BDNF/TRKB activation. Nuclear transportation of ERK-phosphorylated ARC however acts in the down-regulation of Arc transcription by inhibiting GluA1 transcription and in turn AMPAR activation. This NMDAR activating and AMPAR inhibition is required to mediate changes in synaptic competence and regulate homeostatic scaling required for learning and memory (Epstein and Finkbeiner 2018). Here we have detected a decreased level of both P-ERK1/2 and the IEG ARC in the soma and nuclear spaces. The lack of both these of these proteins could lead to a drastic down-regulation not only of Arc induction, but all other immediate early genes that rely on the same transcriptional program. Our previous study analyzed differential gene expression of the Nex:Cre/caMEK1 and control mice (Xing et al. 2016). In that study, we found no evidence of differential RNA expression (greater than +/-1.5 fold change in mutants vs controls) in neurotrophins or their receptors (Appendix D, Table 2) (Xing et al. 2016). This however does account for post-translation modifications or actual protein levels for each transcript. Further work is necessary to determine the cellular mechanisms responsible for the lack of nuclear and cytosolic ARC as well as neurotrophins and their receptors.

In addition to the cell-autonomous deficits that we identified in the GoF model, we also identified a cortical layer autonomous effect. When the caMEK1 mutation was applied solely to layer 5 glutamatergic neurons we found similar deficits in long-range connectivity. Significant deficits were identified in corticocortical and corticostriatal axonal innervation, CST elongation deficits, and hyperinnervation of the spinal cord gray matter but no changes of axonal innervation
in the hind brain. ARC expression levels were also reduced but the reduction was isolated to solely glutamatergic neurons in cortical layer 5. No deficits in motor learning acquisition in the layer 5 GoF mice were detected indicating behavioral plasticity depends upon RAS/MAPK signaling in cortical projection neurons other than layer 5.

These combined data show the cell-type specific and layer specific phenotypes associated with the RASopathies. Future studies to analyze cell-cell interactions would also help to identify the effects of RAS/MAPK signaling in connectivity and system communications. This would entail adding the GoF MEK1 mutation to additional cell types. For example, introducing the hyperactivating MEK1 mutation in inhibitory neurons would affect the excitatory-inhibitory balance of the cortex. However, how this would affect connectivity or plasticity is unknown. The same could be said of oligodendrocytes. Would the hyperactivating mutation in glutamatergic cells and oligodendrocytes change the conclusions of these current studies? Would these interactions afford the opportunity for RASopathy targeted interventions?

A major question that arises in the RASopathies is: What are the differences in RAS/MAPK signaling requirements in and after development? To take that even further: What points in development are more or are less dependent on RAS/MAPK signaling functions? Currently the spatial and temporal dynamics of the consequences of RAS/MAPK signaling are not fully understood in the development of a biological system. Another very important question for the RASopathies is not only at what point in development should we intervene, but at what point can we intervene? The developmental trajectory of the mouse models we use and that of a human are very different. These problems that we have identified in post-natal mouse development are mostly completed in human development during the second trimester of pregnancy. This leads to a very important question of how to treat the
disease after development. As we have identified an apparent down-regulation effect of P-ERK1/2 in neuronal cell bodies, is it still wise to treat a heart condition with MEK inhibitors in a RASopathy patient? While there is much further work to do to pinpoint causes of the molecular phenotypes we have shown here, there is also that many more areas of intervention to explore. For example, instead of a MEK1 inhibitor for a GoF mutation, is there a target that can be manipulated to fix axonal transport to release P-ERK1/2 to the soma? Or can MAP1B and TAU be intermittently destabilized to promote axonal branching or improve synaptic plasticity? Currently, management of the RASopathy diseases are to treat their manifestations. These studies have presented on the cellular level several possible manifestations to treat.
REFERENCES


151


George Reed Bjorklund

Arizona State University
School of Life Sciences
427 East Tyler Mall, LSE 317
Tempe, AZ 85287
gbjorklu@asu.edu
Permanent Address
4185 West Harrison Street
Chandler, AZ 85226
reed.bjorklund@gmail.com

Education

Molecular and Cellular Biology PhD
Arizona State University - Tempe, AZ
Expected completion Oct. 2018
Current Degree GPA – 3.94

Molecular and Cellular Biology MS
Arizona State University - Tempe, AZ
Completed May 2015

Molecular Biosciences and Biotechnology
Arizona State University - Tempe, AZ
Completed May 2011
Awarded Outstanding MBB Student of the Year 2010-2011
Graduated Magna cum Laude

A.A.A.S. Computer Aided Drafting and Design
Miller Institute/ITT Technical Institute
Completed Dec 1984

Experience

Graduate Research Assistant:

School of Life Sciences, ASU, Newbern Lab
Jan. 2014 - Present

- Developed a laboratory specific RNA isolation and enrichment protocol based on the “Ribotag” procedure to assess differential gene expression in RASopathy models.
- Performed protein expression analysis in embryonic, neo-natal, and mature models of neurodevelopmental disease using IHC and Western Blotting techniques.
- Performed axonal tract tracing experiments in models with neurodevelopmental disease to assess spinal cord innervation and axonal branching patterns in in the forebrain, midbrain, hindbrain, and the spinal cord.
- Executed and maintained breeding programs for a variety of genetically modified mouse models used in developmental neuroscience research.
- Assisted in the start-up and operation of the laboratory as well as the continuing activities of the lab.
Center for Infectious Diseases and Vaccinology, Mason Lab

- Continued working on the Ebola GP1 fusion protein by augmenting the expression cassette with an RNA silencing suppressor, p19, and a chaperone protein, calreticulin, to improve the plant-based production of human proteins of interest.
  Patent issued: (WO2012145759) METHODS OF PROTEIN PRODUCTION AND COMPOSITIONS THEREOF
- Began a viral silencing project that would target individual transcription factors to abrogate or delay the cell death response caused by ER stress in plant cells while producing human proteins of interest.
- Taught and assisted intern students in laboratory protocol, safety, and procedures.
- Handled all laboratory purchasing and supply maintenance needs as well as the infrastructure of the laboratory to maintain a working environment.

Undergraduate Research Internship:
Center for Infectious Diseases and Vaccinology, Mason Lab
Dec. 2009 - May 2011

- Worked on the expression of Ebola coat protein/IgG fusion protein produced in plants to be used as vaccines against the Ebola virus.
- Learned and implemented various laboratory techniques used in recombinant DNA production and viral transfection of plants for protein production.

Teaching Assistant:

BIO 351: Developmental Biology Fall 2017
- Assisted in the lecture course teaching the principles of developmental biology, including the development of major organ systems and their cellular and molecular mechanisms.
- Held bi-weekly office hours to aid students in learning objectives. Proctored lecture exams. Assisted professors as needed with all aspects of course work.
- Graded quizzes and learning modules. Assisted in preparing and grading course exams.

BIO 201: Human Anatomy/Physiology I Fall 2015
- Taught the histology, location and general function of human anatomical structures using computer visualizations, human models, cadavers, and animal specimens.
- Created weekly quizzes, created and administered laboratory practical exams, and proctored lecture exams.
- Graded all quizzes, practical exams, and student experimental reports.

Animal Physiology Laboratory Fall 2014
- Taught experimental lab studies of the physiological mechanisms in animals and model systems.
- Taught basic scientific report writing and assessed student’s reports.
- Created and administered weekly quizzes as well as the final exam for the course.
MIC 206: Microbiology Laboratory     Fall 2011, Spring/Summer 2012, Summer 2013
• Taught laboratory principles and basic techniques for microbiology including culturing, staining, light microscopy, and species identification.
• Created and assessed weekly quizzes.
• Assessed student tests and written reports.

MBB 343: Genetic Engineering                Fall 2012, Fall 2013
• Taught basic laboratory techniques and applications in molecular biology and genetic engineering.
• Prepped chemicals, organisms, and supplies used in all teaching labs for MBB 343.
• Aided and assessed students in scientific report writing.

MBB 247: Principles of Molecular and Cellular Biology II                         Spring 2012
• Taught basic laboratory techniques and applications used in molecular biology labs
• Aided and assessed students in scientific report writing.
• Administered and graded weekly quizzes.

General Manager/Owner


• Started and incorporated an aerospace manufacturing facility in March of 1993. Operated until sale in March of 2005.
• Initiated and ran all aspects of the business including manufacturing engineering, quality control to ISO, AS, and customer specific specifications.
• Grew business from the ground-up to a multi-million-dollar entity employing up to 43 people running three shifts to service customers.
• Specialized in manufacturing complex aerospace hardware for OEMs such as Honeywell Aerospace, Allied Signal Aerospace, and TRW aerospace.
• Specialized in the manufacture of a variety of aerospace components used in aircraft, satellites, rockets, Space Shuttles, defense systems, and the International Space Station.

Previous work history can be provided upon request
Publications

Journal Articles:


Xing Lei, Rylan S. Larsen, George Reed Bjorklund, Xiaoyan Li, Yaohong Wu, Benjamin D. Philpot, William D. Snider, and Jason M. Newbern. "Layer Specific and General Requirements for ERK/MAPK Signaling in the Developing Neocortex." ELife. PMID:26848828 (2016).

Conference Abstracts and Poster Sessions:


Irina S, Bjorklund GR, Newbern JM, Smith BH. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee and human. Paper and poster session presented at: Neural Coding 2016: 12th International Workshop, University of Cologne; 2016 Aug 29 – Sep 2; Cologne, Germany.

Bjorklund GR, Newbern JM. ERK/MAPK signaling is critical for corticospinal axon morphology. Poster session presented at: Barrow Neurological Institute 2016 Neuroscience Symposium; 7 Jan 2016; Phoenix, AZ.


Service:

- School of Life Sciences New Grad Mentor - Assisted new students in getting their bearings in SoLS. 2017-2018
- Ask a Biologist – Community outreach answering biological questions posed by pre-K-12 students and teachers. 2011 – 2018
- Invited speaker for the Molecular and Cellular Biology and Microbiology annual graduate student retreat. Oct. 2017
- Neuroscience and Molecular and Cellular Biology Program Representative for SoLS Septennial Review. Apr. 2017
- ASU Graduate and Professional Student Association - Volunteer for grant reviews and teacher awards reviews. Sept. 2015 - 2017
- Graduate Association of Interdisciplinary Neuroscience Students (GAINS) Community outreach volunteer. 2017
APPENDIX B

Parvalbumin fast-spiking interneurons are selectively altered by pediatric traumatic brain injury
Parvalbumin fast-spiking interneurons are selectively altered by paediatric traumatic brain injury

Joshua Nichols1,2, George Reed Bjorildlund2, Jason Newbern2 and Trent Anderson1

1University of Arizona, College of Medicine – Phoenix, Phoenix, AZ, USA
2School of Life Sciences, Arizona State University, AZ, USA

Edited by: Ole Paulsen & Katalin Toth

Key points

- Traumatic brain injury (TBI) in children remains a leading cause of death and disability and it remains poorly understood why children have worse outcomes and longer recovery times.
- TBI has shown to alter cortical excitability and inhibitory drive onto excitatory neurons, yet few studies have directly examined changes to cortical interneurons.
- This is addressed in the present study using a clinically relevant model of severe TBI (controlled cortical impact) in interneuron cell type specific Cre-dependent mice.
- Mice subjected to controlled cortical impact exhibit specific loss of parvalbumin (PV) but not somatostatin immunoreactivity and cell density in the peri-injury zone.
- PV interneurons are primarily of a fast-spiking (FS) phenotype that persisted in the peri-injury zone but received less frequent inhibitory and stronger excitatory post-synaptic currents.
- The targeted loss of PV-FS interneurons appears to be distinct from previous reports in adult mice suggesting that TBI-induced pathophysiology is dependent on the age at time of impact.

Abstract

Paediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Traditionally, ongoing neurodevelopment and neuroplasticity have been considered to confer children with an advantage following TBI. However, recent findings indicate that the paediatric brain may be more sensitive to brain injury. Inhibitory interneurons are essential for proper cortical function and are implicated in the pathophysiology of TBI, yet few studies have directly investigated TBI-induced changes to interneurons themselves. Accordingly, in the present study, we examine how inhibitory neurons are altered following controlled cortical impact (CCI) in juvenile mice with targeted Cre-dependent fluorescence labelling of interneurons (Vglut:Cre/446 and PV:Cre/416). Although CCI failed to alter the number of excitatory neurons or somatostatin-expressing interneurons in the peri-injury zone, it significantly decreased the density of parvalbumin (PV) immunoreactive cells by 71%. However, PV:Cre/416 mice subjected to CCI showed a lower extent of fluorescence labelled cell loss. PV interneurons are predominantly of a fast-spiking (FS) phenotype and, when recorded electrophysiologically from the peri-injury
zone, exhibited intrinsic properties similar to those of control neurons. Synaptically, CCI induced a decrease in inhibitory drive onto FS interneurons combined with an increase in the strength of excitatory events. The results of the present study indicate that CCI induced both a loss of PV interneurons and an even greater loss of PV expression. This suggests caution is required when interpreting changes in PV immunoreactivity alone as direct evidence of interneuronal loss. Furthermore, in contrast to reports in adults, TBI in the paediatric brain selectively alters PV-FS interneurons, primarily resulting in a loss of interneuronal inhibition.

(Resubmitted 18 October 2017; accepted after revision 19 December 2017; first published online 15 January 2018)

Corresponding author: T. Anderson, University of Arizona, College of Medicine - Phoenix, 425 N 5th St, Phoenix, AZ 85004, USA. Email andenct@email.arizona.edu

Introduction

Children are one of the most at risk groups with respect to suffering a traumatic brain injury (TBI), with more than one in five children experiencing a TBI before reaching adulthood (Kraus et al. 1990; Bruns & Hauser, 2003). A TBI may range from mild to severe, although it will often lead to the development of lifelong cognitive and behavioural deficits (Caveness et al. 1979; Annegers et al. 1998; Barlow et al. 2000). Emerging evidence indicates that children have worse outcomes and take longer to recover than adults (Anderson & Moore, 1995; Schmidt et al. 2012; Cook et al. 2014). How TBI disrupts paediatric brain function and leads to the development of post-traumatic neurological disorders, such as post-traumatic epilepsy, remains unknown.

Disruption to cortical inhibition has been repeatedly implicated in the pathophysiology of numerous neurological disorders, including migraine (Palmer et al. 2003; Aurora et al. 2005), schizophrenia (Molloy et al. 2011; Lewis et al. 2012), epilepsy and seizures (Bromfield et al. 2006; Trevelyan & Schevon, 2013; Trevelyan et al. 2015), as well as the sequela that follow TBI. In adult animals, TBI has been shown to induce enhanced cortical excitability (Carron et al. 2016), as well as a loss of synaptic inhibition onto excitatory neurons and a decrease in expression of known markers for multiple subtypes of interneurons (Cantu et al. 2015). However, we have previously found that juvenile mice respond uniquely after TBI with a lack of generalized hyperexcitability (Godfrey et al. 2015; Nichols et al. 2015) and the presence of unique synaptic bursts following more severe TBI (Nichols et al. 2015). This suggests the pathophysiology of TBI in juvenile animals is distinct, at least in part, from adults. In children, TBI has been shown to disrupt brain function and maturation via mechanisms distinct from adult TBI (Anderson & Moore, 1995; Schmidt et al. 2012; Cook et al. 2014). GABAergic neurons play a critical role in cortical development and disruption of the immature inhibitory circuit can have severe effects long into adulthood (Wang & Kriegstein, 2009; Judson et al. 2016). However, the precise nature of the changes to interneurons and the inhibitory circuit induced by paediatric TBI is poorly understood. Even in the larger body of studies performed in adult animals, there is a paucity of direct examination of synaptic and cellular changes to cortical interneurons. In the present study, we directly examine how inhibitory interneurons in the cortex are altered in an animal model of paediatric TBI.

Cortical interneurons are a diverse population of cells with unique intrinsic and synaptic properties (Hensch, 2005; Yuste, 2005; Wonders & Anderson, 2006; Rudy et al. 2011). To examine for changes in the interneuron population, conventional approaches have often used cell type specific immunohistochemical markers. Parvalbumin (PV) and somatostatin (SST) immunohistochemical positive interneurons account for >70% of the interneuron population (Rudy et al. 2011) and have been implicated in the pathophysiology of TBI (Hunt et al. 2011; Cantu et al. 2015) and epilepsy (Caveness et al. 1979; Cossart et al. 2001; Jin et al. 2014). However, examination of immunohistochemical markers is unable to differentiate between a loss of immunoreactivity and overt cell death. Distinguishing between these two possibilities in interneurons is of particular importance to understanding the pathophysiology of TBI and potential interneuron targeted therapeutic interventions. Therefore, in the present study, we took advantage of the fact that almost all GABAergic interneurons selectively express vesicular GABA transporter (VGAT) (McIntire et al. 1997; Chaudhry et al. 1998; Wojcik et al. 2006). We examined the outcome of TBI in transgenic animals that express Cre recombinase under the control of the Vgat promoter (Vgat:Cre) (Vong et al. 2011) and a Cre-dependent red fluorescent protein reporter (CAG-loxp-STOP-loxp-tdTomato; hereafter referred to as Ai9) (Madisen et al. 2010) to ubiquitously label GABAergic neurons. Furthermore, we similarly investigated interneuron subtype specific changes using transgenic mice with PV-Cre-dependent activation of a green fluorescent protein reporter (CAG-loxp-STOP-loxp-ZsGreen1). Consequently, because the fluorescent proteins are expressed under the control of the strong and ubiquitous CAG promoter, we were able to directly
determine whether TBI induces an actual loss of interneurons and also examine for functional changes to cortical inhibition.

Juvenile mice were subjected to controlled cortical impact (CCI), which has previously been shown to induce a clinical relevant injury that effectively models a severe TBI (Brody et al. 2007; Hunt et al. 2009; Nichols et al. 2015). Combined with whole-cell patch clamp and fluorescence immunohistochemical (IHC) approaches, we quantified CCI-induced changes to cortical interneurons. Although CCI did not induce a general interneuron loss, in the peri-injury zone, a significant reduction in the expression of PV immunoreactivity was observed in fluorescence labelled interneurons. By contrast to similar experiments conducted in adults, no accompanying loss of SST expression was observed (Cantu et al. 2015). PV positive interneurons are predominantly of a fast-spiking (FS) phenotype (Hu et al. 2014). Despite TBI-induced loss of PV interneurons, electrophysiological recordings confirmed the presence of FS interneurons with intrinsic properties similar to those of control neurons. However, there was a marked decrease in inhibitory synaptic drive onto FS interneurons with an accompanying increase in the strength of excitatory synaptic events. Our data indicate that, in contrast to previous reports in adult animals, CCI in juvenile mice preferentially alters PV-FS cortical interneurons.

Methods

Ethical approval

All laboratory and animal experiments were conducted in accordance with NIH guidelines, were approved by the University of Arizona Institutional Animal Care and Use Committee and conform to the principles and guidelines of The Journal of Physiology (Grundy, 2015). Genetically modified mouse lines were bred in-house from commercially available strain (Jackson Laboratories, Bar Harbor, ME, USA). Specifically, VgatCre mice (B6.129S6-(FVB)-Slc32a1tm1(Utool)/J, #028862) have been characterized previously (Vong et al. 2011) and have Cre-recombinase directed to inhibitory GABAergic neurons. VgatCre mice were bred with Ai9 mice (Gt(Rosa)26Sor<tm1(cre,tdTomato)1Hze, #007909) allowing for the Cre-dependent expression of red-fluorescent protein (tdTomato) under the ubiquitious CAG promoter selectively in inhibitory GABAergic neurons. Similarly, Pv-Cre mice (B6.129P2-Prabh<tm1(Abr/My)/J, #008099) selectively express Cre recombinase in PV-expressing neurons (Hippchenmeyer et al. 2005) and were bred with Ai6 mice (B6.Cg-Tg(Rosa)26Sortm1(CAG-tdGFP)CrlHe, #007906) allowing for Cre-dependent expression of green-fluorescent protein (ZsGreen1) under the CAG promoter selectively in PV neurons.

CCI

Juvenile mice, at post-natal day (P)22, were subjected to a severe CCI as described previously (Hunt et al. 2009; Nichols et al. 2015). Animal temperature was maintained for the duration of surgery and until mice were ambulatory post-surgery. The skull was exposed with a midline incision and a 5 mm craniotomy was made over the right somatosensory region (lateral to the sagittal suture between bregma and lambda). Precaution was taken during the craniotomy not to disturb the underlying dura. A frontoparietal CCI (3 mm diameter tip, 3.0 m s⁻¹, 2 mm depth, 500 ms in duration) was performed using an electromagnetic cortical impactor (Hatteras Instruments, Cary, NC, USA). After the impact, the removed bone flap was placed over the site of injury and sealed with dental cement. Control animals were naïve because previous reports have found that a craniotomy alone may be sufficient to cause an inflammatory response and/or induce brain injury (Olesen, 1987; Cole et al. 2010).

Preparation of brain slices

We have previously shown that all animals subjected to CCI develop in vivo epileptic activity by 14 days after injury and that this is an effective time-point for examining pathophysiological network changes after TBI (Nichols et al. 2015). Accordingly, to examine for CCI-induced changes to the inhibitory network, mice were deeply anaesthetized by inhalation of isoflurane and decapitated on post-injury day (PID) 14–19. The brain was rapidly removed and coronal slices (350 μm thick) prepared on a vibratome (VT 1200; Leica, Nussloch, Germany) as described previously (Anderson et al. 2010; Nichols et al. 2015). Slices were obtained from the somatosensory cortex at the site of injury in CCI animals or from the corresponding control cortex in control animals. The site of CCI was readily identifiable in whole brain and slices as indicated by significant cavitation and tissue loss (Fig. 1). Initial harvesting of brain slices was performed in an ice-cooled (4°C) carbogenated (95% O₂, 5% CO₂) high sucrose solution containing (in mµl): 234 sucrose, 11 glucose, 26 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, H₂O, 10 MgSO₄·7H₂O and 0.5 CaCl₂·2H₂O. Slices were then incubated for 1 h at 32°C in carbogenated artificial CSF (acSF) containing (in mµl): 126 NaCl, 26 NaHCO₃, 2.5 KCl, 10 Glucose, 1.25 NaH₂PO₄·H₂O, 1 MgSO₄·7H₂O and 2 CaCl₂·H₂O (pH 7.4). Slices were then returned to room temperature before being individually moved to the recording chamber for whole-cell patch clamp recording.
**In vitro electrophysiological recording**

Coronal slices were prepared from CCI or control animals, placed in the recording chamber and submerged in flowing carbogenated aCSF heated to 32°C. Submerged slices were first visualized under 4x brightfield for identification of layer V cortex. For slices from impacted mice, recordings were made in the peri-injury zone within 700 μm of the injury-induced cavitation. Recordings from control slices were made in the corresponding cortex to the peri-injury zone of CCI animals. Whole-cell recordings were obtained from FS interneurons using an upright microscope (Axioexaminer; Carl Zeiss, Thornwood, NY, USA) fitted with infrared differential interference contrast (DIC) optics. Fast-spiking neurons were distinguished based on their current clamp firing behaviour (Kawaguchi & Kubota, 1997). The electrode capacitance and bridge circuit were appropriately adjusted. The series resistance (R_s) of neurons chosen for analysis was <20% of membrane input resistance and monitored for stability. Membrane potential was not corrected for a calculated 10 mV liquid junction potential. A Multiclamp 700B patch clamp amplifier (Axon Instruments, Union City, CA, USA) was used for both current and voltage clamp mode. Recordings were obtained at 32°C using borosilicate glass microelectrodes (tip resistance, 2-5 MΩ). For recording of excitatory events, electrodes were filled with an intracellular solution containing (in mM): 155 K-glucuronate, 4 KCl, 2 NaCl, 10 Hepes, 4 EGTA, 4 Mg ATP and 0.3 Na Tris. With a calculated E_L = −80 mV and a holding potential of −70 mV, excitatory events were isolated as inward currents. Pharmacological isolation was avoided to prevent induced hyperexcitability that would interfere with baseline measurements of synaptic activity. For recording of inhibitory events, a high-chloride intracellular solution containing was used containing (in mM):

70 K-glucuronate, 70 KCl, 2 NaCl, 10 Hepes, 4 EGTA, 4 Mg ATP and 0.3 GTP. This internal solution has been used previously (Anderson et al. 2015; Nichols et al. 2015) and shown to facilitate the detection of inhibitory events. The calculated E_Cl was −16 mV, resulting in inward GABA_A currents at a holding potential of −70 mV. Inhibitory events were pharmacologically isolated by bath application of kynurenic acid (2 mM).

**Whole-cell patch clamp analysis**

Data analysis was performed using pCLAMP (Axon Instruments, Sunnyvale, CA, USA) Prism (GraphPad, La Jolla, CA, USA) and MiniAnalysis (Synaptosoft, Decatur, GA, USA). Data are reported as the mean ± SEM. For the detection of spontaneous events and parameters, automated threshold detection was employed using MiniAnalysis and detected events were subsequently manually verified. Decay time was calculated as time from peak to reach 37% of the peak amplitude. Input resistance was calculated from the steady-state voltage response to the input of a 1 s, −30 pA current step. Firing frequency was calculated by the number of spikes elicited per current step (−150 pA to 300 pA steps, 1 s duration). Resting membrane potential was measured prior to induced current steps. Action potentials were induced by intracellular current steps (2 nA, 0.5 ms), repeated 10 times and averaged prior to analysis. Rheobase was measured as the minimum 50 ms long current step that induced an action potential and was assessed with current delivered in 5 pA increments.

**Immunohistochemistry**

PID 14 mice and age-matched control animals were deeply anaesthetized and perfused transcardially with 4%
paraformaldehyde/PBS essentially as described previously (Xing et al. 2016). Immunohistochemistry was performed using 60 μm free-floating vibratome sections. Brain sections were collected in PBS, blocked with 5% normal serum in PBS with 0.1% Triton X-100 and incubated with primary antibodies in blocking solution for 24–48 h at 4°C. The primary antibodies used in the present study were: mouse anti-NeuN (dilution 1:1000; Chemicon, Temecula, CA, USA), goat anti-PV (dilution 1:1000; PVG213; Swant, Swant, Wi, USA) and rabbit anti-SST-14 (dilution 1:1000; T4103; Peninsula Laboratories, Belmont, CA, USA). After rinsing, sections were then incubated with Alexa conjugated secondary antibodies (Invitrogen, Carlsbad, CA, USA) and 4',6-diamidino-2-phenylindole (DAPI) (dilution 1:2000; Roche, Basel, Switzerland) overnight at 4°C, rinsed three times in PBS, and mounted with Vectashield (Vector Laboratories, Inc., Burlingame, CA, USA). For biocytin filled neurons, sections were labelled with Alexa-488 conjugated streptavidin (dilution 1:1000; Jackson Immunoresearch, West Grovë, PA, USA) prior to rinsing and mounting.

Image acquisition and data analysis

Images were collected on a model SP5 (Leica) and a model 710 (Carl Zeiss) laser scanning confocal microscope using 10x or 20x objectives. Single fields were tiled together to generate high-resolution images of whole brain coronal sections. Images were corrected for contrast and brightness in Photoshop (Adobe Inc., San Jose, CA, USA). For the assessment of changes in neuron density, we defined a 350 μm wide region of interest (ROI) that extended across all cortical layers and was oriented perpendicular to the white matter. The ROI was positioned 3.15 mm lateral to midline on the injured hemisphere (i.e. over the lateral peri-injury site). For semi-automated assessment of Vgat-Cre/A9+ and NeuN+ cell density, single channel images from three separate sections were imported into ImageJ (NIH, Bethesda, MD, USA). Images were manually thresholded to optimize binary masking and the detection of immunofluorescent soma. To separate clearly overlapping soma, a watershed algorithm was applied. The analyse particle plugin was then employed using a minimal particle size of 70 pixels² (~50 μm²), which was chosen to enrich the detection of well labelled cell soma and to minimize counting cross-sectioned neurites (Ippolito & Eroghi, 2010; Xing et al. 2016) (Ippolito & Eroghi, 2010; Xing et al. 2016). For the analysis of the less abundant PV- and SST-expressing neurons, area and number were manually determined in Photoshop. To determine density, the number of labelled neurons was recorded and divided by the area of tissue within the ROI. Density values were then averaged across three sections per animal. The results from this analysis were averaged using the data from at least three independent mice originating from separate litters per condition. For sholl analysis, 100 μm wide regions, covering all cortical layers, were positioned serially beginning with the edge of the injury site. Data are reported as the mean ± SEM. Statistical significance was tested with a one-way ANOVA with Tukey’s multiple comparison test or Student’s t test (paired or unpaired). P < 0.05 was considered statistically significant.

Results

To examine TBI-induced changes in the cortical inhibitory neuronal population, we performed unilateral CCI injuries on juvenile (P22) Vgat-Cre/A9+ mice. As previously described, animals were given 14 days to recover before further experimentation because this was the earliest time-point by which all juvenile animals subjected to CCI reliably showed spontaneous epileptic activity (Nichols et al. 2015). By P14, animals subjected to CCI showed marked cavitation and tissue loss at the site of injury (Fig. 1). Despite the significant tissue loss at the site of the CCI injury, no significant change in the thickness of the cortex was observed in the peri-injury zone (control: 1219.27 ± 22.10 μm; CCI: 1093.83 ± 56.33 μm) (P = 0.13) (n = 3).

Inhibitory interneuron (A9) cell density was unchanged after CCI

To quantify CCI-induced changes in different populations of cortical neurons, we performed IHC staining using the neuron specific marker NeuN or examined tdTomato labelled interneurons in transgenic mice (Vgat-Cre/A9). First, utilizing counts of the NeuN positive cells, we observed that CCI induced no significant change in neuronal density in the peri-injury zone (control: 2321.1 ± 106 cells mm⁻²; CCI: 2212.7 ± 74 cells mm⁻²) (Fig. 2) (P = 0.15). Next, we were able to directly examine for CCI-induced changes in the interneuron population by taking advantage of the select Vgat-Cre-dependent expression of tdTomato (A9) in interneurons. Similar to the NeuN findings, we observed no significant difference in tdTomato⁺ cell density between control and CCI mice (control: 471.7 ± 29 cells mm⁻²; CCI: 434.6 ± 39 cells mm⁻²) (P = 0.49) (Fig. 2). These experiments determined that, 14 days after a CCI in the juvenile brain, there is no significant change in the density of either total excitatory or inhibitory neurons within the peri-injury zone. VgAT is reported to be expressed in 99% of all cortical interneurons (McIntire et al. 1997; Chaudhary et al. 1998; Yong et al. 2011) and the use of a Vgat-Cre/A9 transgenic mouse allowed us to directly examine for changes in the global interneuron population without confounds related to alterations in the expression of typical
immunological targets. However, cortical interneurons are a mixed population of neurons with numerous subtypes and unique physiological roles (Gupta et al. 2005; Markram et al. 2004). One effective method for segregating interneuron subtypes is based on the gene expression pattern (Rudy et al. 2011). Specifically, in the cortex, the two most common interneuron subtypes express either PV (40–50%) or SST (~30%) (Markram et al. 2004, Rudy et al. 2011). Having established a global cortical interneuron loss following CCI, we next investigated whether CCI induced changes in select interneuron subtypes by examining the expression of PV and SST.

Selective loss of PV expression following CCI

To examine for TBI-induced changes in PV expression, we used an immunohistochemical approach and again performed CCI in juvenile Vgat::Cre/Alb9 mice. By contrast to tdTomato labelled interneurons where we observed no significant change, CCI induced a dramatic reduction in the number of cells that express PV (Fig. 3A). Specifically, CCI significantly reduced the density of neurons positively labelled by anti-PV antibody by >71% in the peri-injury zone (32.2 ± 5 cells mm⁻²) compared to control (110.4 ± 5 cells mm⁻²) (P < 0.0001) (Fig. 3A and B). Finally, to investigate whether the CCI-induced loss of PV expression was correlated with distance from the site of the injury, we examined the number of PV-expressing neurons within 100 μm ROIs (bins) extending even further to 1 mm lateral from the edge of the injury. The loss of PV expression induced by CCI was significantly greater near (<300 μm) the injury site (P < 0.05) (Fig. 3B).

SST expression is not altered by CCI

Using an IHC approach, we examined for changes in SST expression in the peri-injury zone after CCI in juvenile Vgat::Cre/Alb9 mice (Fig. 4A). By contrast to PV, we found that CCI induced no statistically significant difference in the density of SST⁺ neurons in the peri-injury zone compared to control animals (control: 108.3 ± 14 cells mm⁻²; CCI: 111.9 ± 11 cells mm⁻²) (P = 0.85) (Fig. 4B). Similarly, no significant loss of SST positive neurons was observed across any 100 μm ROIs extending laterally from the site of injury (P > 0.05, one-way ANOVA). Taken together, these results show that, in juvenile mice, CCI does not induce a loss of SST-expression but, instead, selectively reduces PV-expression in the peri-injury zone.

PV interneuron (Alb) cell density is decreased in the peri-injury zone

The observed decrease in PV expression may be solely the result of a loss of PV immunoreactivity or may reflect an actual loss of PV interneurons. To distinguish between these possibilities, we employed Cre-dependent genetic labelling of PV-expressing neurons with ZsGreen1.
(PV:Cre/Ai6). PV expression rises postnataally and is well established by the time of impact at P22 (de Lecea et al. 1995; Phlipot et al. 1997; Erickson & Lewis, 2002), thereby indelibly labelling PV interneurons with ZsGreen1 (del Rio et al. 1994; Huang et al. 1999; Madisen et al. 2010). We were therefore able to fluorescence-label neurons that expressed PV at some point during development. Ongoing reporter gene expression was therefore independent of subsequent changes in PV promoter activity or immunoreactivity that might occur following CCI. One caveat to this approach is the potential labelling of ‘off-target’ cells, such as a few layer 5 excitatory neurons and SST neurons (Tanahira et al. 2009; Kobayashi & Hensch, 2013; Fujihara et al. 2015; Nassar et al. 2015) In line with these previous studies, we noted a significant fraction of ZsGreen1+ labelled cortical neurons in PV:Cre/Ai6 mice do not express immunohistochemically significant levels of PV (Fig. 5).

In agreement with our IHC findings in Vgat-Cre/Ai9 mice, TBI in PV:Cre/Ai6 mice led to a 61% reduction in the density of cells labelled by PV IHC in the peri-injury zone (control: 157 ± 14 cells mm⁻²; CCI: 60.9 ± 7 cells mm⁻², **P < 0.001**). Interestingly, we found that the relative density of ZsGreen1+ (i.e. PV:Cre dependently labelled) cells was only reduced by 39% in the peri-injury zone compared to control mice (control: 248.7 ± 17 cells mm⁻²; CCI: 152.9 ± 21 cells mm⁻², **P < 0.01** (Fig. 5A and B). Consistent with these results, the relative proportion of ZsGreen1+ cells that are also immunoreactive for PV ([PV+ and ZsGreen/]Total

---

**Figure 3. PV immunoreactivity is reduced after CCI**

(A) peri-injury region with PV in green, Ai6 in tdTomato and NeuN in blue. (Bottom) Monochrome image of immunostaining of PV shows loss of expression after injury. Scale bar = 100 μm. B: left, quantification of PV density is significantly reduced after CCI (n = 5 mice per group, ***P < 0.0001, unpaired Student’s t-test). Right: distal analysis with 100 μm wide columns was used to analyze changes in PV expression in relation to injury. Quantitatively, it shows that the loss of PV expression is greatest closest to the injury site (n = 5 mice, **P < 0.001**, one-way ANOVA with a post hoc Tukey’s test).
ZsGreen+1] was significantly reduced by almost 34% in the peri-injury zone (control: 39.09 ± 4.1%; CCI: 25.97 ± 1.7%, P < 0.0001) (Fig. 5C). Overall, these data demonstrate that the global reduction of PV expression in the peri-injury zone is attributable to both the overt loss of a significant fraction of PV-expressing interneurons in addition to a reduction in PV expression in a subset of PV:Cre labelled neurons that persist following TBI.

**Fast-spiking interneurons are not significantly altered following CCI**

Subtypes of cortical interneurons can also be categorized by their electrophysiological patterns of action potential firing in response to sustained depolarizing current injection (Kawaguchi & Kubota, 1997; Markram et al. 2004; Uematsu et al. 2008; Rudy et al. 2011). PV positive interneurons are predominantly of a FS electrophysiological phenotype (Galarreta & Hestrin, 1999) and are considered to play an important role in the maintenance of spike timing (Kinney et al. 2006; Orduz et al. 2013) and rhythmic firing (Orduz et al. 2013). Consequently, the select loss of PV expression following CCI led us to investigate whether the interneurons that persist in the peri-injury zone exhibit altered electrophysiological properties. We performed whole-cell patch clamp experiments in the peri-injury zone of coronal brain slices taken from Vgat:Cre/Alb mice 14 days after CCI or in corresponding regions of un-injured control cortices. Neurons were first visually identified via DIC bright field imaging and confirmed to be tdTomato positive. Under current clamp, neurons were confirmed to have a FS phenotype based on the firing pattern induced by a series of intracellular current steps (−150 pA to 300 pA, 50 pA

![Image](image_url)

**Figure 4.** CCI does not alter the density of SST neurons in the cortex after CCI

A, top: control co-labelling of GABAergic neurons (tdTomato) and SST interneurons (green). Bottom: monochrome images of immunostaining of SST interneurons reveals no change in number after injury. Scale bar = 100 μm. B, left: quantification of SST density is not significantly altered after CCI (n = 3 mice per group, P = 0.63, unpaired Student’s t test). Right: densitometric analysis with 100 μm wide columns was used to analyse changes in SST expression in relation to injury. Quantitatively, it shows no loss of SST expression ranging from peri-injury zone to 1 mm lateral of injury site (n = 5 mice), one-way ANOVA with a post hoc Tukey’s test.

© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society
steps, 1 s) (Fig. 6A) (Anderson et al. 2010; Hu et al. 2014). Following CCI, FS interneurons had a more depolarized resting membrane potential (−65.52 ± 1.1 mV) compared to control (−69.69 ± 1.6 mV) (P < 0.05). However, this was not accompanied by any significant difference in the input resistance (control: 150.42 ± 18.1 MΩ; CCI: 156.46 ± 17.3 MΩ, P = 0.82) or average firing frequency across various current steps (P > 0.05, one-way ANOVA) (Fig. 6A). Similarly, compared with the control, no significant differences were observed in action potential height (control: 84.43 ± 4.1 mV; CCI: 83.20 ± 2.9 mV, P = 0.80), threshold (control: −47.93 ± 0.8 mV; CCI: −41.33 ± 0.9 mV, P = 0.76) or half-width (control: 0.63 ± 0.1 ms; CCI: 0.87 ± 0.1 ms, P = 0.07) (Fig. 6B). Rheobase appeared decreased following CCI, although the change failed to reach significance (control: 152.5 ± 25 pA; CCI: 107.3 ± 18 pA, P = 0.14) (Fig. 6C). These findings confirmed that, although CCI induces a decrease in the immunohistochemical expression of PV, the FS interneurons that remain in the peri-injury zone possess similar intrinsic electrophysiological properties as control FS interneurons.

**Figure 5. PV expression and cell density are decreased after CCI in the peri-injury zone**

A, representative images of ZsGreen1 expressing cells in PVzer A16 mouse cortex from control or after CCI. Sections were counter-stained with DAPI (blue) and PV antibody (red). Higher magnification images from the region of the peri-injury zone (yellow box) are shown below. Note the presence of ZsGreen1 positive neurons in the peri-injury zone that are not co-immunoreactive with PV (yellow arrows). B, bar charts quantifying the statistically significant reduction in PV and ZsGreen1 density in the peri-injury zone (n = 4 mice per group). C, the proportion of PV/ZsGreen1 co-labelled cells is significantly reduced in the peri-injury zone following CCI. **P < 0.01, ***P < 0.0001, unpaired Student’s t-test. Top: scale bar = 300 µm. Bottom: scale bar = 100 µm.

© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society
CCI reduces inhibitory sIPSC frequency and increases synaptic kinetics

Next, we aimed to investigate whether synaptic neurotransmission onto FS interneurons was altered following CCI. We first examined for changes in inhibitory activity by recording spontaneous IPSCs (sIPSCs) in FS interneurons in the peri-injury zone 14 days after CCI or from corresponding cortical region in age-matched control animals. sIPSCs were pharmacologically isolated by bath application of the glutamate receptor antagonist kynurenic acid (2 mM). To increase the detection of inhibitory synaptic events, a modified internal solution ($E_{K_+} = -16$ mV) was used as described previously (Anderson et al. 2010). No significant change was observed in the amplitude (control = 23.10 ± 2.9 mV, CCI = 21.69 ± 1.9 mV) ($r = 0.68$) or charge (control = 77.43 ± 9.6 C, CCI = 91.84 ± 7.1 C) ($P = 0.25$) of sIPSCs. However, CCI significantly reduced the frequency of sIPSCs by >50% (control = 4.34 ± 0.8 Hz; CCI 1.96 ± 0.3 Hz) ($P = 0.004$) (Fig. 7A–D). CCI also induced significant changes to the kinetics of sIPSC, as indicated by increases in both the rise (control = 2.56 ± 0.3 ms, CCI = 3.56 ± 0.2 ms) ($P < 0.05$) and decay (control = 3.32 ± 0.2 ms, CCI = 4.43 ± 0.4 ms) ($P < 0.05$) time (Fig. 7E–G). This suggests that CCI primarily induces a loss of inhibitory drive onto FS interneurons.

Excitatory synaptic strength increases after CCI

Finally, we examined for changes in excitatory input onto FS interneurons by recording spontaneous EPSCs (sEPSCs). For these experiments, a physiological internal was used ($E_{K_+} = -80$ mV) that allowed the detection of inward glutamatergic events isolated from outward GABAergic synaptic events. Excitatory activity was not pharmacologically isolated because blocking GABAergic activity may dis inhibit the network and alter the ability to directly record CCI-induced changes. Again, whole-cell recording of sEPSCs in FS interneurons was performed in

---

**Figure 6. FS interneurons remain in the peri-injury zone following CCI**

Whole-cell patch clamp recordings from FS neurons recorded from Vglut1^+~2^+ mice from control ($n = 10$) or CCI ($n = 19$) mice. A, current clamp recordings of FS interneurons in response to intracellular current steps (−150, 0 and +50 pA). Resting membrane potential of FS interneurons is more depolarized following CCI (*P < 0.05, unpaired Student’s t test), whereas input resistance ($r > 0.65$, unpaired Student’s t-test) and firing frequency remain unchanged (curves fit with second-order polynomial, $R^2 = 0.950$ control, 0.997 CCI). B, examples of average single action potential (2 nA, 0.5 ms) from control (black) or CCI (grey) (left) and quantification of action potential height and half-width (right) ($P > 0.05$, unpaired Student’s t test). C, example of a series of rheobase trials traces (left) and quantification (right) indicating no change between control and CCI ($P > 0.05$, unpaired Student’s t test).
the peri-injury zone 14 days after CCI or in corresponding control animals. Analysis revealed a statistically significant increase in the amplitude (control = 14.33 ± 1.7 mV, CCI = 25.55 ± 2.5 mV) (P < 0.001) and charge (control = 32.92 ± 1.9 C, CCI = 61.98 ± 3.8 C) of sEPSCs following CCI compared to control (P < 0.0001) (Fig. 8A–C). However, in contrast to CCI-induced changes in sEPSCs, there was no change in sEPSC frequency (control = 8.34 ± 1.1 Hz, CCI = 9.16 ± 1.2 Hz) (P = 0.61), rise time (control = 3.04 ± 0.3 ms, CCI = 2.48 ± 0.2 ms) (P = 0.20) or decay time (control = 2.17 ± 0.2, CCI = 2.47 ± 0.4) (P = 0.50) (Fig. 8D–G). This suggests that CCI primarily induces an increase in the strength of excitation onto FS interneurons.

Discussion

In the present study, we examined how cortical interneurons in juvenile animals are altered following TBI induced by CCI. To our knowledge, this is the first study to examine changes to the cortical interneuron network in a paediatric model of TBI. Using a combined IHC and electrophysiological approach in mice with targeted Cre-dependent fluorescence labelled interneurons, we identified five key findings. First, as reported previously (Nichols et al. 2013), CCI induced significant tissue loss at the site of impact. However, within the surrounding peri-injury zone, there was no significant loss in the density of total neurons (NeuN) or inhibitory interneurons (tdTomato). Second, despite the lack of change in overall neuronal density, CCI induced a loss of immuno-reactivity for the interneuron subtype specific marker PV but not SST. This is in contrast to TBI in adult mice where more global interneuron changes have been reported (Hunt et al. 2011; Cantu et al. 2015). Third, the loss of PV expression following CCI was accompanied, although to a lesser extent, by a decrease in the density of Cre-dependent fluorescence labelled PV interneurons (PV:Cre/tdTomato). Fourth, despite the loss of PV immunoreactivity, a population of FS interneurons persisted in the peri-injury zone and had intrinsic electrophysiological parameters similar to control mice. Fifth, at a synaptic level, CCI decreased the frequency of inhibition at the same time as increasing the strength of excitation onto FS interneurons. These studies suggest that, in juvenile animals, PV-FS interneurons may be selectively vulnerable to the effects of CCI.
The pathogenesis of neurological symptoms associated with TBI remains poorly understood and even less is known about TBI in children and adolescents. A loss of inhibitory interneurons and inhibition has been repeatedly implicated in the pathophysiology of TBI and also in the development of subsequent neurological disorders, including post-traumatic epilepsy (Fluusko & Pitkänen, 2014; Cantu et al. 2015). However, most studies have been conducted in adult animals and focused on the excitatory neuronal population, necessitating a direct examination of cortical interneurons in juvenile animals following TBI. Comparing mouse with human development is fraught with difficulty, although careful consideration was given to choice of the age of the mice at the time of the impact. At P22, the mouse is considered to be well within the 'paediatric' age range relevant to the present study (Ben-Ari, 2002; Vanhooren & Libert, 2013), whereas cortical interneurons are reaching maturity, are outside the period of maximum synaptogenesis, have inhibitory chloride potentials, and NMDA receptor insertion is nearing completion (Sutor & Luhmann, 1995). To investigate changes in the interneuron population, traditional approaches have utilized immunohistochemical labelling of neurochemical markers including GAD65/67, as well as subtype specific markers (e.g. PV, SST, 5-HT3A, cholecystokinin). However, a major caveat to this approach is the inability to differentiate the reduced expression of these markers from actual neuronal loss. To overcome this, we took advantage of methods that Cre-dependently fluorescence label interneurons either ubiquitously (Vglut/Cre/Ai9) or subtype specifically (PV/Cre/Ai6). Accordingly, we were able to directly examine for loss of GABAergic neurons independent of changes in their immunoreactivity for select markers.

Traumatic brain injury selectively targets PV interneurons

As reported previously (Nichols et al. 2015), TBI in juvenile animals induced significant tissue loss and cavitation similar to that reported in adult animals (Hunt et al. 2009, 2011; Cantu et al. 2015). The cortical region most adjacent to the site of injury is considered to be a key component in the generation of epileptic activity and, in adult animals, is a reported site of inhibitory dysfunction (Cantu et al. 2015). Despite the significant tissue loss at the site of injury, we observed no change in the density of excitatory (NeuN).

Figure 8. The strength of 

- The Journal of Physiology © 2018 The Physiological Society
neurons. At an inhibitory level, the Vglut:Cre/Ai9 transgenic mouse approach allowed us to directly examine changes in the interneuron population. Similar to the excitatory population, no loss of inhibitory (tdTomato positive) neurons was observed in the peri-injury zone following CCI. This suggests that, 14-19 days after CCI, there is no significant cell death in either the excitatory or inhibitory peri-injury neuronal populations.

Inhibition in the cortex plays an essential role in regulating excitability and is governed by a broad group of interneurons with complex morphological, cellular, molecular and synaptic properties (Gupta et al. 2000; Markram et al. 2004; Rudy et al. 2011). In the present study, we tested how TBI alters the population of interneurons in juvenile mice by examining changes in the two most prominent interneuronal subtypes: PV and SST. PV and SST are independent neurochemical markers of cortical interneurons that display little overlap in expression and account for over 70% of the interneuron population (Kawaguchi & Kubota, 1997; Lee et al. 2010; Pettilla Interneuron Nomenclature Group et al. 2008; Xu et al. 2010). We determined that TBI selectively reduces the expression of PV within the peri-injury zone without altering the expression of SST. This is in contrast to the more widespread changes in multiple interneuron subtypes reported in adult mice after CCI (Cantu et al. 2015). The selective loss of PV might therefore be a unique response to TBI in juvenile animals.

To determine whether the loss of PV expression was indicative of actual PV interneuron loss, we examined the effects of CCI on Cre-dependently labelled PV interneurons (PV:Cre/Ai6). PV mRNA can be detected starting in the second post-natal week (P8) and reaches near mature levels by P21 (de Lecea et al. 1995; Dong, 2008). As a result, PV interneurons are well and indelibly labelled by ZsGreen1 prior to the age (P22) that mice were subjected to CCI. The observed loss of density of ZsGreen1 positive neurons following CCI is therefore a clear indication of injury induced PV interneuron loss. Of note, the loss of PV density following CCI was substantially greater as indicated by IHC PV immunoreactivity (61%) than by Cre-dependent ZsGreen1 (39%) labelling. This suggests that, following TBI, some PV interneurons die, although a greater proportion only undergo phenotypic loss of PV immunoreactivity. This finding was validated by the electrophysiological determined presence of FS interneurons in the peri-injury (for further discussion, see below). This suggests caution is required with respect to the use and interpretation of IHC measures alone for indicating interneuron loss. Conversely, an important caveat to the use of the PV:Cre-dependent approach is indicated by the significant number of ZsGreen1+ cells that did not express detectable levels of PV (Fig. 5C).

Off-target fluorescence labelling has been previously noted in PV:Cre mice (Tanahira et al. 2009; Kobayashi & Hensch, 2013; Fujihara et al. 2015; Nassar et al. 2015) and may be the result of a relatively reduced PV IHC detection efficacy or transient PV expression during development. Other independent IHC markers of PV interneurons (e.g. Kv5.1) (Chow et al. 1999; Yanagi et al. 2014) may yield a higher co-labelling efficiencies but, again, these are limited by distinguishing changes in expression over interneuron loss. In addition, the decrease in ZsGreen1 labelling following CCI was not detected using a GABAergic neuron-wide analysis approach (i.e. VGAT). This may reflect the increased detection sensitivity of our subtype specific targeted approach (i.e. PV:Cre/Ai6), however, subtle compensatory changes in other interneuron subtypes cannot be ruled out. The results of the present study clearly demonstrate reduced PV-Ai6 co-labelling after CCI, consistent with the loss of PV expression, although they also highlight the need for a combined IHC and genetic labelling approach to begin delineating TBI-induced changes with respect to the expression of interneuron markers and overt interneuron loss.

Synaptic input onto FS interneurons is disrupted by traumatic brain injury

PV neurons alone represent ~40% of GABAergic cortical interneurons and are predominantly of an FS phenotype (Kawaguchi & Kondo, 2002; Rudy et al. 2011). FS interneurons have unique properties, including sustained high frequency firing, which allows for electrophysiological identification (Connors & Gutnick, 1990; Cauli et al. 1997; Kawaguchi & Kubota, 1997; Gibson et al. 1999). PV-FS neurons have been shown to influence neuronal excitability (e.g. firing rate) and spike timing (Caillard et al. 2000; Schwaizer et al. 2002; Orduz et al. 2013). However, the loss of PV expression in FS interneurons following CCI did not alter the majority of the intrinsic membrane properties we tested, including those known to be important to the pathophysiology of other neurological disorders (van Zundert et al. 2012; Prinz et al. 2013). The resting membrane potential of FS interneurons was more depolarized following CCI and this may contribute to the trend towards a reduced rheobase. However, this change in membrane potential did not translate into alterations in the input-output relationship of FS interneurons, as indicated by no significant difference in the firing frequency or action potential properties. This suggests that, although FS interneurons may lose their PV immunoreactivity, they are still present in the peri-injury zone and maintain a near ‘normal’ FS electrophysiological phenotype.

Beyond intrinsic excitability, regulation of calcium homeostasis by PV is considered to play an important role in synaptic neurotransmission (Kimney et al. 2006; Orduz et al. 2013). The loss of PV is predicted to disrupt inhibitory neurotransmission which is accordance with previous
work indicating inhibitory network dysfunction after brain injury (Hunt et al. 2011; Jin et al. 2011; Cantu et al. 2015; Nichols et al. 2013). Using an electrophysiological approach, we found that FS interneurons receive less frequent inhibition after CCI, indicative of a decrease in pre-synaptic release probability. We also observed an increased rise and decay time of inhibitory spontaneous synaptic events. Kinetic properties of synaptic events are often controlled by the specific expression of GABA receptor subunits that have been shown to be altered after TBI (Hausko & Pitsakäsi, 2014) and will be evaluated in future studies. Although the altered inhibitory synaptic kinetics may influence the synaptic integration window, this was not sufficient to increase synaptic charge and compensate for the >50% loss in inhibitory event frequency suggesting an overall loss of inhibitory drive onto FS interneurons.

On the excitatory side, the amplitude and charge transfer of sEPSCs onto FS interneurons was also increased after CCI, indicating increased excitatory synaptic strength. By contrast to the inhibitory changes, the frequency of sEPSC events was not significantly altered by CCI. The strengthening of excitatory events may also be a result of post-synaptic receptor changes, potentially driven by homeostatic mechanisms (Pozo & Goda, 2010; Iurriagana, 2012).

PV neurons preferentially synapse onto other PV and excitatory pyramidal neurons (Tamás et al. 1998; Gibson et al. 1999). The loss of PV interneurons makes it tempting to suggest that the reduced inhibitory input onto FS interneurons is the result of a loss of input from other PV interneurons. However, PV interneurons receive synaptic input from a wide array of interneuron subtypes and from various excitatory lamina and regions (Markram et al. 2004; Pfeifer et al. 2013; Pi et al. 2013; Jin et al. 2014). The recorded post-synaptic currents in FS interneurons in the present study are a compilation of these various inputs, forego the ability to discretely determine the subtype and/or source of these synaptic changes. Consequently, it is possible that the reduced inhibitory synaptic activity following CCI is contributed to by alterations in other unstudied interneuron subtypes (e.g., 5-HT3A, VIP). In our previous work, we similarly found that excitatory pyramidal neurons in juvenile mice undergo unique changes following a TBI. By contrast to reports in adult mice (Cantu et al. 2015), recordings from pyramidal neurons in juvenile mice revealed a lack of generalized hyperexcitability (Goddeyne et al. 2015; Nichols et al. 2015) and the presence of unique excitatory and inhibitory synaptic bursts following CCI (Nichols et al. 2015). These changes were evident at a time post-injury when epileptic activity was evident on EEG (i.e. by post-injury day 14) as examined in the present study. PV interneurons are considered as being important with respect to regulating the output of pyramidal neurons, gain control, and contributing to network oscillations and synchrony (Bartos et al. 2007; Puig et al. 2008; Cardin et al. 2009; Wilson et al. 2012). Determining how the TBI-induced loss of PV expression and interneurons and associated TBI-induced synaptic changes contribute, or potentially even resist, synaptic bursting and network level excitability remains to be determined. Overall, the findings of the present study indicate that juvenile PV interneurons are particularly sensitive to brain injury and undergo unique changes following a TBI.

PV interneurons have been shown to play a crucial role in higher cognitive function (Schwaller et al. 2004; Sohal et al. 2009; Lewis et al. 2012; Ma & Prince, 2012). PV loss has been shown to increase seizure susceptibility (Schwaller et al. 2004) and induce behavioural deficits relevant to the core symptoms of autism (Wöhr et al. 2015) and is also implicated in the pathophysiology of schizophrenia (Sohal et al. 2009; Lewis et al. 2012) and epilepsy (Schwaller et al. 2004; Ma & Prince, 2012; Jin et al. 2014). Given that TBI is a known risk factor for both schizophrenia (Molloy et al. 2011), autism spectrum disorders (Wöhr et al. 2015) and epilepsy (Barlow et al. 2000; Hunt et al. 2009), the loss of PV expression following TBI may be a common denominator in the development of numerous neurological disorders. However, at present, it is unknown whether PV expression loss is an adaptive or maladaptive response to injury. Furthermore, it might be the case that PV loss serves in both capacities dependent on where an individual is along the time course of TBI and recovery. What is evident from these studies is that the response to TBI in juvenile brains appears to be distinct from that in adults. The alteration to PV-FS neurons after TBI may be critical to understanding how TBI in the paediatric brain may alter neurodevelopment and why children have worse outcomes and take longer to recover after brain injury.

References


Kobayashi Y & Hensch TK (2013). Germ line recombination by conditional gene targeting with Parvalbumin-Cre lines. Front Neural Circuits 7, 168.


Dysfunction of cortical inhibition after paediatric TBI

J Physiol 596.7


Additional information

Competing interests

The authors declare that they have no competing interests.

Author contributions

JNi, JNe and TA all contributed to the conception and design of experiments. All authors contributed to the data analysis, as well as its interpretation and the writing of the manuscript. TA and JNe contributed financial support for materials and staffing. JNi performed all of the experimental procedures and collected data. GRB contributed to the immunohistochemical processing, imaging and analysis. All authors approved the final version of the manuscript submitted for publication.

Funding

TA is supported by R01-NS087031, R01-NS097537 and R21-EB020767 from the NIH and IOS-1535804 from the NSF. JNe is supported by R00-NS07661 and R01-NS097537.

Acknowledgements

We thank Dr David Adelson for scientific discussions and providing research equipment, as well as Mario Moreno and Johan Martinez from the Newborn laboratory for their technical assistance.
APPENDIX C

Animal Subjects
Research involving the use of animals conducted under the auspices of Arizona State University is reviewed by the University Institutional Animal Care & Use Committee (IACUC, approval #17-1521R), Institutional Biosafety Committee (IBC, approval #16-696), and in compliance with federal regulations. Documents containing any data collection from animal research require that applications be submitted to the University Animal Care& Use Committee for approval. For further information, contact the IACUC secretary in the IACUC Office at 480-965-4387 or visit https://www.researchintegrity.asu.edu/animals.
Table 2

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Fold-Change (Mut vs. Ctl)</th>
<th>p-value (Mut vs. Ctl)</th>
<th>Fold-Change (Mut vs. Ctl)</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Neurotrophins and growth factors</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ntf3</td>
<td>-1.0051</td>
<td>0.9550</td>
<td>Mut down vs Ctl</td>
<td>neurotrophin 3</td>
</tr>
<tr>
<td>Ntf5</td>
<td>1.0771</td>
<td>0.4970</td>
<td>Mut up vs Ctl</td>
<td>neurotrophin 5</td>
</tr>
<tr>
<td>Bdnf</td>
<td>1.0773</td>
<td>0.3826</td>
<td>Mut up vs Ctl</td>
<td>brain derived neurotrophic factor</td>
</tr>
<tr>
<td>Ngf</td>
<td>1.3762</td>
<td>0.0202</td>
<td>Mut up vs Ctl</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>Egf</td>
<td>1.0485</td>
<td>0.2787</td>
<td>Mut up vs Ctl</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>Fgf1</td>
<td>-1.0805</td>
<td>0.1479</td>
<td>Mut down vs Ctl</td>
<td>fibroblast growth factor 1</td>
</tr>
<tr>
<td>Fgf8</td>
<td>1.0268</td>
<td>0.2164</td>
<td>Mut up vs Ctl</td>
<td>fibroblast growth factor 8</td>
</tr>
<tr>
<td><strong>Neurotrophin receptors</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ngfr</td>
<td>1.0629</td>
<td>0.3378</td>
<td>Mut up vs Ctl</td>
<td>nerve growth factor receptor (TNFR superfamily, member 16)</td>
</tr>
<tr>
<td>Ntrk1</td>
<td>1.0872</td>
<td>0.4857</td>
<td>Mut up vs Ctl</td>
<td>neurotrophic tyrosine kinase, receptor, type 1</td>
</tr>
<tr>
<td>Ntrk2</td>
<td>1.0020</td>
<td>0.9480</td>
<td>Mut up vs Ctl</td>
<td>neurotrophic tyrosine kinase, receptor, type 2</td>
</tr>
<tr>
<td>Ntrk3</td>
<td>-1.0812</td>
<td>0.7777</td>
<td>Mut down vs Ctl</td>
<td>neurotrophic tyrosine kinase, receptor, type 3</td>
</tr>
<tr>
<td>Egfr</td>
<td>-1.0495</td>
<td>0.4289</td>
<td>Mut down vs Ctl</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>Fgfr1</td>
<td>1.0260</td>
<td>0.3259</td>
<td>Mut up vs Ctl</td>
<td>fibroblast growth factor receptor 1</td>
</tr>
<tr>
<td>Fgfr2</td>
<td>-1.0840</td>
<td>0.1611</td>
<td>Mut down vs Ctl</td>
<td>fibroblast growth factor receptor</td>
</tr>
<tr>
<td><strong>Ionotropic glutamate receptor subunits (AMPARs, NMDARs, KainateRs)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gria1</td>
<td>1.0266</td>
<td>0.5541</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, AMPA1</td>
</tr>
<tr>
<td>Gria2</td>
<td>-1.0454</td>
<td>0.0961</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, AMPA2</td>
</tr>
<tr>
<td>Gria3</td>
<td>-1.0276</td>
<td>0.2202</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, AMPA3</td>
</tr>
<tr>
<td>Gria4</td>
<td>-1.1496</td>
<td>0.0015</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, AMPA4</td>
</tr>
<tr>
<td>Grid1</td>
<td>1.0426</td>
<td>0.4885</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, delta 1</td>
</tr>
<tr>
<td>Grid2</td>
<td>1.0586</td>
<td>0.4474</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, delta 2</td>
</tr>
<tr>
<td>Grik1</td>
<td>1.0099</td>
<td>0.8779</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, kainate 1</td>
</tr>
<tr>
<td>Grik2</td>
<td>1.0444</td>
<td>0.4132</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, kainate 2 (beta 2)</td>
</tr>
<tr>
<td>Grik3</td>
<td>-1.0411</td>
<td>0.7017</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, kainate 3</td>
</tr>
<tr>
<td>Grik4</td>
<td>-1.2210</td>
<td>0.0318</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, kainate 4</td>
</tr>
<tr>
<td>Grik5</td>
<td>-1.0454</td>
<td>0.4093</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, kainate 5 (gamma 2)</td>
</tr>
<tr>
<td>Grin1</td>
<td>1.0051</td>
<td>0.9682</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA1 (zeta 1)</td>
</tr>
<tr>
<td>Grin2a</td>
<td>-1.1401</td>
<td>0.0948</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA2A (epsilon 1)</td>
</tr>
<tr>
<td>Grin2b</td>
<td>-1.0189</td>
<td>0.5716</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA2B (epsilon 1)</td>
</tr>
<tr>
<td>Grin2c</td>
<td>1.1999</td>
<td>0.1812</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA2C (epsilon 1)</td>
</tr>
<tr>
<td>Grin2d</td>
<td>1.0105</td>
<td>0.8669</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA2C (epsilon 2)</td>
</tr>
<tr>
<td>Grin2e</td>
<td>1.0443</td>
<td>0.1135</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA2D (epsilon 1)</td>
</tr>
<tr>
<td>Grin3a</td>
<td>1.1201</td>
<td>0.1397</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor ionotropic, NMDA3A</td>
</tr>
<tr>
<td>Grin3b</td>
<td>1.1243</td>
<td>0.0786</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, ionotropic, NMDA3B</td>
</tr>
<tr>
<td><strong>Metabotropic glutamate receptors (MGLURs)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grm1</td>
<td>1.1858</td>
<td>0.0822</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, metabotropic 1</td>
</tr>
<tr>
<td>Grm2</td>
<td>-1.0565</td>
<td>0.5959</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, metabotropic 2</td>
</tr>
<tr>
<td>Grm3</td>
<td>-1.1767</td>
<td>0.0287</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, metabotropic 3</td>
</tr>
<tr>
<td>Grm4</td>
<td>-1.1794</td>
<td>0.0469</td>
<td>Mut down vs Ctl</td>
<td>glutamate receptor, metabotropic 4</td>
</tr>
<tr>
<td>Grm5</td>
<td>1.0417</td>
<td>0.0875</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, metabotropic 5</td>
</tr>
<tr>
<td>Grm6</td>
<td>1.0437</td>
<td>0.3602</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, metabotropic 6</td>
</tr>
<tr>
<td>Grm7</td>
<td>1.0819</td>
<td>0.0353</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, metabotropic 7</td>
</tr>
<tr>
<td>Grm8</td>
<td>1.2054</td>
<td>0.0925</td>
<td>Mut up vs Ctl</td>
<td>glutamate receptor, metabotropic 8</td>
</tr>
</tbody>
</table>