Analysis and Modeling of Foundry Compatible Programmable Metallization Cell

Materials

by

Mehmet Bugra Balaban

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved April 2020 by the
Graduate Supervisory Committee:

Michael Kozicki, Chair
Hugh Barnaby
Dragica Vasileska
Michael Goryll

ARIZONA STATE UNIVERSITY

May 2020
Programmable Metallization Cell (PMC) devices are, in essence, redox-based solid-state resistive switching devices that rely on ion transport through a solid electrolyte (SE) layer from anode to cathode. Analysis and modeling of the effect of different fabrication and processing parameter/conditions on PMC devices are crucial for future electronics. Furthermore, this work is even more significant for devices utilizing back-end-of-line (BEOL) compatible materials such as Cu, W, their oxides and SiOx as these devices offer cost effectiveness thanks to their inherent foundry-ready nature. In this dissertation, effect of annealing conditions and cathode material on the performance of Cu-SiOx vertical devices is investigated which shows that W-based devices have much lower forming voltage and initial resistance values. Also, higher annealing temperatures first lead to an increase in forming voltage from 400 °C to 500 °C, then a drastic decrease at 550 °C due to Cu island formation at the Cu/SiOx interface. Next, the characterization and modeling of the bilayer Cu2O/Cu-WO3 obtained by annealing the deposited Cu/WO3 stacks in air at BEOL-compatible temperatures is presented that display unique characteristics for lateral PMC devices. First, thin film oxidation kinetics of Cu is studied which show a parabolic relationship with annealing time and an activation energy of 0.70 eV. Grown Cu2O shows a cauliflower-like morphology where feature size on the surface increase with annealing time and temperature. Then, diffusion kinetics of Cu in WO3 is examined where the activation energy of diffusion of Cu into WO3 is calculated to be 0.74 eV. Cu was found to form clusters in the WO3 host which was revealed by imaging. Moreover, using the oxidation and diffusion analyses, a Matlab model is established for modeling the bilayer for process and annealing-condition optimization. The model is built to produce the
resulting Cu₂O thickness and Cu concentration in Cu-WO₃. Additionally, material characterization, preliminary electrical results along with modeling of lateral PMC devices utilizing the bilayer is also demonstrated. By tuning the process parameters such as deposited Cu thickness and annealing conditions, a low-resistive Cu₂O layer was achieved which dramatically enhanced the electrodeposition growth rate for lateral PMC devices.
This dissertation is dedicated to my parents, my family and my girlfriend.
ACKNOWLEDGMENTS

I would like to sincerely thank my supervisor, Prof. Michael N. Kozicki, for his outstanding guidance on my Ph.D. research, his mentorship and his support throughout my years at Arizona State University (ASU). I am particularly grateful for the degree of freedom I was given to pursue my interest in material analysis. I would also like to thank Prof. Hugh J. Barnaby and Prof. Yago Gonzalez-Velo whom I see as co-advisors. Their invaluable support and encouragement made my years at ASU special.

I am also thankful to my other committee members, Prof. Dragica Vasileska and Prof. Michael Goryll, for their suggestions and interest in my research.

I would also like to thank the funding agencies, Arizona Board of Regions and Air Force Research Labs, for their financial support that made the work done by our research group possible.

I would also like to thank my colleagues/friends, whom I had the pleasure to work with, Dr. Weijie Yu, Dr. Debayan Mahalanabis, Dr. Adnan Mahmud, Dr. Runchen Fang, Dr. Wenhao Chen, Dr. Jennifer Taggart, Ninad Chamele, Smitha Swain, Arshey Patadia, Anand Krishnan, Priyanka Apsangi, Kiraneswar Muthuseenu and many others for their support, their teamwork, and the pleasant research environment they created.

I am also very grateful for the helpful and friendly staff at ASU Eyring Materials Center. Special thanks to Dr. Emmanuel Soignard, Diana Convey, Timothy Karcher, Dr. Thomas Groy and many others for their help, assistance and trainings. I am also thankful for the staff at School of Electrical, Computer and Energy Engineering for their help throughout my years at ASU.
Most important of all, I would like to thank my parents, Numan Balaban and Gonca Uygun, for their unconditional love and support in every step of my life. I would never have accomplished all of this without them. I would also like to extend my thanks to the rest of my family. Their encouragement and support played a tremendous role over the years. Finally, I’d like to thank my girlfriend, Shannon Winans, for her support, friendship and love. Thank you for making the last part of my Ph.D. years fun.

Mehmet Bugra Balaban

May 2020,

Tempe, Arizona, USA
TABLE OF CONTENTS

LIST OF TABLES..ix

LIST OF FIGURES..x

CHAPTER

1 INTRODUCTION...1

1.1 Redox Reactions and Mass Transport of Ions in Programmable Metallization Cells...1

1.2 Resistive Memory Technologies..4

1.3 Requirements for the Universal Non-Volatile Memory (NVM) Cell...........9

1.4 Versatility of PMCs and Their Applications..10

1.5 Bilayer Switching in PMCs..14

2 INTRODUCTION TO MATERIAL CHARACTERIZATION..........................16

2.1 X-Ray Diffraction (XRD)...16

2.2 X-Ray Reflectivity (XRR)...17

2.3 X-Ray Photoelectron Spectroscopy (XPS)..17

2.4 Auger Electron Spectroscopy (AES)...18

2.5 Secondary Ion Mass Spectroscopy (SIMS)..19

2.6 Electron Microscopy..19

2.7 Ellipsometry..21

2.8 Atomic Force Microscopy (AFM)..21

3 EFFECT OF CATHODE MATERIAL AND ANNEALING CONDITIONS ON FORMING VOLTAGE AND INITIAL RESISTANCE..............22
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction to PMC Device Performance</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Fabrication of Cu-SiOₓ PMC Devices</td>
<td>25</td>
</tr>
<tr>
<td>3.3 Electrical Characterization</td>
<td>28</td>
</tr>
<tr>
<td>3.4 Material Characterization (TEM & EDX)</td>
<td>32</td>
</tr>
<tr>
<td>3.5 Statistical Analysis of Forming Voltage</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Discussion</td>
<td>40</td>
</tr>
<tr>
<td>4 COPPER OXIDATION</td>
<td>44</td>
</tr>
<tr>
<td>4.1 Brief Review of Copper Oxidation</td>
<td>44</td>
</tr>
<tr>
<td>4.2 Oxidation Phases and Kinetics of E-beam Evaporated Copper at Low Temperatures</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1 XRD</td>
<td>50</td>
</tr>
<tr>
<td>4.2.2 XPS</td>
<td>53</td>
</tr>
<tr>
<td>4.2.3 AFM</td>
<td>56</td>
</tr>
<tr>
<td>4.2.4 Spectroscopic Ellipsometry</td>
<td>60</td>
</tr>
<tr>
<td>5 DIFFUSION OF COPPER</td>
<td>63</td>
</tr>
<tr>
<td>5.1 Brief History of Integration of Copper and Diffusion Kinetics</td>
<td>63</td>
</tr>
<tr>
<td>5.2 Diffusion of Cu in WO₃</td>
<td>67</td>
</tr>
<tr>
<td>5.2.1 XPS</td>
<td>67</td>
</tr>
<tr>
<td>5.2.2 SIMS</td>
<td>73</td>
</tr>
<tr>
<td>5.2.3 TEM</td>
<td>78</td>
</tr>
<tr>
<td>5.2.4 XRD</td>
<td>83</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>MODELING THE OXIDATION & DIFFUSION OF Cu/WO₃</td>
</tr>
<tr>
<td></td>
<td>6.1 Building the Model</td>
</tr>
<tr>
<td></td>
<td>6.2 Copper Oxidation Model</td>
</tr>
<tr>
<td></td>
<td>6.3 Simulations of the Oxidation & Diffusion Model of Cu/WO₃</td>
</tr>
<tr>
<td>7</td>
<td>LATERAL PMC DEVICES USING Cu₂O/Cu-WO₃ BILAYER</td>
</tr>
<tr>
<td></td>
<td>7.1 Fabrication of Lateral PMC Devices</td>
</tr>
<tr>
<td></td>
<td>7.2 Characteristics of the Bilayer Solid Electrolyte</td>
</tr>
<tr>
<td></td>
<td>7.3 Results and Discussion</td>
</tr>
<tr>
<td>8</td>
<td>CONCLUSION</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>IMAGEJ SCRIPT FOR PARTICLE SIZE ANALYSIS OF AFM IMAGES</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB CODE OF OXIDATION AND DIFFUSION MODEL FOR Cu-WO₃ SYSTEM</td>
</tr>
<tr>
<td>C</td>
<td>MATLAB CODE OF LATERAL PMC DEVICE SIMULATION</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.1. ANOVA (CE: W)</td>
<td>36</td>
</tr>
<tr>
<td>3.2. Effect Estimate Summary (CE: W)</td>
<td>37</td>
</tr>
<tr>
<td>3.3. Ranking of the Importance of the Factors (CE: W)</td>
<td>37</td>
</tr>
<tr>
<td>3.4. ANOVA (CE: Ni)</td>
<td>39</td>
</tr>
<tr>
<td>3.5. Effect Estimate Summary (CE: Ni)</td>
<td>39</td>
</tr>
<tr>
<td>3.6. Ranking of the Importance of the Factors (CE: Ni)</td>
<td>39</td>
</tr>
<tr>
<td>4.2. Oxidation Kinetics Rate Law Formulas</td>
<td>46</td>
</tr>
<tr>
<td>4.3. Summary of the Activation Energy of Diffusion (Eₐ) Values</td>
<td>48</td>
</tr>
<tr>
<td>4.4. Summary of the Average Particle Sizes Calculated with ImageJ</td>
<td>58</td>
</tr>
<tr>
<td>5.1. Summary of the Reported Eₐ of Diffusion of Cu in SiO₂ and Silica by BTS</td>
<td>65</td>
</tr>
<tr>
<td>5.2. Diffusion Coefficients for Each XPS Sample (Cu-WO₃)</td>
<td>72</td>
</tr>
<tr>
<td>5.3. Fabrication/Annealing Conditions of the Blanket Films for TEM & XRD</td>
<td>78</td>
</tr>
<tr>
<td>6.1. Variables Used in the Model for Cu-WO₃ System</td>
<td>85</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>The Schematic of Electrodeposition</td>
<td>2</td>
</tr>
<tr>
<td>1.2.</td>
<td>Ionic Hopping Barriers in Ag-doped Amorphous Chalcogenide Showing the Wannier-Stark Ladder</td>
<td>3</td>
</tr>
<tr>
<td>1.3.</td>
<td>Resistive Switching Effects and Random Access Memory Names</td>
<td>5</td>
</tr>
<tr>
<td>1.4.</td>
<td>a) Unipolar Switching and (b) Bipolar Switching</td>
<td>7</td>
</tr>
<tr>
<td>1.5.</td>
<td>Illustration of the Mechanism of Resistive Non-volatile Switching in an Ag-ChG PMC</td>
<td>8</td>
</tr>
<tr>
<td>1.6.</td>
<td>Schematic of Set and Reset Operation of Cu-SiO₂ PMC</td>
<td>9</td>
</tr>
<tr>
<td>1.7.</td>
<td>Vertical and Lateral PMC Structures</td>
<td>11</td>
</tr>
<tr>
<td>1.8.</td>
<td>Lateral PMC Device Structure with 3 Electrodes</td>
<td>12</td>
</tr>
<tr>
<td>1.9.</td>
<td>Radial PMC with Metallic Electrodeposits</td>
<td>13</td>
</tr>
<tr>
<td>3.1.</td>
<td>Cu Doping Techniques in Cu-SiO₃ PMCs</td>
<td>24</td>
</tr>
<tr>
<td>3.2.</td>
<td>W (Ni) Deposited on Top of Si₃N₄/Si by Sputtering</td>
<td>25</td>
</tr>
<tr>
<td>3.3.</td>
<td>Cathode Stripes Patterning by Photolithography</td>
<td>26</td>
</tr>
<tr>
<td>3.4.</td>
<td>Wet Etching to Create the Cathodes</td>
<td>26</td>
</tr>
<tr>
<td>3.5.</td>
<td>Switching Layer Deposition by E-beam Evaporation</td>
<td>26</td>
</tr>
<tr>
<td>3.6.</td>
<td>Anode Creation After Wet Etching</td>
<td>27</td>
</tr>
<tr>
<td>3.7.</td>
<td>Deposition of Capping Silica Layer by E-beam Evaporation</td>
<td>27</td>
</tr>
<tr>
<td>3.8.</td>
<td>Idealized Cross-section of the Devices</td>
<td>28</td>
</tr>
<tr>
<td>3.9.</td>
<td>Forming Voltage vs. Annealing Time for Devices Annealed at 450 °C</td>
<td>29</td>
</tr>
<tr>
<td>3.10.</td>
<td>Forming Voltage vs. Annealing Time for Devices Annealed at 550 °C</td>
<td>29</td>
</tr>
</tbody>
</table>
3.11. Initial Resistance vs. Annealing Time for Devices Annealed at 450 °C 30
3.13. Retention Test on W/SiOₓ/Cu Device Annealed at 500 °C for 10 min 31
3.15. (a) TEM Cross-section Image of Ni/SiOₓ/Cu/SiOₓ Annealed at 550 °C for 10
 Minutes, (b) EDX Line Scan Result of the Dashed Line 32
3.16. (a) TEM Cross-section Image of W/SiOₓ/Cu/SiOₓ Annealed at 550 °C for 10
 Minutes, (b) EDX Line Scan Result of the Dashed Line 33
3.17. (a) TEM Cross-section Image of W/SiOₓ/Cu Annealed at 550 °C for 10
 Minutes, (b) EDX Line Scan Result within the Dashed Circle 34
3.18. (a) TEM Cross-section Image of W/SiOₓ/Cu/SiOₓ Annealed at 400 °C for 10
 Minutes, (b) EDX Line Scan Result of the Dashed Line 34
3.19. (a) TEM Cross-section Image of W/SiOₓ/Cu/SiOₓ Annealed at 400 °C for 10
 Minutes, (b) EDX Line Scan Over the Switching Layer 35
3.20. TEM Cross-section Image of the Devices Annealed for 10 Minutes 35
3.22. Normal Probability Plot for V_F (CE: W) ... 38
3.24. Normal Probability Plot for V_F (CE: Ni) ... 40
4.1. Cu-O Phase Formation for Samples Annealed in Air 45
4.2. Control Sample for Oxidation Experiments ... 49
4.3. Copper Oxidation Samples After Annealing 50
Figure 4.4. XRD Patterns of Cu Control Sample and Increasing Temperatures 51
4.5. XRD Patterns of Cu Annealed at 125 °C .. 52
4.6. XRD Patterns of Cu Annealed at 155 °C .. 52
4.7. Control Sample (Left) and the Samples After Annealing (Right) for XPS 53
4.8. Cu 2p XPS Spectra of the Sample Shown in Figure 3.7 Annealed at 125 °C . 54
4.9. Cu 2p XPS Spectra of the Sample Shown in Figure 3.7 Annealed at 140 °C . 55
4.10. Cu 2p XPS Spectra of the Sample Shown in Figure 3.7 Annealed at 155 °C . 55
4.11. AFM Images of the Oxidation Samples .. 56
4.12. AFM Images of the Oxidation Samples at 155 °C .. 57
4.13. Image of the Cu₂O Sample Pre- and Post-Processing 58
4.14. Particle Size Histograms of Samples Annealed for 70 Minutes 59
4.15. Particle Size Histograms of Samples Annealed at 155 °C 59
4.16. Cu₂O Thickness (d_{ox}) vs. Annealing Time .. 60
4.17. d_{ox}² vs. Annealing Time .. 61
4.18. Arrhenius Plot of ln (k_p) vs 1/T .. 62
5.1. Samples Before Annealing (Left) and After Annealing (Right) for XPS 68
5.2. Depth Profile of Cu (at%) .. 69
5.3. Depth Profile of Cu (at%) of XPS Sample #1 .. 70
5.4. Depth Profile of Cu (at%) of XPS Sample #2 .. 70
5.5. Depth Profile of Cu (at%) of XPS Sample #3 .. 71
5.6. Plot of ln (C) vs x² for the Diffusion Data for XPS Sample #1 72
5.7. Plot of ln (D) vs 1/T ... 73
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.</td>
<td>Si$_3$N$_4$/Si Sample on the Left and WO$_3$/Si$_3$N$_4$/Si Sample on the Right 74</td>
</tr>
<tr>
<td>5.10.</td>
<td>SIMS Profile of Si$_3$N$_4$/Si Sample .. 75</td>
</tr>
<tr>
<td>5.11.</td>
<td>SIMS Profile of WO$_3$/Si$_3$N$_4$/Si Sample ... 75</td>
</tr>
<tr>
<td>5.12.</td>
<td>SIMS Profile of Unannealed Cu/WO$_3$/Si$_3$N$_4$/Si Sample 76</td>
</tr>
<tr>
<td>5.13.</td>
<td>SIMS Profile of Annealed Cu/WO$_3$/Si$_3$N$_4$/Si Sample 76</td>
</tr>
<tr>
<td>5.14.</td>
<td>Structure of the As-deposited Blanket Films for TEM Analysis 78</td>
</tr>
<tr>
<td>5.15.</td>
<td>Cross-section TEM Image of the Sample 1, Cu$_2$O/Cu-WO$_3$/Si$_3$N$_4$/Si 79</td>
</tr>
<tr>
<td>5.16.</td>
<td>TEM Image (Left) and the EELS (Cu Mapping) of the Box (Right) 79</td>
</tr>
<tr>
<td>5.17.</td>
<td>HR-TEM Image of the Cross-section of Sample 1 ... 81</td>
</tr>
<tr>
<td>5.18.</td>
<td>TEM Analysis of the Sample 1 .. 81</td>
</tr>
<tr>
<td>5.19.</td>
<td>d-spacing Calculation of the Cluster in Figure 5.18b, d~2.134 Å 82</td>
</tr>
<tr>
<td>5.20.</td>
<td>d-spacing Calculation of the Cluster in Figure 5.18c, d~2.187 Å 82</td>
</tr>
<tr>
<td>5.21.</td>
<td>XRD Patterns of TEM Samples Shown in Table 5.3 .. 84</td>
</tr>
<tr>
<td>6.1.</td>
<td>Cu Concentration vs. Depth for Case 1 .. 87</td>
</tr>
<tr>
<td>6.2.</td>
<td>Cu Concentration vs. Depth for Case 2 .. 88</td>
</tr>
<tr>
<td>6.3.</td>
<td>Cu Concentration vs. Depth for Case 3 .. 89</td>
</tr>
<tr>
<td>6.4.</td>
<td>Cu Concentration vs. Depth for Case 4 .. 90</td>
</tr>
<tr>
<td>6.5.</td>
<td>Cu Concentration vs. Depth for Case 5 .. 91</td>
</tr>
<tr>
<td>7.1.</td>
<td>Idealized Cross-section of the Devices After Annealing 93</td>
</tr>
<tr>
<td>7.2.</td>
<td>Current-time Plots of Device 1 and Device 3 .. 95</td>
</tr>
<tr>
<td>7.3.</td>
<td>Optical Micrographs of (a) Device 1 and (b) Device 3 Post-Biasing 96</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>7.4.</td>
<td>(a) Optical Micrograph of the Device Post-Bridging, (b) SEM Image of the Same Device</td>
</tr>
<tr>
<td>7.5.</td>
<td>TEM Analysis of the Electrodeposit</td>
</tr>
<tr>
<td>7.6.</td>
<td>Bilayer Resistance Model</td>
</tr>
<tr>
<td>7.7.</td>
<td>Simplified Bilayer Resistance Model</td>
</tr>
<tr>
<td>7.8.</td>
<td>Simulation Result Showing Filament Length vs Time</td>
</tr>
<tr>
<td>7.9.</td>
<td>Simulated Cation Concentration vs Filament Length</td>
</tr>
<tr>
<td>7.10.</td>
<td>Current Density vs Filament Length</td>
</tr>
<tr>
<td>7.11.</td>
<td>Simulated Current Through the Entire Resistance Model</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Redox Reactions and Mass Transport of Ions in Programmable Metallization Cells

Redox reactions mean that there are reactions involving both reduction and oxidation of ions/atoms. Oxidation of atoms means gain of oxygen or loss of electrons which are described by equation (1.1) and equation (1.2) respectively. Reduction of ions means loss of oxygen or gain of electrons which are described by equation (1.3) and equation (1.4) respectively [1].

\[
\begin{align*}
\text{aM} + \text{bO}_2 & \rightarrow \text{M}_a\text{O}_{2b} \\
\text{M} & \rightarrow \text{M}^{n+} + \text{n}e^- \\
\text{M}_a\text{O}_{2b} & \rightarrow \text{aM} + \text{bO}_2 \\
\text{M}^{n+} + \text{n}e^- & \rightarrow \text{M}
\end{align*}
\]

where M denotes an element (usually a metal), e\(^-\) is electron, and a, b, n denote an integer.

Redox reactions are the core of electrodeposition which is defined as an electrolytic process where a metal is deposited at the cathode from a solution of its ions. This process, shown in Figure 1.1, is also commonly seen in solid state devices such as Programmable Metallization Cell (PMC) devices. Electrodeposition starts with positively biasing the anode material which is oxidizable. Atoms lose electron(s) and ionize which then drift towards the cathode under electric field within the solid solution (solid electrolyte film in PMCs). Then, when they reach the cathode, they get deposited by reduction to atoms which become immobile. If the cathode is chemically inert (the case of PMCs), the process is also reversible. In order to reverse the process, the anode is then negatively biased, and the
deposited atoms will get oxidized and transport back to the anode. When they reach the anode, they will be reduced and deposited on to the anode. Equation (1.2) is known as the anodic dissolution and equation (1.4) is known as the electrocrystallization in PMCs.

![Figure 1.1: The schematic of electrodeposition.](image)

Redox reactions in PMCs occur at the electrode/solid electrolyte interface. The current density for charge transfer at the interface can be described as Butler-Volmer equation [2]:

\[
J = J_0 \left[\exp \left(\frac{\alpha z q \eta}{kT} \right) - \exp \left(- \frac{(1 - \alpha) z q \eta}{kT} \right) \right]
\]

where \(J_0\) is the exchange current density, \(\alpha\) is the cathodic charge transfer coefficient, \(\eta\) is the electrochemical overpotential, \(z\) is the number of electrons, \(q\) is the electron charge, \(k\) is the Boltzmann constant and \(T\) is the temperature in Kelvin. For high cathodic potential \(\eta \gg kT/ne\), the equation becomes

2
$$\ln (J) = \frac{\alpha z q}{kT} \eta + \ln (J_0) \quad (1.6)$$

When compared to the volume/size of the electrolyte, the electrode/electrolyte interface is quite small. Due to this enormous difference, the switching kinetics in a PMC may be governed by the mass transport of the ions, especially when the ion migration is quite slow.

It is recognized that ion conduction in solid electrolytes is accomplished by ionic hopping. Ion transport within the solid electrolyte (SE) in PMCs can be explained by the electric field driven thermally activated Mott-Gurney model [3], [4]. For example, in the case of PMCs utilizing Ag-doped SE (can also be Cu-doped), Ag\(^+\) ions reside in potential wells in the electrolyte and can hop through these small barriers, changing its location. All of these barriers under no-bias have the same potential energy, therefore the ions can jump towards any of the surrounding wells. However, when there is applied voltage (i.e. existing electric field), the barrier heights become lower along a certain direction, hence dramatically increasing the chances of the ions moving in the direction of the electric field. This barrier lowering effect is called the Wannier-Stark ladder [5]. This process is shown in Figure 1.2.

![Figure 1.2: Ionic hopping barriers in Ag-doped amorphous chalcogenide showing the Wannier-Stark ladder.](image-url)
The ionic hopping is significantly affected by the electric field, E, and the electric field is defined as the potential drop in the solid electrolyte (SE), \(\Delta \Phi_{SE} \), across the film thickness, d.

\[
E = \frac{\Delta \Phi_{SE}}{d}
\]

(1.7)

The current density for hopping, then, can be defined as,

\[
J_{hop} = 2zqN_av \exp \left(-\frac{E_0}{kT} \right) \sinh \left(\frac{azqE}{2kT} \right)
\]

(1.8)

where \(J_{hop} \) is the ion current density, \(z \) is the number of charge, \(q \) is the charge of an electron, \(N_i \) is the concentration of cations, \(a \) is the mean hopping distance of the ions, \(\nu \) is the hopping frequency, \(E_0 \) is the height of the energy barrier, \(k \) is the Boltzmann constant, \(T \) is the temperature in Kelvin, \(E \) is the electric field. For high electric fields (\(E \gg 2kT/azq \)), \(\sinh \) behavior becomes an exponential and the equation can be written as,

\[
J_{hop} = 2zqN_av \exp \left(-\frac{E_0}{kT} \right) \exp \left(\frac{azqE}{2kT} \right)
\]

(1.9)

whereas for low electric fields (\(E \ll 2kT/azq \)), the dependence of \(J_{hop} \) on \(E \) becomes linear and the equation can be written as,

\[
J_{hop} = \frac{(zq)^2N_iE}{kT}a^2\nu \exp \left(-\frac{E_0}{kT} \right)
\]

(1.10)

where \(a^2\nu \exp \left(-\frac{E_0}{kT} \right) \) represents the diffusion coefficient.

1.2 Resistive Memory Technologies

There has been a search for new materials to be used in memory devices with the ongoing scaling of semiconductor devices which was first introduced by Gordon Moore in 1965 [6]. Constantly evolving devices such as memory devices promise higher density,
faster response, and lower power consumption [7]. Higher density enables more data storage for the same area, faster response means more computation for the same amount of time, and lower power consumption means longer battery life. After the long use of magnetic hard disk drives (HDD) and NAND Flash in the electronics industry [8], resistive memory technologies are promising to replace existing technologies in the future [9]. Devices such as phase-change random access memory (PCRAM) [10]–[13], spin-torque transfer random access memory (STTRAM) [14]–[16], and other resistive memory technologies [17]–[19] offer the industry novel non-volatile technologies. While all these technologies are based on the changes in resistance value of the cell, the physical mechanism of the resistance change is different.

Figure 1.3: Resistive switching effects and random access memory names.
The resistance change in a PCRAM occurs with thermal activation of the cell, where the phase of the material changes between amorphous and crystalline state [11]. While the resistance of the amorphous cell is high (programmed to be ‘0’), the resistance of the crystalline state is low (programmed to be ‘1’). In a STTRAM cell, the resistance change is based on switching the spin-torque transfer in the magnetic tunnel junction (MTJ) [20] and the cell stores the information according to the spin of the electron [21]. While the spin on the fixed layer remains unchanged, with the applied bias, spin on the free layer can be altered. When the spins of two layers are in the opposite direction, the resistance of the cell is high (programmed to be ‘0’). On the other hand, when the spins are in the same direction, the resistance of the cell is low (programmed to be ‘1’). The resistance change in a redox-related memory (Re-RAM) cell occurs with the formation and dissolution of a conductive filament when there is an applied bias [22]. So far for Re-RAM, three variants have been developed which are unipolar switching, anion-based bipolar switching and cation-based bipolar switching.

Unipolar switching occurs when the write and erase of the cell is done by the same polarity of applied voltage. For example, the resistance of the cell can be switched from high to low by a positive voltage, and this process can be reversed by a smaller positive voltage. Unipolar switching is reported in NiO$_x$-based devices [23]–[25], TiO$_x$-based devices [26]–[28], HfO$_x$-based devices [29], [30], TaO$_x$-based devices [31] and using La-SrTiO$_3$ perovskite thin films [32]. Other than NiO$_x$-based devices, unipolar behavior in devices is achieved by using high compliance currents.

Bipolar, unlike unipolar, switching occurs when the resistance state of the cell can switch back and forth high to low with opposite polarity of the applied voltage. In anion-
based bipolar switching devices, the resistance change occurs because of the drift of the oxygen anions (O\(^{2-}\)), hence they are based on valency change memory effect. These devices have been reported to utilize Al\(_2\)O\(_3\) [33], TiO\(_x\) [34]–[37], HfO\(_x\) [38]–[42], MoO\(_x\) [43], TaO\(_x\) [44]–[46] and SrTiO\(_3\) [47]–[49] for the switching layer. The electrodes of such devices are made of inert materials.

In cation-based bipolar switching devices, the resistance change is due to the growth and dissolution of a metallic filament. These devices are also called PMCs, electrochemical metallization (ECM) cells, or conductive bridging random access memory (CBRAM) for memory applications. During this process chemical redox reaction and metal ion transport occur and the drifting ions are typically Ag or Cu ions [50]. These ions come from the electrode material which is chemically oxidizable (anode), whereas the cathode is an inert material such as Pt, W or TiN. Some of the reported switching layers for PMCs are chalcogenide glasses (ChG) such as Ge\(_x\)Se\(_{1-x}\) [51]–[59] or Ge\(_x\)S\(_{1-x}\) [60]–[66], oxide

Figure 1.4: a) Unipolar switching and (b) bipolar switching.
electrolytes such as SiO$_x$ [67]–[73], WO$_3$ [74]–[78], Al$_2$O$_3$ [79]–[82] or GdO$_x$ [83], Ta$_2$O$_5$ [84]–[87] and a-Si [88], [89].

Figure 1.5: Illustration of the mechanism of resistive non-volatile switching in an Ag-ChG PMC. © 2016 IEEE. Reprinted with permission [59].

The filament growth in ChG-based PMCs, shown in Figure 1.5, is well studied and it is shown that filament growth occurs from the cathode towards the anode [50], [90] and this is due to the high ion mobility in chalcogenide glasses. However, many oxides possess low ion mobility compared to chalcogenide glasses and some reported that filament growth in oxides is in the opposite direction, from the anode to the cathode [89], [91], [92]. This behavior is believed to change the filament growth direction and proposed example of switching is shown in Figure 1.6.
1.3 Requirements for the Universal Non-Volatile Memory (NVM) Cell

The universal NVM cell should compare or improve the existing technologies. Flash at its current state suffers from high programming voltages (V_{wr}) and high programming times (t_{wr}). In order to improve upon that, programming voltages should be less than few volts to be better than Flash and ideally be around few mV to be compatible with CMOS. Programming speed of the ultimate NVM should be much better than Flash ($\sim 10 \, \mu s$), compete with DRAM specifications ($< 100 \, ns$) and come close to the speed of SRAM ($< 10 \, ns$). Read voltages, while being significantly lower than the write voltages, cannot be less than about one-tenth of the V_{wr} due to circuit design constraints. The read
time \((t_d) \) must ideally be shorter than \(t_{wr} \). Because the resistance state of the cell must be read quickly by small sense amplifiers, the read current cannot be less than 1 µA. Due to the use of these small sense amplifiers, a minimum ratio of 10 should be achieved between the on and off resistance values \((R_{OFF}/R_{ON}) \). The universal NVM cell should also at least compete or be better than Flash which has write cycles (endurance) between \(10^3 \) and \(10^7 \). And lastly, the data retention of the cell must be minimum 10 years and it should withstand thermal stress up to 85 °C while being stressed by small electrical pulses [94]. CBRAM, at its current state, shows extremely promising results regarding the requirements mentioned above [50], [52].

1.4 Versatility of PMCs and Their Applications

Versatility of PMCs is one of their great properties. They can be made in vertical, lateral and radial structures. The vertical structures are generally used as a memory cell as described above. The lateral structures can be used in radio frequency (RF) switches [95], optical switches [96], [97], microfluidic valves [98], tunable resonators [99], tuning elements in MEMS devices [100] and timing devices [101], [102]. Radial structures can be utilized as physical unclonable functions (PUFs) [103] due to its easy-to-evaluate but hard-to-predict nature.

The solid electrolyte layer is sandwiched between two metal electrodes in a vertical structure. PMC, initially, has a high-resistance state (HRS). However, when there is an applied positive voltage between the anode and the cathode, a conductive filament (CF) can be formed between the electrodes as shown in Figure 1.5 and 1.6. After the formation
of the CF, the resistance of the cell drops significantly which depicts the low-resistance state (LRS). Switching to LRS is known as the set (also known as “write” or “program”) process. The switching back to HRS is known as the reset (also known as “erase”) process where the biasing is reversed between the anode and the cathode. Vertical and lateral PMC structures are shown in Figure 1.7.

![PMC Structures](image)

Figure 1.7: (a) Vertical and (b) lateral PMC structures.

Using PMCs as timing devices is in the early stages of its development. It uses the PMC properties of non-volatility and filament growth. When the power is on for a circuit, the timing device will also be powered. Then, the conductive filament between the two electrodes will start to form. As the power is turned off, the filament will stop growing and retain its latest state. This is superior to the conventional solid-state relays as they do not retain their state when the power is off. The proposed structure is shown in Figure 1.8 and it is a lateral structure with a minor adjustment, the sensing electrode. The third electrode is designed and placed on to the lateral structure so that when needed it can measure the impedance of the device. The change in the filament will cause a change in the impedance.
reading. Because the filament will change its length only when the power is on, the impedance-lifespan can be calibrated, and the device can be used as a timer.

![Lateral PMC device structure with 3 electrodes.](image)

Figure 1.8: Lateral PMC device structure with 3 electrodes.

Ag-ChG memory devices offer great advantages thanks to its retention capabilities, low power consumption, fast switching, low cost and scalability. They have already been commercialized which shows that they can meet the industry requirements [62]. When memory applications are concerned, Ag-ChG devices show great properties. However, one of the main disadvantages of such devices is the difficulty to integrate them into integrated circuits (ICs). Ag and GeSe/S are not foundry compatible materials which means that they are not currently being used in IC fabrication. Low power consumption, low cost and non-volatility of PMCs enable them to be great candidates for RF switches [95]. But current PMCs do need some improvements. Requirement of very low resistance in LRS (because of the low insertion loss requirement) means that the CF must be thick enough. Thicker filaments, on the other hand, requires higher energy to be erased. The necessity of higher
energy can create problems with Joule heating effect which can result in some remaining metals, which then will create problems with cycling. PUF applications of PMCs are also in the early stages of development. They offer low power consumption, strong attack resistance and robustness which make them strong candidates to be used in security electronics. For PUF applications, the radial devices seem to be the best structure because multiple devices can be formed at the same time while the dendrites will all be unique showing different optical properties. Radial structure is shown in Figure 1.9.

Copper-doped SiOₓ (Cu-SiOₓ) PMC devices also exhibit great capabilities and applications such as non-volatile memory cell, selector behavior, multilevel cell (MLC) capabilities and electronic synapse for neuromorphic computation [59], [73], [76]. Moreover, these materials are already being used in the back-end-of-line (BEOL)
processing which means that they are foundry compatible, so that the inclusion of such applications will be cost effective. More detail on the Cu-SiO\textsubscript{x} system is presented in Chapter 3.

1.5 Bilayer Switching in PMCs

In addition to single switching layers mentioned in 1.3, there are memory cells that utilize bilayers as the switching layer. Some of the bilayer combinations presented in the literature are Cu\textsubscript{x}O/SiO\textsubscript{2} [104], TiO\textsubscript{x}/TaSiO\textsubscript{y} [105], CuInO\textsubscript{2}/CuO [106], GeSe\textsubscript{x}/TaO\textsubscript{x} [107], [108], Cu\textsubscript{x}O/Cu\textsubscript{x}S and SiO\textsubscript{2}/Cu\textsubscript{x}S [109], GeSe\textsubscript{x}/SiO\textsubscript{x} [110], CuGeTe/Al\textsubscript{2}O\textsubscript{3} [111], Cu-MoO\textsubscript{x}/GdO\textsubscript{x} [112]. Classification of the resistive switching effect in the bilayer devices mentioned above is the electrochemical metallization effect which means that the resistive switching is due to the growth and dissolution of a metallic filament. Because these bilayers either have copper compounds with metal electrodes deposited on top; or they do not have copper compounds, but they have copper as the active electrode, the metallic filament is copper. The compounds such as Cu\textsubscript{x}O, CuGeTe are believed to be the ion supply layer in the devices without a Cu electrode. In devices that have Cu\textsubscript{x}O as one of the bilayers and Cu as a top electrode, Cu\textsubscript{x}O is believed to assist the ionization process. In other bilayer devices without copper compounds such as TiO\textsubscript{x}/TaSiO\textsubscript{y}, GeSe\textsubscript{x}/TaO\textsubscript{x} and GeSe\textsubscript{x}/SiO\textsubscript{x}, one layer is used as a buffer layer. This improves switching performance due to filament length confinement. Furthermore, these buffer layers help regulate the overgrowth of the filament.

As mentioned previously in 1.4, PMCs are versatile devices that can be in different configurations and can be used in different applications. Lateral PMCs can also utilize
bilayers such as Cu$_2$O/Cu-WO$_3$ or Cu$_2$O/Cu-SiO$_x$ which show great promise to be used for various applications. Annealing the deposited stack of Cu/WO$_3$ or Cu/SiO$_x$ in air at low temperatures without a capping layer results in Cu$_2$O/Cu-WO$_3$ and Cu$_2$O/Cu-SiO$_x$ respectively. This is due to Cu being oxidized from the top and its diffusion at the Cu/WO$_3$ or Cu/SiO$_x$ interface. This offers a few advantages for the PMC. First of all, oxidizing from the top ensures that there will be no metallic Cu left on the surface that would cause the devices to short. Moreover, the as-deposited structure (pre-annealing) can have thicker deposited Cu layer that enables better roughness-to-deposition thickness ratio and uniform doping in the WO$_3$ or SiO$_x$ layer during annealing. The resulting Cu$_2$O thickness and the Cu concentration in the WO$_3$ or SiO$_x$ layer can be controlled by the annealing conditions and the deposited thickness of Cu which both play a role in switching.

The following chapters of this dissertation consist of some introductory information about the material characterization tools used in this dissertation, analysis of the effect of the counter (bottom) electrode material and the annealing conditions on the Cu-SiO$_x$ vertical devices, oxidation of copper at low temperatures including oxidation kinetics, diffusion of copper in WO$_3$, oxidation and diffusion model built in Matlab to assist fabrication of lateral PMC devices using Cu-WO$_3$ system, and preliminary results of lateral PMC devices utilizing the bilayer Cu$_2$O/Cu-WO$_3$ as the switching medium.
CHAPTER 2
INTRODUCTION TO MATERIAL CHARACTERIZATION

2.1 X-Ray Diffraction (XRD)

XRD is widely used to determine the crystal structure of samples where the result of the analysis does not depend on the composition of the sample which was first discovered in 1912 by Max von Laue [113]. The beam is a relatively large (50–500 µm) Cu Kα x-ray with the λ=0.15418 nm (8.04 keV). The incident beam goes under coherent scattering, which means that the angle and the energy of the beam do not change during the interaction. During the interaction, matrix electrons, also known as scatterers, produce an array of spherical waves. These waves cancel out one another in most directions except for the ones that add constructively under Bragg’s Law:

\[n\lambda = 2d \sin \theta \]

(2.1)

where \(n \) is an integer, \(\lambda \) is the wavelength of the beam, \(d \) is the spacing between the planes in atomic lattice, and \(\theta \) is the angle between the incident beam and the scattering plane [114]. After diffraction, x-rays are collected, and the structure/phase information can be obtained from the intensity-2θ plots [115].

There are two widely used XRD configurations. The first one, 0:0, utilizes a fixed sample and the beam rotates with \(\theta \)°/min while the detector rotates at 0 °/min. The other one, 0:2θ, uses a fixed beam and the sample rotates with \(\theta \)°/min while the detector rotates at 2θ °/min. Less commonly used detector scan enables the researchers to focus the beam near the surface where thin film characterization is of interest.
2.2 X-Ray Reflectivity (XRR)

XRR is one of the most useful material characterization tools for metrology. It is used to determine the density, the thickness and the roughness of multilayer thin films. Incident beam, usually Cu Kα, has a very low incident angle (ω) up to 3 degrees and is reflected from the sample. The reflected intensity will deviate from that of the incident beam according to the Fresnel reflectivity [116] and is analyzed to determine the layer properties.

Proper fitting of data is difficult when the average roughness of layers exceeds 3 nm. In order to determine thickness, the reflectivity fringes must be observed. Very rough surfaces may make these fringes disappear; hence the thickness determination may become challenging. XRR is very sensitive to surface layers due to low penetration of the incident beam and the low incidence angle [117].

2.3 X-Ray Photoelectron Spectroscopy (XPS)

XPS is a surface characterization tool that is based on Einstein’s photoelectric effect [118]. The incident beam is made of photons (x-rays specifically) usually Al Kα (1486.6 eV) or Mg Kα (1253.6 eV). When the incident beam hits the sample, core electrons are excited to high energy states above the vacuum level. The core hole, with the core binding energy Eb, later decays either through a photon emission or an Auger process. The detector then collects the emitted core electrons and measure their kinetic energy (Ek).

\[E_k = h\nu - E_b - \phi \quad (2.2) \]
where h is the incident beam energy and ϕ is the work-function of the spectrometer. After measuring the kinetic energy, given the fact that the incident beam energy is known, the software calculates the binding energy. This allows the researchers to determine what type of bond exists on the surface, often providing insight about the oxidation state. The collected electrons have low energies, typically lower than 1.5 keV. Because the electrons have low energies, ultra-high vacuum (UHV) inside the chamber must be achieved. Even though synchrotron sources enable scientists to use continuous photon energies for the incident beam, they are not widely available.

2.4 Auger Electron Spectroscopy (AES)

In AES, the incident beam is composed of electrons with energies typically less than 20 keV. After the incident electron knocks off the core level electron, internal transition occurs, and sometimes instead of an x-ray coming off the sample, the sample ejects an Auger electron [119]. Then, these electrons can be detected to obtain elemental information.

Auger electrons have energies less than 2 keV, usually around 500 eV, with a typical escape depth of few nanometers from the surface, thus providing to be an excellent surface characterization tool. Due to the low energies of the Auger electrons, the chamber must be kept in UHV. Because there has to be at least three electrons in order for auger process to occur, the lightest detectable element is Li. Furthermore, due to the use of an electron incident beam, the lateral resolution of AES tools can be as good as few nanometers.
2.5 Secondary Ion Mass Spectroscopy (SIMS)

SIMS is one of the most surface sensitive tools to analyze composition of thin films. A high energy primary ion beam is focused on the sample and sputters the sample layer by layer. Ejected secondary ions (coming from the sample matrix) are then collected by a mass spectrometer and their mass/charge ratios are analyzed. Primary ion beam is usually Ar\(^+\) ions with an energy of several keV, while some other SIMS instruments utilize Xe\(^+\), O\(^-\), O\(_2^+\), and C\(_{60}^+\). Particularly C\(_{60}^+\) is gaining more and more popularity because its depth resolution of sputtering is much better than other beams due to the low damage and the partitioning of the energy [120].

2.6 Electron Microscopy

The two most popular electron microscopy tools are scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In SEM, there is a variety of modes that is available to choose from such as secondary electron imaging (SEI), backscattering electron imaging (BEI), energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), and etc. The incident beam is composed of electrons which has energies up to 30 keV, and since the beam utilizes electrons it has a beam spot in the range of nanometers. The information in SEI is gathered from the secondary electrons coming from the matrix which have very low energies ranging from 1 to 50 eV. SEI mode has a depth resolution of about 1 nm and lateral resolution of 0.5 nm – 5 nm which is great for surface topography of any solid sample. BEI mode is excellent to use for surface imaging especially when there is a Z-contrast on the surface. Heavier elements will appear brighter as they make more electrons scatter back compared to lighter elements. The information in
EDS and WDS is obtained from the x-rays coming out of the matrix with energies of 1-20 keV. The difference between the two modes is on their output plot. EDS gives the information related to the energy of the x-rays, while WDS presents the wavelength of the collected x-rays. Because the information is obtained from x-rays, EDS and WDS modes have an escape depth (depth resolution) larger than SEI mode has. The performance of an SEM tool, which is the combination of the lateral resolution and signal-to-noise ratio, is determined by the probe current and its diameter [121].

TEM also utilizes electrons as primary beam, and the data is collected from the electrons that pass through the sample. Since the primary beam energy is known and the energy of the electrons at the other end can be measured, we can determine the material on the sample. The beam energy of the electrons is much higher compared to SEM, typically in the hundreds of keV. By using TEM in various modes such as contrast imaging, or diffraction; thickness of the material, phase of the material, types and position of defects, etc. can be determined [122].

When the sample is thin enough, while being very challenging to prepare it, obtaining electron diffraction (ED) patterns becomes possible. These patterns can be obtained from volumes as small as 1 nm3 after short exposure times (a few seconds). Crystal defects, lattice parameter measurements, local strain and crystal orientations can be obtained using convergent-beam ED and large-angle convergent-beam ED [123].
2.7 Ellipsometry

Ellipsometry is a contactless, non-destructive technique that measures the changes in polarization of the reflected light with respect to the incident light [124]. It is mainly used to determine the thickness of dielectric films, line width and optical constants of films [125] while advanced ellipsometry techniques such as spectroscopic ellipsometry (SE) is also reported to be used for measuring the temperature during semiconductor processing [126]. SE measurements advanced the range of ellipsometry by using more than one wavelength [127]. SE also allows the users to change the angle of incidence which offers another degree of freedom for optimization of a material parameter of interest [128].

2.8 Atomic Force Microscopy (AFM)

AFM, first proposed in [129] by G.K. Binnig in 1986, utilizes a very sharp probe which scans the area of interest on a surface that produces a very high resolution image of the sample. The height resolution can be as low as sub-nanometer depending on the sharpness of the probe tip and the technique. The probe sits near the end of a cantilever arm which scans the area of interest and the topographic features are obtained as the probe interacts with the surface features. During the scan, a light source (laser) is focused on the probe which is then deflected on to a photodetector. Common modes of AFM are contact mode and tapping mode. While contact mode is considered to be ‘static’ as it is constantly in contact with the surface, the tapping modes, ‘dynamic,’ retracts and engages with the surface as the cantilever is oscillated close to its resonant frequency. Contact mode creates more lateral forces on the probe which can damage the tip. Therefore, it is better to use the AFM in tapping mode when the sample has steep edges [130].
3.1 Introduction to PMC Device Performance

Vertical PMC devices, also known as electrochemical metallization (ECM) cells utilize, for the most part, Cu or Ag as the active electrode (AE), or top electrode (TE), due to their high ion mobility in solid electrolytes (SE). One of the main applications of vertical PMCs is their memory application (CBRAM). As an emerging memory technology, it only makes sense for these devices to be made of materials that are foundry compatible. Silicon oxide (SiO_x, $x \leq 2$) has been used in the CMOS fabrication for many decades, however thermally grown SiO_2 is not the “perfect” SE layer for PMC devices [131], [132] as the oxide is very dense and requires high energy to switch. Foundry-compatible PMCs require a porous switching layer for Cu to drift and diffuse more easily as the filament formation and dissolution speed and energy consumption are crucial parameters. Back-end-of-line (BEOL) compatible silicon-rich oxide, SiO_x where $x < 2$ (SRO, silica), appears to be much more suitable for this application. Comparing Ag and Cu in silica, Ag makes weaker bonds to the silica matrix compared to Cu, therefore Cu has lower mobility [133]. In this sense, Ag is a better AE for fast switching. But, Cu is already being used in the BEOL process as the metal interconnect material [134] making it cost effective. Cu-silica PMCs also exhibit good enough switching speed [50]. Electrochemically inert metals are best suited for use as counter electrode (CE), or bottom electrode (BE), as they do not go under redox reactions. However, recent studies have shown that platinum group metals (PGM) such as
Pt and Pd migrate in SiO₂ under electric field [135], [136]. Therefore, research on suitable materials for CE need to be conducted more in depth.

As previously explained in Chapter 1, PMCs operate under redox reactions at the electrode/SE interface and ion transport of the AE ions through the SE. The slowest of the three (because there are two electrode/SE interfaces) will limit the overall rate. Moreover, the water molecules (moisture), OH⁻ (hydroxyl ions) and H⁺ (protons) can dramatically impact the electroforming at the interfaces [70]. Effect of moisture is also different for different electrodes as they have different electrocatalytic activities towards moisture [137]. In addition to the effects of moisture on the CE, electroforming can also be influenced by roughness of the electrode [138] and nucleation process [139].

Density of the silica layer, another important parameter, can be adjusted by tweaking fabrication parameters. One of the easiest ways to obtain different densities is depositing the silica layer by using different deposition techniques, e.g. e-beam evaporation, sputtering or various chemical vapor deposition (CVD) techniques. In order to first determine which deposition technique to use as less dense silica is desired, two different tools were used: e-beam evaporation and remote plasma CVD (RPCVD). The density of the e-beam evaporated and the RPCVD silica were measured using X-ray reflectivity (XRR) in PANalytical X’Pert PRO MRD. E-beam evaporated silica resulted in a less dense silica (2.08 g/cm³) compared to RPCVD silica (2.20 g/cm³) which were both less dense than the theoretical density value of the thermally grown α-quartz SiO₂ (2.65 g/cm³). Therefore, e-beam evaporation was chosen to deposit the silica layer for devices.

There are two main ways to dope the silica layer with copper, another important step for optimization, which are “delta-doping” and “electrode-diffusion-doping”
(displayed in Figure 3.1). Because the Cu layer in electrode-diffusion-doping is exposed to air, a capping layer must be deposited on top of it before annealing, which is then removed post-annealing. It can also be annealed in vacuum to avoid oxidation of Cu, but this may be more challenging. Doping the SE layer with the AE material is done to improve the device performance as introducing AE material in the SE host takes care of the initial step of electrochemical oxidation of the AE [137]. It is also important to note that oxidation of the TE is unwarranted for these devices as the primary application is the memory application. Delta-doping is usually used for very thin SE layers (< 20 nm). Because the thickness of the silica layer was chosen to be 100 nm, electrode-diffusion-doping method was chosen.

![Figure 3.1: Cu doping techniques in Cu-SiOₓ PMCs. (a, b) As-deposited, (c) and (d) post-annealing. Delta-doping (a→c), electrode-diffusion-doping (b→d).](image-url)
In order to study the effects of the bottom electrode material, two different materials, W and Ni, were deposited while all the other fabrication parameters such as deposition technique and layer thicknesses were kept the same. Then, in order to find out the effect of the annealing temperature on the PMCs, the cathode material was kept the same, W, and the annealing temperature was varied from 400 °C up to 550 °C in 50 °C increments for 10 minutes. The fabrication process is detailed below in Figures 3.2-8. The devices were characterized electrically using an Agilent 4156C, and cross-sectional TEM images were obtained along with EDX analysis using JEOL ARM200F. TEM sample preparation was done by focused ion beam (FIB) cut.

3.2 Fabrication of Cu-SiOₓ PMC Devices

Starting with a 4-inch Si wafer, a 200-nm Si₃N₄ was deposited using low-pressure chemical vapor deposition (LPCVD). This silicon nitride layer was used to isolate the wafer from the PMC. Then, the bottom electrode (60 nm), either W or Ni, was sputtered using Lesker PVD 75, shown in Figure 3.2. Then the cathode was patterned using photolithography, shown in Figure 3.3. Then, the cathodes were created by wet etching (W: H₂O₂ + H₂O; Ni: HNO₃ + H₂O), shown in Figure 3.4.

![Figure 3.2: W (Ni) deposited on top of Si₃N₄/Si by sputtering.](image-url)
After the creation of cathodes, 100-nm switching layer, silica, was deposited using e-beam evaporation, shown in Figure 3.5. Then, 150 nm of Cu, was deposited using e-beam evaporation, which was then patterned by photolithography, and wet-etching ($\text{NH}_4\text{OH}+\text{H}_2\text{O}_2+\text{H}_2\text{O}$) was used to create the anode, shown in Figure 3.6.
After the deposition and patterning of the Cu anode, a 500 nm-thick capping silica layer was deposited on top by e-beam evaporation, shown in Figure 3.7. This step was done in order to prevent the oxidation of the copper layer during annealing. Instead of this step, the annealing could also be carried out in a vacuum chamber as copper does not oxidize under vacuum pressure.

The devices were annealed at 400 °C - 550 °C for 5 or 10 minutes with continuous N₂ gas flow. After the annealing process, the devices, which were in a 32 x 32 crosspoint array, were patterned one last time by photolithography, and wet etching (HF + H₂O) was done for contact pad exposure. The idealized cross-section of the final structure is shown in Figure 3.8.
3.3 Electrical Characterization

Forming (electroforming) voltage (V_F) and initial resistance (read at 10 mV) of four annealed devices at 450 °C and 550 °C for 5 and 10 minutes were measured (32 total measurements). PMCs with Ni cathode (Ni-based devices) had much higher V_F than PMCs with W cathode (W-based devices) for both thermal conditions. The results are summarized in Figures 3.9-12. Detailed discussion on the electrical results is given in 3.6.

Electroforming is a one-time necessary event for reversible switching. After electroforming, set process of devices generally requires much less power. In order to overcome the hurdle of high V_F, the size of the nearby circuits and transistors needs to be larger. This can lead to lower memory density as the available area for memory devices will shrink. Because electroforming is a one-time event, sacrificing memory density due to high V_F is inefficient. Therefore, devices with lower V_F are more desirable in order to maximize the performance of the chip.
Figure 3.9: Forming voltage vs. annealing time for devices annealed at 450 °C.

Figure 3.10: Forming voltage vs. annealing time for devices annealed at 550 °C.
Figure 3.11: Initial resistance vs. annealing time for devices annealed at 450 °C.

Figure 3.12: Initial resistance vs. annealing time for devices annealed at 550 °C.
A retention test (1200 seconds, read at 50 mV) was also done on the device with tungsten as CE which was annealed at 500 °C for 10 minutes and it is presented in Figure 3.13. Average resistance of the LRS and HRS was about 4.3 kΩ and 40 kΩ respectively in Figure 3.13. \(R_{OFF}/R_{ON}\) of about 10 was achieved which is one of the important parameters. Figure 3.14 shows the I-V characteristics of the forming process of the W-based devices for different annealing temperatures. \(V_F\) increases with annealing temperature until 500 °C and then decreases significantly at 550 °C. Assuming that the effect of process variation is negligible at this point, it is clear that the annealing process caused differences in the electrical results.

Figure 3.13: Retention test on W/SiO\(_x\)/Cu device annealed at 500 °C for 10 min.
3.4 Material Characterization (TEM & EDX)

In order to further understand the effects of annealing, TEM imaging with EDX was utilized. The results are shown in Figures 3.15-21.

![Figure 3.15: (a) TEM cross-section image of Ni/SiO_x/Cu/SiO_x annealed at 550 °C for 10 minutes, (b) EDX line scan result of the dashed line.](image)

Figure 3.14: I-V characteristics of the forming process in W/SiO_x/Cu PMCs.
TEM and EDX analysis, Figures 3.15-16, showed Cu diffusion into the capping SiOₓ and the switching SiOₓ layer following annealing in both cases. Furthermore, for both types of devices, Cu diffused through the SE and resided at the CE/SE interface. This is most likely due to the higher density of defects at the interface. EDX also showed that there is more Cu within the SE (even though it is a small difference) for the W-based device compared to the PMC with Ni as CE. Higher Cu concentration in W/SiOₓ/Cu PMC explains both the lower initial resistance and the lower forming voltage compared to the Ni/SiOₓ/Cu PMC. The only difference between the two PMCs were the cathode material. Possible explanation of the significant differences is given further in 3.6.

Higher magnification TEM image of the W/SiOₓ/Cu annealed at 550 °C for 10 minutes (Figure 3.17) along with the EDX line scan show the Cu island formation at the Cu/SE interface. This annealing condition resulted in very small V₉ values ~ 0.25 V and it is believed that these islands play a role in this dramatic decrease in the V₉ values. It is
clear in Figure 3.20 that while annealing at 550 °C instigates Cu island formation at the Cu/SiOₓ interface for the W/SiOₓ/Cu, annealing at 400 °C does not. Cu islands also did not form for the Ni/SiOₓ/Cu device that was annealed at 550 °C for the same duration.

Figure 3.17: (a) TEM cross-section image of W/SiOₓ/Cu annealed at 550 °C for 10 minutes, (b) EDX line scan result within the dashed circle.

Figure 3.18: (a) TEM cross-section image of W/SiOₓ/Cu/SiOₓ annealed at 400 °C for 10 minutes, (b) EDX line scan result of the dashed line.

TEM and EDX analysis of W-based PMCs annealed at 400 °C is displayed in Figures 3.18 and 3.19. Compared to the cells annealed at 550 °C, Cu diffusion into the SE is much less,
if at all. Given that the V_F of the devices annealed at 400 °C is larger than the devices annealed at 550 °C, this behavior was expected.

Figure 3.19: (a) TEM cross-section image of W/SiO$_x$/Cu/SiO$_x$ annealed at 400 °C for 10 minutes, (b) EDX line scan over the switching layer.

Figure 3.20: TEM cross-section image of the devices annealed for 10 minutes. (a) W/SiO$_x$/Cu at 400 °C, (b) W/SiO$_x$/Cu at 550 °C and (c) Ni/SiO$_x$/Cu at 550 °C.

3.5 Statistical Analysis of Forming Voltage

The statistical analysis of the V_F results was carried out by the software JMP. The analysis includes the analysis of variance (ANOVA) table, effects estimate summary for the factors, ranking of importance of factors and normal probability plot that can help
explain the effects better. Note that the design is replicated 4 times and the numbers at each corner of the cube plots denotes the average of all replicates for that treatment combination. CE material (W and Ni) is not used as an independent variable (IV) as having it as an IV violates the assumption of equal variances.

The cube plot for the 2^2 design with 4 replicates for the PMCs with W as the CE is shown in Figure 3.21. Table 3.1 and 3.2 show the ANOVA table and the effect estimate summary respectively. It is clear from Table 3.2 that both of the main effects, temperature and time, and the interaction of them are statistically significant.

![Cube plot, CE: W (2^2 design replicated 4 times).](image)

Table 3.1: ANOVA (CE: W)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>16.663825</td>
<td>5.55461</td>
<td>237.588</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>0.280550</td>
<td>0.02338</td>
<td>Prob > F</td>
</tr>
<tr>
<td>C. Total</td>
<td>15</td>
<td>16.944375</td>
<td></td>
<td><.0001*</td>
</tr>
</tbody>
</table>

Table 3.2: Effect Estimate Summary (CE: W)

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|-------------------------------|-----------|------------|---------|-----------------|
| Intercept | 1.54375 | 0.400914 | 3.85 | 0.0023* |
| Temperature | 0.004225 | 0.000765 | 5.53 | 0.0001* |
| Time | -0.297 | 0.01529 | -19.42 | <.0001* |
| (Temperature-500)*(Time-7.5) | -0.00534 | 0.000306 | -17.46 | <.0001* |

The ranking of the importance of the factors by the analysis is given in Table 3.3 and it shows that annealing time is the most important variable followed by the interaction of time and temperature and the least important factor is the annealing temperature. Normal probability plot (Figure 3.22) shows that the data is adequately described by normal distribution.

Table 3.3: Ranking of the Importance of the Factors (CE: W)

<table>
<thead>
<tr>
<th>Source</th>
<th>LogWorth</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>9.707</td>
<td>0.00000</td>
</tr>
<tr>
<td>Temperature*Time</td>
<td>9.170</td>
<td>0.00000</td>
</tr>
<tr>
<td>Temperature</td>
<td>3.884</td>
<td>0.00013</td>
</tr>
</tbody>
</table>
Figure 3.22: Normal probability plot for V_F (CE: W).

The cube plot for the 2^2 design with 4 replicates for the PMCs with Ni as the CE is shown in Figure 3.23. Table 3.4 and 3.5 show the ANOVA table and the effect estimate summary respectively. It is clear from Table 3.5, unlike the W-based PMCs, only the interaction between annealing time and temperature is statistically significant.

Figure 3.23: Cube plot, CE: Ni (2^2 design replicated 4 times).
Table 3.4: ANOVA (CE: Ni)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>58.7075</td>
<td>19.5692</td>
<td>5.2878</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>44.4100</td>
<td>3.7008</td>
<td>Prob > F</td>
</tr>
<tr>
<td>C. Total</td>
<td>15</td>
<td>103.1175</td>
<td></td>
<td>0.0149*</td>
</tr>
</tbody>
</table>

Table 3.5: Effect Estimate Summary (CE: Ni)

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|--|----------|-----------|---------|------|
| Intercept | 10.15 | 5.044128 | 2.01 | 0.0672|
| Temperature | 0.01275 | 0.009619 | 1.33 | 0.2097|
| Time | -0.305 | 0.192376 | -1.59 | 0.1389|
| (Temperature-500)*(Time-7.5) | -0.0131 | 0.003848 | -3.40 | 0.0052*|

The ranking of the importance of the factors by the analysis is given in Table 3.6 and it shows the interaction of annealing time and temperature is the most important (the only significant) factor. Normal probability plot (Figure 3.24) shows that the data is adequately described by normal distribution.

Table 3.6: Ranking of the Importance of the Factors (CE: Ni)

<table>
<thead>
<tr>
<th>Source</th>
<th>LogWorth</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature*Time</td>
<td>2.282</td>
<td>0.00522</td>
</tr>
<tr>
<td>Time</td>
<td>0.857</td>
<td>0.13885^</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.678</td>
<td>0.20968^</td>
</tr>
</tbody>
</table>

^ denotes the effects with containing effects above them
3.6 Discussion

It is interesting to see that the results of the statistical analysis show that the factors and their impact on the forming voltage results differ between the two CE materials. When PMCs have tungsten as the CE, annealing temperature, annealing time and the interaction between them all have significant impact on the V_F. However, when the PMCs have nickel as the CE, only the interaction between the annealing temperature and time shows up as the significant factor. This means that it was easier to impact the V_F of W-based devices by tweaking the annealing conditions, but for Ni-based devices, careful adjustment of both needed to be done.

The only difference was the CE materials and the large difference between the V_F values can be explained due to this difference. Sputtering of the CE will result in different surface roughness at the CE/SiO$_x$. Because W has a higher melting temperature (3422 °C)
than the melting temperature of Ni (1455 °C), W layers will have a much rougher surface [140]. This increase in roughness suggest greater self-shadowing effects during the SiO\textsubscript{x} evaporation [141] and there could be more columnar structures within the SE [142]. Because the e-beam evaporation of the SE was done at room temperature, well below the temperature that would assist with the surface diffusion and enhance uniformity [143], [144], this effect could be even further enhanced. These columnar structures within the SE provide favorable regions for the filament formation [145] and result in less dense (more porous) regions. Even though increased porosity has been shown to decrease local Cu2+ mobility in materials such as SiCOH [146], [147], in SiO\textsubscript{x} thin-film PMCs, which are also columnar, the grain boundaries significantly enhances Cu2+ mobility [148]–[150]. Also, more moisture can be absorbed in these less dense regions which serves as “dissolving agent” improving ion mobility [145]. Both electrodes were created by wet etching which can lead to moisture related defects (H+ and OH-) in the SE [131] coming from the electrode/SE interfaces. Another important role of moisture is to provide the counter charge reaction (equation 3.1) at the SE/CE to Cu2+ ionization happening at the AE/SE interface to electroform or set the device [151].

\[2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^- \quad (3.1)\]

This effect of moisture on the \(V_F\) decreasing with density was also previously reported for Cu/Ta\textsubscript{2}O\textsubscript{5}/Pt and Cu/SiO\textsubscript{2}/Pt devices [70]. Furthermore, the columnar structures in the SE were also stated as the preferred location for filament formation and AE material-rich regions in Ag/Ge\textsubscript{40}S\textsubscript{60}/Pt PMCs [66].

It is also clear that different annealing conditions also lead to different \(V_F\) values. It is expected that higher annealing temperatures can lead to densification of the SiO\textsubscript{x} layer.
and reduction of defects [153], both of which can lead to increase in V_F values. Extended annealing time can also lead to densification of the SiO$_x$ layer by promoting Si-O cross linkage [152]. This effect, in fact, was observed in Cu/sputtered-SiO$_2$ by XRR measurements in PMC devices up to 600 °C [154]. Prolonged annealing and/or higher annealing temperatures can not only densify the SiO$_x$ layer, but also can enhance Cu diffusion into the SE [67]. These two will lead to conflicting behaviors in the expected V_F shifts. Puthen Thermadam et. al. [67] investigated the effects of annealing temperature on Cu diffusion in the e-beam SiO$_x$ at higher temperatures, 560°C – 720 °C, and found out that Cu concentration in the SiO$_x$ increased with annealing temperature. It is clearly seen in Figure 3.14 that increased annealing temperature results in rise in V_F from 400 °C to 500 °C, and then a drastic decrease at 550 °C for 10-minute annealing duration. Therefore, it is believed that the effect of the densification of the SiO$_x$ layer is more pronounced than increased Cu diffusion in the temperature range of 400°C - 500 °C. But, annealing at 550 °C for 10 minutes, Cu diffusion is greatly enhanced which lowers the V_F. In fact, this effect can evidently be seen in Figure 3.17, 3.20a and b where annealing at 550 °C led to significantly more Cu in the SiO$_x$ and Cu island formation at Cu/SiO$_x$ interface for W-based device. When the annealing time was only 5 minutes, the impact of densification was still the dominant factor over Cu diffusion.

CE material and annealing conditions also influence the initial resistance of a PMC. Initial resistance of a cell should be dictated by the resistance of the SiO$_x$ layer as the resistance of both electrodes will be much smaller. Moreover, increased Cu inclusion in the SiO$_x$ will further decrease the initial resistance. W-based devices have lower initial resistance values compared to the Ni-based devices. As discussed earlier, TEM and EDX
results show more Cu in the SiO$_x$ layer for W-based devices. Also, they are prone to having more defects in the SiO$_x$ layer. When large number of defects cluster together in certain regions, TEM studies show that Si nanocrystals can form in the SiO$_x$ [155]–[157], and this also can lead to drastic reduction in the initial resistance. Figure 3.11 shows that annealing at 450 °C for different durations does not significantly alter the initial resistance value. However, when annealed at 550 °C, W-based devices show increase in the initial resistance with increased annealing time unlike the devices with Ni as the CE which display a decrease. Higher annealing temperature, for W-based devices, instigates Cu island formation at the AE/SE interface. Given that the W-based devices would possibly have more columnar structures as discussed earlier, this island formation (“clustering”) is conceivably due to Cu gathering together in these defective spots instead of more uniform doping. This clustering causes a very thin layer (~5-10 nm) near the AE/SE to have low resistance but leads to higher resistance throughout the rest of the SE which would still dominate the overall initial resistance leading to higher resistance values.

Because Cu/SiO$_x$/Ni devices result in significantly larger V_F values, W is the recommended CE here for low-power applications. Further improvements, however, can be made if Ni is the desired material for CE. Such improvements can be made by optimizing the annealing conditions such as changing the annealing temperature range and/or duration. More research can also be done to check the effects of the different gases used during annealing as the gas ambient is shown to have an impact [158] as well. Moreover, different thickness for the SE layer can be considered as the V_F value should decrease with the thickness of the SE [159].

43
4.1 Brief Review of Copper Oxidation

Copper (Cu), Copper (I) Oxide (cuprous oxide, cuprite – Cu$_2$O) and Copper (II) Oxide (cupric oxide, tenorite – CuO) are some of the widely used materials. Copper is used in the semiconductor industry as the interconnect material due to its lower resistivity [160]. Cu$_2$O has been extensively studied and used in large-area electronics such as solar cells [161], spintronics [162] and catalysis [163], while CuO gained interest in photo-thermal and photoconductive applications [164] as well as high temperature (T$_c$) superconductivity [165]. Cu$_2$O has a cubic structure and it is a p-type semiconductor with a bandgap in the range of 1.8 – 2.5 eV, while CuO has a monoclinic structure and it is a p-type antiferromagnetic semiconductor with a bandgap in the range of 1.2 – 2.0 eV [166], [167]. Copper can oxidize, although slowly, even at room temperature [168] and this is one of the main obstacles in the nanoelectronics. But, due to the versatility in applications, Cu-based materials attract more and more researchers. For further data, the standard thermodynamic properties of Cu$_2$O and CuO are given in Table 4.1 [169].

Table 4.1: Standard Thermodynamic Properties of Cu$_2$O and CuO.

<table>
<thead>
<tr>
<th>Formula</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/K mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO</td>
<td>-157.3</td>
<td>-129.7</td>
<td>42.6</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>-168.6</td>
<td>-146.0</td>
<td>93.1</td>
</tr>
</tbody>
</table>

Stable Cu-oxides can be found in two forms in nature, Cu$_2$O and CuO, while there are two other reported unstable forms, Cu$_3$O$_2$ and Cu$_4$O$_3$ [170], [171]. There are a few factors that control which Cu-oxide will be the oxidation product, but main two are
temperature and oxygen partial pressure [172]. Figure 4.1 shows the Cu-O phase formation in terms of temperature and oxygen partial pressure for samples annealed in air (past 500 °C combination of Cu$_2$O and CuO is reported at 1 atm) [167], [173]–[178]. Note that even though Cu$_2$O is considered to be unstable at room temperature, the transformation kinetics of it to CuO is too slow, so one can consider the cuprous oxide form as stable.

![Figure 4.1: Cu-O phase formation for samples annealed in air [167], [173]–[178]. The yellow zone is Cu$_2$O, the black zone is CuO, the orange zone means that Cu does not oxidize. References are not found for the empty zones. Red dashed line indicates 1 atm.](image)

A lot of research has been done over the years to study the oxidation kinetics of copper. Even though, the parabolic rate law is the most observed one [179]–[183], there are also other reported laws with regard to the kinetics such as logarithmic [176], [184], [185], inverse-logarithmic [186], linear [187], [188] and cubic law [186], [189]. Here, the rate law represents the relationship between the oxide thickness and the annealing time.
The corresponding formulas are given in Table 4.2 where d_{ox} is the oxide thickness, k_p is the rate constant, t is the annealing time, A, B and C are constants.

Table 4.2: Oxidation Kinetics Rate Law Formulas.

<table>
<thead>
<tr>
<th>Rate Law</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$d_{ox} = k_p \times t + C$</td>
</tr>
<tr>
<td>Parabolic</td>
<td>$d_{ox} = k_p \times t^{1/2} + C$</td>
</tr>
<tr>
<td>Cubic</td>
<td>$d_{ox} = k_p \times t^{1/3} + C$</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$d_{ox} = Aln(t) + B$</td>
</tr>
<tr>
<td>Inverse-Logarithmic</td>
<td>$\frac{1}{d_{ox}} = A - Bln(t)$</td>
</tr>
</tbody>
</table>

Overall, there has been no consensus on copper oxidation rates. However, there is an understanding of what factors contribute to the resulting oxide thickness. Some of these factors are temperature, oxygen partial pressure, the orientation of Cu, whether the Cu is single-crystal or polycrystalline, whether the Cu is a thin film or a bulk film, purity of copper, deposition technique, ambient gas where Cu is being oxidized and the surface roughness [18], [20]-[23], [27]-[33].

Oxide thickness depends on the oxygen partial pressure through the rate constant. At low pressures for Cu being oxidized into Cu$_2$O, the relation between the oxidation rate and oxygen partial pressure is $\propto p_{O_2}^{1/7}$ and this is explained by the fact that the oxidation proceeds by charged oxygen vacancies. However, at higher pressures (such as close to atmospheric pressure), the dependence becomes $\propto p_{O_2}^{1/4}$ and it is explained by the fact that oxidation proceeds by neutral copper vacancies [176], [196], [197]. It is also noted in [20] that even though the oxygen partial pressure changes the oxidation rate, it does not change the oxidation rate law.
Another important factor while studying and modeling the copper oxidation is the factor that accounts for the oxygen incorporation. When Cu oxidizes into Cu$_2$O, it follows equation (4.1); and when it oxidizes into CuO, it follows equation (4.2). Oxygen incorporation factors for each equation is 1.65 and 1.72 respectively [177]. For example, while full oxidation of 100 nm of Cu into Cu$_2$O will result in 165 nm of Cu$_2$O, it will result in 172 nm of CuO if it oxidizes into CuO.

\[
2\text{Cu (s)} + \frac{1}{2}\text{O}_2 \text{(g)} \rightarrow \text{Cu}_2\text{O (s)} \quad (4.1)
\]

\[
2\text{Cu (s)} + \text{O}_2 \text{(g)} \rightarrow 2\text{CuO (s)} \quad (4.2)
\]

One of the main focuses of studying the oxidation kinetics of Cu is to find the activation energy of diffusion (E_a). This can be calculated by finding out the oxidation rate law and using the temperature dependence of the oxidation rate constant k_p which follows the Arrhenius equation (4.3) [198] where k_0 is a constant, R is the universal gas constant 8.314 J/K-mol (8.617 \times 10$^{-5}$ eV/K) and T is the annealing temperature.

\[
k_p = k_0 \exp \left(\frac{-E_a}{RT} \right) \quad (4.3)
\]

Plotting $\ln(k_p)$ vs. $1/T$ will result in a graph with the slope of $-E_a/R$ and from the same graph $1/T=0$ intercept will give the $\ln(k_0)$ value. As one can expect, due to differences in a lot of variables such as temperature, oxygen partial pressure, orientation of copper, deposition technique etc., the reported E_a values are different from one another. The summary of E_a values in the literature is given in Table 4.3.
Table 4.3: Summary of the Activation Energy of Diffusion (Eₐ) Values.

<table>
<thead>
<tr>
<th>Temperature Range (°C)</th>
<th>Deposition Technique</th>
<th>Resulting Oxide</th>
<th>Eₐ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 – 260</td>
<td>Vacuum evaporation</td>
<td>Cu₂O</td>
<td>0.57 [180]</td>
</tr>
<tr>
<td>120 – 150</td>
<td>E-beam evaporation</td>
<td>Cu₂O</td>
<td>0.55 [181]</td>
</tr>
<tr>
<td>175 – 400</td>
<td>Sputtering</td>
<td>Cu₂O & CuO</td>
<td>0.31 [179]</td>
</tr>
<tr>
<td>40 – 60</td>
<td>Single crystal Cu#</td>
<td>Cu₂O</td>
<td>0.35 [176]</td>
</tr>
<tr>
<td>60 – 100</td>
<td>Single crystal Cu#</td>
<td>Cu₂O</td>
<td>0.93 [176]</td>
</tr>
<tr>
<td>120 – 160</td>
<td>Single crystal Cu#</td>
<td>Cu₂O</td>
<td>1.03 [176]</td>
</tr>
<tr>
<td>250 – 500</td>
<td>Bulk Cu coupons</td>
<td>Cu₂O & CuO</td>
<td>0.74 [186]</td>
</tr>
<tr>
<td></td>
<td>Evaporation</td>
<td>CuO</td>
<td>0.74 [199]</td>
</tr>
<tr>
<td>300 – 550</td>
<td>OFHC* Cu</td>
<td>Cu₂O & CuO</td>
<td>0.87 [200]</td>
</tr>
<tr>
<td>550 – 900</td>
<td>OFHC Cu</td>
<td>Cu₂O & CuO</td>
<td>1.63 [200]</td>
</tr>
<tr>
<td>300 – 500</td>
<td>99.9999% Cu</td>
<td>Cu₂O & CuO^</td>
<td>0.42 [201]</td>
</tr>
<tr>
<td>600 – 800</td>
<td>99.9999% Cu</td>
<td>Cu₂O & CuO^</td>
<td>1.15 [201]</td>
</tr>
</tbody>
</table>

Different annealing temperatures resulted in different oxidation rate laws
* OFHC= Oxygen-free high thermal conductivity
^ CuO growth was whisker-like

As it can be seen from Table 4.3, the reported activation energy differs quite largely with different Cu samples, different deposition techniques, and annealing temperatures. In addition to these factors, the list of variables mentioned previously plays a big role in the oxidation kinetics which results in different activation energies. The transition from Cu₂O to CuO requires one additional oxygen incorporation into the lattice. In addition to the change in structure, the second ionization potential of the Cu atoms must be overcome. Therefore, higher energy (temperature) is needed for CuO to form which results in usually a higher activation energy for CuO [177] even though the heat of formation values are comparable.

It is also important to note here that thin film copper oxidation is a little more complicated. At the initial stages of oxidation at low temperatures, surface diffusion of oxygen is the dominating factor [202], [203]. However, after about 10 nm of copper-oxide is formed, the Cu cation diffusion becomes the limiting factor [204]. Furthermore, the
outward diffusion of Cu cations can introduce inward diffusion of copper vacancies, which is also known as the Kirkendall effect and the number of vacancies will be proportional to the thickness of the resulting oxide [205], [206].

4.2 Oxidation Phases and Kinetics of E-beam Evaporated Copper at Low Temperatures

The samples used to study the oxidation phases and kinetics of copper were Cu (150 nm)/Si$_3$N$_4$ (200 nm) deposited on a silicon wafer seen in Figure 4.2 (control sample). Starting with a silicon wafer, a layer of Si$_3$N$_4$ was deposited using low-pressure chemical vapor deposition (LPCVD). Copper was e-beam evaporated on top of Si$_3$N$_4$/Si using Lesker PVD75 under base pressure 5×10^{-6} Torr at room temperature. The evaporation rate was 1 Å/s with the holding plate rotating for good film uniformity.

![Control sample for oxidation experiments.](image)

The annealing was done in air and the temperatures were varied from 125 °C to 170 °C and the annealing time varied from 30 minutes to 90 minutes. Annealing causes copper to oxidize from the top and Cu$_2$O was formed which was verified by both XPS and XRD and the final sample structures are shown in Figure 4.3. Due to different annealing times and temperatures, the oxide thickness was different in each sample.
4.2.1 XRD

Samples were studied by x-ray diffraction (XRD) using Cu-Kα radiation ($\lambda=0.15406$ nm) on Bruker D8 Specialized Powder X-ray Diffractometer with detector scan configuration. The incident beam angle was set to $\omega=2^\circ$ and the slit used was 0.6 mm. Figure 4.4 shows the XRD patterns of copper control sample along with the samples annealed at 125 °C, 140 °C, 155 °C and 170 °C for 70 minutes. Figure 4.5 shows the XRD patterns of copper annealed at 125 °C for 30 minutes, 50 minutes and 70 minutes. Figure 4.6 shows the XRD patterns of copper annealed at 155 °C for 30 minutes, 50 minutes and 70 minutes. PDF-04-009-2090 card shows for Cu to be in a cubic structure with Cu (111), Cu (200), and Cu (220) peaks at 43.46°, 50.62°, and 74.40° respectively. PDF-04-007-9767 card shows Cu$_2$O to be in a cubic structure with Cu$_2$O (111), Cu$_2$O (200), and Cu$_2$O (220) peaks at 36.43°, 42.31°, and 61.38° respectively. The density of the e-beam evaporated Cu layer was measured using XRR and the it was determined to be 8.85 g/cm3 which is lower than the density of the theoretical Cu (8.96 g/cm3). The defects (e.g. vacancies) in the deposited Cu layer were believed to lead to unit cell reduction which caused peak shifts.
towards the higher angles. With this effect in mind, the XRD peaks were labeled accordingly. Copper before annealing was observed to be in cubic structure and annealing at different low temperatures and times resulted in formation of Cu$_2$O cubic structure. Furthermore, calibration sample (alumina) was also analyzed at the same incidence angle to find out the effect of the instrument. It was found that the peaks were shifted additionally by $2\theta = +0.22^\circ$. Even though the XRD settings such as the incident beam angle did not change, a Si$_3$N$_4$ peak was observed for the oxidation sample annealed at 170 °C for 70 minutes. This is due to the relationship between the intensity (I) and the linear absorption coefficient (μ), $I \propto \exp(-\mu L)$, where L is the distance that x-ray beam travels [207]. Linear absorption coefficient is inversely proportional to the atomic weight. Because Cu$_2$O has a higher atomic mass (143.09 g/mole) than Cu (63.54 g/mole), x-rays can travel further into the sample and interact with the Si$_3$N$_4$ layer.

Figure 4.4: XRD patterns of Cu control sample and increasing temperatures. Samples annealed for 70 minutes at 125 °C, 140 °C, 155 °C and 170 °C.
Figure 4.5: XRD patterns of Cu annealed at 125 °C.

Figure 4.6: XRD patterns of Cu annealed at 155 °C.
4.2.2 XPS

Samples with different top Cu layer thicknesses (20 nm, 23 nm, 26.7 nm) shown in Figure 4.7 were investigated using x-ray photoelectron spectroscopy (XPS) to verify the oxidation state of copper. Cu and WO₃ layers were e-beam evaporated using Lesker PVD 75 and Si₃N₄ was deposited using LPCVD on a Si wafer. The XPS instrument was VG 220i-XL and the incident beam was monochromated Al Kα (E= 1.487 keV). The XPS x-ray source was run at 63 W. The depth profile of the samples was achieved by using Ar⁺ sputtering gun with the sputter gun beam energy of 3 keV. The angle of incidence was near 60 degrees. The beam raster was a 2x2 mm² area. The annealing times were 20, 40 and 60 minutes while the annealing temperatures were 125 °C, 140 °C and 155 °C which totaled to 9 annealed samples and a control sample.

![Diagram](image)

Figure 4.7: Control sample (left) and the samples after annealing (right).

The XPS experiments were carried out as wide scans and Cu 2p scans. The experiment was continued, and the sample was sputtered multiple times until a strong enough N 1s (nitrogen) signal was observed. This was the chosen indicator that Si₃N₄ was reached within the crater instead of the Si signal as Si 2p signal has a very high escape depth with binding energy around 100 eV. On the surface, C peak was detected (data not
shown) and the Cu signal showed existence of CuO for various temperatures with broadening (around 932 eV) and a satellite peak (around 943 eV). After a single sputter, the CuO behavior of the Cu signal disappeared and a very weak satellite was observed (around 945 eV) which indicated the presence of Cu$_2$O. After the second sputter, the same Cu$_2$O behavior is observed for all conditions. It is noted in [208] that the samples that were exposed to air for a few hours before XPS analysis may absorb carbon and change the Cu$_2$O into CuO. Also, since the XRD data did not indicate the presence of CuO, it was believed that CuO did not exist in our samples. After multiple sputtering and analysis, the Cu-WO$_3$/Si$_3$N$_4$ interface was reached where Cu was found to be in a metallic state.

![Figure 4.8: Cu 2p XPS spectra of the sample shown in Figure 4.7 annealed at 125 °C.](image)

Figure 4.8: Cu 2p XPS spectra of the sample shown in Figure 4.7 annealed at 125 °C.
Figure 4.9: Cu 2p XPS spectra of the sample shown in Figure 4.7 annealed at 140 °C.

Figure 4.10: Cu 2p XPS spectra of the sample shown in Figure 4.7 annealed at 155 °C.
4.2.3 AFM

In order to study the microstructures on the surface of the Cu$_2$O, AFM was utilized in tapping mode. The control sample was annealed at different annealing temperatures (125 °C, 140 °C, 155 °C and 170 °C) for different times (30, 50, and 70 minutes). The AFM tool was Bruker Multimode while the probe tip used was a silicon etched tip. The raster-scan area was 1 µm x 1 µm. The Cu$_2$O samples showed an increase in the RMS roughness values with increased annealing temperatures up to 155 °C and then a decrease at 170 °C. The samples annealed for 70 minutes for 125 °C, 140 °C, 155 °C and 170 °C resulted in RMS roughness of 4.8 nm, 8.5 nm, 12.4 nm, and 8.7 nm respectively. The samples annealed at 155 °C for 30, 50 and 70 minutes resulted in RMS roughness of 8.2 nm, 9.4 nm and 12.4 nm respectively. The AFM images are shown in Figures 4.11-12.

![AFM images](image_url)

Figure 4.11: AFM images of the oxidation samples. Control sample (metallic Cu) and Cu$_2$O samples annealed for 70 minutes for various temperatures.
AFM images revealed that the surface of the film resembled a cauliflower-like morphology which was also revealed by others [175], [209], [210]. AFM images of the oxidation samples were analyzed using Fiji which is a distribution of ImageJ [211]. Particle size calculation was accomplished using the ‘Analyze Particles’ feature in an ImageJ script (see Appendix A). First, the image was passed through ‘Convolve’ that does a spatial convolution using a kernel. Then, the contrast of the image was enhanced with 0.3% saturation. The image was then converted to an 8-bit image which was passed through the ‘Smooth’ feature. Then the 8-bit image was run through the ‘Auto Local Threshold’ algorithm with the mean method. Furthermore, the image was cleaned out using a few median filters that reduces noise. Because the used filters and the thresholding algorithm creates artifacts, a minimum size of 500 nm2 was selected for particle analysis. Also, the edges were excluded to further improve the analysis. This algorithm results in ImageJ calculating the areas (A) of the particles. Figure 4.13 shows the example of image pre- and post-processing.
Figure 4.13: Image of the Cu$_2$O sample pre- and post-processing. Annealed at 155 °C for 30 minutes (left) pre-processing, (right) post-processing.

Then, assuming circularity, the size of the particles (D_p) were calculated using $D_p^2 = 4A/\pi$.

Table 4.4 shows the summary of the average particle sizes for various annealing times and temperatures. Particle sizes varied between 25 nm and 112 nm showing log-normal distribution which suggests coalescence growth rather than Ostwald ripening [212].

Particle size histograms (bin = 10) of samples annealed for 70 minutes at 125 °C, 140 °C, 155 °C and 170 °C and of samples annealed at 155 °C for 30, 50 and 70 minutes are shown in Figure 4.14 and Figure 4.15 respectively.

Table 4.4: Summary of the Average Particle Sizes Calculated with ImageJ.

<table>
<thead>
<tr>
<th>Annealing Temperature (°C)</th>
<th>Annealing Time (minutes)</th>
<th>Particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>70</td>
<td>40.29</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>42.93</td>
</tr>
<tr>
<td>140</td>
<td>50</td>
<td>48.34</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>51.98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>47.79</td>
</tr>
<tr>
<td>155</td>
<td>50</td>
<td>48.28</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>54.09</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>58.20</td>
</tr>
<tr>
<td>170</td>
<td>50</td>
<td>58.50</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>59.22</td>
</tr>
</tbody>
</table>
Figure 4.14: Particle size histograms of samples annealed for 70 minutes. At (a) 125 °C, (b) 140 °C, (c) 155 °C and (d) 170 °C (bin = 10).

Figure 4.15: Particle size histograms of samples annealed at 155 °C. (a) 30 minutes, (b) 50 minutes, (c) 70 minutes (bin = 10).
4.2.4 Spectroscopic Ellipsometry

The thickness of the Cu$_2$O films were measured using spectroscopic ellipsometry (SE). Control samples, shown in Figure 4.2, were annealed on a hot plate in air at 140 °C, 155 °C and 170 °C for 30-90 minutes. Samples annealed at 125 °C did not result in a thick enough Cu$_2$O for SE to be detected; therefore, the measurements are not taken into account. The SE instrument was J.A. Woolam M2000 that operated at $\Psi = 60$, 70 and 80 degrees while the wavelength range was 193 nm – 1698 nm. The thickness measurement results are shown in Figure 4.16. In this temperature range, copper oxidizes according to the parabolic law $d_{ox} = k_p(T) t^{1/2}$, where $k_p(T) = k_0 \exp \left(-\frac{E_a}{RT} \right)$ [180], [213]. d_{ox}^2 vs. annealing time is shown in Figure 4.17 and the fit is in good agreement with the parabolic law.

![Graph showing Cu$_2$O thickness vs. annealing time](image-url)

Figure 4.16: Cu$_2$O thickness (d_{ox}) vs. annealing time.
In order to extract the activation energy for diffusion of copper (E_a) and the constant (k_0), an Arrhenius plot of $\ln (k_\rho)$ vs $1/T$ is plotted (Figure 4.18) where the slope equals to $-E_a/R$ where R is the gas constant (8.617×10^{-5} eV/K). The activation energy for diffusion of copper calculated from the linear fit to the measurement is 0.70 eV (where $k_0 = 20.7 \text{ cm.s}^{-1/2}$).
When Cu oxidizes and forms a layer of oxide, Cu\(^+\) ions have to be transported from the Cu layer to the oxide/air interface for further oxidation [214]. Obtained \(E_a\) (0.70 eV) indicates that the diffusion mechanism is not the vacancy mechanism which is most commonly seen in single crystal materials. In the vacancy mechanism, \(E_a\) should approximate the bond energy of the Cu ion, \(\sim 2\) eV [180]. Due to the large difference between these values, it is reasonable to assume that the diffusion mechanism is mostly defect-related grain boundary diffusion. The obtained \(E_a\) is somewhat higher than reported values of Zhong et. al. [180] (0.57 eV) and Ramanandan et. al. [181] (0.55 eV), comparable to the reported value of O’Reilly et. al. [186] (0.74 eV) and smaller than the value reported by Fujita et. al. [176] (1.03 eV).
CHAPTER 5
DIFFUSION OF COPPER

5.1 Brief History of Integration of Copper and Diffusion Kinetics

Aluminum was being used in the IC fabrication as the metal lines/interconnects until 1990s, however, with increase in demand in performance and in order to reduce the RC delay time, Cu was introduced to replace aluminum due to its low resistivity (~1.7 \(\mu \Omega \)-cm for bulk) and good electromigration resistance [134]. After the change, the industry faced some problems. It was quickly realized that some of these problems were fast drift of Cu in SiO\(_2\) [215] and fast diffusion in Si [216], drifting through intermetal dielectrics (IMD) and forming Cu-Si compounds [217]. Moreover, it was found out that the migration was faster under electric field because Cu migrates in the positively charged (Cu\(^+\)) state [215]. In addition to these problems, increasing cross-talk between the interconnects, degradation and potential failure of the IMD directed the research in the semiconductor field towards limiting the diffusion of Cu into SiO\(_2\) and Si. In order to limit/prevent the diffusion of Cu, various diffusion barriers were investigated such as Ta [218], TaN [219], [220], TiN [221], Ta\(_2\)O\(_5\)[222], W and WN\(_x\) [223], MnSi\(_x\)O\(_y\) [224], [225], alloys that are self-forming barriers (Al [226]–[228], Zr [229]) and additional capping layers such as HfO\(_2\) [230]. Since the 1990s, diffusion of copper in dielectrics has been researched extensively which makes Cu/oxide-electrolyte (Cu-SiO\(_x\) or Cu-WO\(_3\)) PMC devices easier to integrate as these materials are foundry-ready and well-studied. PMC devices in our lab utilize silica (SiO\(_x\)) and WO\(_3\) as the switching/electrolyte layer. Diffusion of Cu in WO\(_3\) has not been well studied but diffusion of Cu in SiO\(_2\) and silica has been reported by many researchers.
In order to study the diffusion kinetics, the researchers often utilize the equilibrium capacitance-voltage (C-V) measurements. The equilibrium C-V measurements done at room temperature enables researchers to detect the mobile ions in the dielectric films [128], [239]. As bias-temperature stress (BTS) is applied to the metal-insulator-silicon (MIS) capacitor, the drifting ion, Cu\(^+\) in this case, moves towards the silicon through the insulator, SiO\(_x\). The flatband voltage shifts to negative values according to equations (5.1) and (5.2).

\[
V_{FB} = -\int_0^{t_{ox}} \frac{\rho(x)dx}{\varepsilon_0 \varepsilon_{ox}}
\] (5.1)

where \(t_{ox}\) is the oxide thickness, \(\rho(x)\) is the charge density of \(Q_{ox}\) (oxide charge) as a function of the distance \(x\) from the metal/dielectric interface, \(\varepsilon_0\) is the permittivity of free space (8.854 x 10\(^{-12}\) F/m) and \(\varepsilon_{ox}\) is the relative dielectric constant of the oxide. Assuming all the mobile ions reside at the oxide/silicon interface, mobile ion concentration (\(N_m\)) can be found using equation (5.2) by measuring the flatband voltage shifts (\(\Delta V_{FB}\)).

\[
N_m = -\frac{C_{ox} \Delta V_{FB}}{qA}
\] (5.2)

where \(C_{ox}\) is the oxide capacitance, \(q\) is the electron charge and \(A\) is the area of the capacitance. Because the penetration of Cu\(^+\) ions into the dielectric is thermally activated, by varying the temperature and using the Arrhenius dependence on the temperature (T), the activation energy (\(E_a\)) can be found using equation (5.3).

\[
N_m(T) = N_0 \exp\left(-\frac{E_a}{k_B T}\right)
\] (5.3)

where \(N_0\) is a constant and \(k_B\) is the Boltzmann’s constant. This analysis technique relies on the assumption of single activation energy. Also, a great care to prevent the effect of the
mobile alkali ions such as Na\(^+\) must be taken (sodium ions are the most dominant contaminant [128]). This is usually done by imposing a reverse bias on the capacitor for a short period of time. These mobile alkali ions are highly mobile compared to Cu\(^+\), therefore by imposing a reverse bias for about 5 minutes, the effect can be eliminated [231]. The summary of the reported activation energy (E\(_a\)) of diffusion of Cu in SiO\(_x\) by BTS measurements is given in Table 5.1.

Table 5.1: Summary of the Reported E\(_a\) of Diffusion of Cu in SiO\(_x\) and Silica by BTS.

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>Deposition</th>
<th>Temperature Range (°C) & Bias Stress</th>
<th>Activation Energy (eV)</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>Thermally grown</td>
<td>350 – 450 @ 1MV/cm</td>
<td>1.82</td>
<td>[215]</td>
</tr>
<tr>
<td>Silica</td>
<td>SOD</td>
<td>300 – 500 @ N/A</td>
<td>0.71</td>
<td>[231]</td>
</tr>
<tr>
<td>Silica</td>
<td>PECVD</td>
<td>300 – 500 @ N/A</td>
<td>0.84</td>
<td>[231]</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Thermally grown</td>
<td>300 – 500 @ N/A</td>
<td>1.02</td>
<td>[231]</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Thermally grown</td>
<td>100 – 200 @ 4MV/cm</td>
<td>1.20</td>
<td>[233]</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Thermally grown</td>
<td>200 – 275 @ 1MV/cm</td>
<td>1.54</td>
<td>[234]</td>
</tr>
<tr>
<td>Methyl-doped SiO(_2)</td>
<td>CVD</td>
<td>175 – 275 @ 1.5MV/cm</td>
<td>0.76</td>
<td>[236]</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>PECVD</td>
<td>125 – 300 @ 1MV/cm</td>
<td>1.13</td>
<td>[237]</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Thermally grown</td>
<td>250 – 300 @ 1MV/cm</td>
<td>0.93</td>
<td>[238]</td>
</tr>
</tbody>
</table>

SOD: spin-on deposition
PECVD: plasma enhanced chemical vapor deposition
N/A: No bias stress

As it can be seen from Table 5.1, the reported values of activation energy of copper diffusion in SiO\(_x\) vary. It is expected that the reported values for E\(_a\) with bias stress (field-assisted) compared to no-bias stress would be lower due to barrier height lowering. Some of the major factors that play a role in the difference between the values are the
deposition/growth techniques/conditions, BTS values and range, the structure and composition, and the density of the oxide layer.

Another method to characterize the diffusion kinetics of Cu into oxides is to utilize surface characterization tools equipped with sputtering guns such as XPS, AES or SIMS on samples annealed at different temperatures and modeling the diffusion by Fick’s second law, equation (5.4).

\[\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2} \]

(5.4)

where \(C(x,t) \) is the concentration, \(t \) is the annealing time, \(D \) is the diffusion coefficient and \(x \) is the distance. Fick’s second law has two solutions, where one solution, equation (5.5), is derived for “thick” films (constant source), and the other solution, equation (5.6), is derived for “thin” films (limited source).

\[C(x) = C_s [1 - \text{erf}(\frac{x}{\sqrt{4Dt}})] \]

(5.5)

where \(C_s \) is the surface concentration of atoms and \(\text{erf} \) is the mathematical function called the error function.

\[C(x) = C_0 \exp(-\frac{x^2}{4Dt}) \]

(5.6)

where \(C_0 \) is the initial concentration of atoms at \(x=0 \). Because diffusion is thermally activated, the diffusion coefficient is expressed by an Arrhenius dependence,

\[D = D_0 \exp(-\frac{E_a}{k_B T}) \]

(5.7)

where \(D_0 \) is the diffusion constant. In order to find out the diffusion kinetics, annealing temperature must be varied, and different diffusion coefficient values must be extracted according to the correct Fick’s law solution. Then, plotting \(\ln(D) \) vs. \(1/k_B T \) for different
annealing temperatures will result in a graph with the slope of $-E_a$ and the $1/k_B T=0$ intercept will be $\ln(D_0)$.

5.2 Diffusion of Cu in WO$_3$

Cu-doped WO$_3$ (Cu-WO$_3$) system is of particular interest in electronics due to its many potential applications. One application of Cu-WO$_3$ is that it is a switching medium that has been used in PMCs and has been investigated as a promising BEOL-compatible material for CBRAM applications [53], [75], [76], [240]. Cu-WO$_3$ system has also been studied for uses in photonic devices [241], cancer therapy applications [242], and semiconducting gas sensors [243]. Early interest in WO$_3$ in electronics was generated by its electro- and photo-chromic effects [244] where electrochromism of amorphous WO$_3$ can be explained by the double-charge injection model [245]. Injection of M^+ and electrons into a WO$_3$ host matrix forms M_xWO$_3$, where $0 < x < 1$. M^+ is usually H$^+$, Li$^+$ or Na$^+$ [246], however it can be any mobile ion such as Cu$^{z+}$ [76], [78]. This effect is crucial for the PMCs as it implies that the conductivity of the material can be modulated.

5.2.1 XPS

Diffusion of Cu in WO$_3$ was investigated using XPS depth profiling. 23 nm of Cu was e-beam evaporated on top of 80 nm of WO$_3$ (also e-beam evaporated) in Lesker PVD 75 which was deposited on top of Si$_3$N$_4$/Si wafer where the Si$_3$N$_4$ was deposited using LPCVD. These samples were annealed in in air at 1 atm. The annealing temperatures and times were 125 °C, 140 °C and 155 °C for 60 minutes, 40 minutes and 20 minutes respectively. These samples are referred to as XPS Sample #1, XPS Sample #2 and XPS
Sample #3 respectively. The samples before and after annealing are shown in Figure 5.1. Even though there were other samples as mentioned in the “4.2.2 XPS” of Chapter 4, they were not analyzed in the diffusion study because there was remaining metallic Cu for at least one condition for each deposited Cu thickness. The XPS instrument was VG 220i-XL and the incident beam was monochromated Al Kα (E= 1.487 keV). The XPS x-ray source was run at 63 W. The depth profile of the samples was achieved by using Ar⁺ sputtering gun with the sputter gun beam energy of 3 keV. The angle of incidence was near 60 degrees. The beam raster was a 2×2 mm² area.

The XPS data was analyzed using CasaXPS and the resulting depth profiles of the Cu for each condition are shown in Figure 5.2 while the surface composition was left out due to existing hydrocarbons.
Since the oxidation kinetics of e-beam evaporated Cu was already characterized (presented in Chapter 4), the thickness of the Cu$_2$O layer was estimated using a model. After establishing the cuprous oxide thicknesses, only the data coming from the Cu which is diffused in the WO$_3$ layer (‘diffusion data’) were analyzed to characterize the diffusion. Diffusion data in comparison to the whole data set are shown in Figures 5.3-5.
Figure 5.3: Depth profile of Cu (at%) of XPS Sample #1. The red dotted line indicates the ‘diffusion data’.

Figure 5.4: Depth profile of Cu (at%) of XPS Sample #2. The red dotted line indicates the ‘diffusion data’.
Figure 5.5: Depth profile of Cu (at%) of XPS Sample #3. The red dotted line indicates the ‘diffusion data’.

Corresponding diffusion data were then analyzed to extract the diffusion coefficients for each condition. In order to do this, the data were plotted as ln (C) vs x^2 as the slope will be -1/4Dt according to equation (5.6) where D is the diffusion coefficient and t is the annealing time. This process, XPS Sample #1, is shown in Figure 5.6 and the diffusion coefficients for each condition are presented in Table 5.2.
Figure 5.6: Plot of ln (C) vs x^2 for the diffusion data for XPS Sample 1. The red line is the linear fit to the data where the slope is $-1/4Dt$.

Table 5.2: Diffusion Coefficients for Each XPS Sample (Cu-WO$_3$)

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Annealing Temperature (°C)</th>
<th>Annealing Time (minutes)</th>
<th>Diffusion coefficient (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>125</td>
<td>60</td>
<td>1.1122×10^{-15}</td>
</tr>
<tr>
<td>Sample 2</td>
<td>140</td>
<td>40</td>
<td>2.3815×10^{-15}</td>
</tr>
<tr>
<td>Sample 3</td>
<td>155</td>
<td>20</td>
<td>5.0702×10^{-15}</td>
</tr>
</tbody>
</table>

Diffusion coefficient equation (5.7) is an Arrhenius equation; therefore, ln (D) vs 1/T will yield a slope of $-E_a/k_b$ where k_b is the Boltzmann constant (8.617×10^{-5} eV/K) and E_a is the activation energy of diffusion of Cu in WO$_3$ and the 1/T=0 intercept will correspond to ln(D$_0$) where D$_0$ is the diffusion constant. Plot of ln(D) vs 1/T is shown in Figure 5.7 along with a linear fit. Calculated E_a is 0.74 eV, where $D_0= 2.73\times10^{-6}$ cm2/s. There was no
reported E_a value of Cu in WO$_3$ to compare, however this value is lower than the ones reported by Sankaran et. al. for Cu diffusion in amorphous Al$_2$O$_3$ (0.90 eV) [247] and by Fisher et. al. for Cu diffusion in thermally grown SiO$_2$ (1.02 eV), but very similar to the value reported in the same study by Fisher et. al. for Cu diffusion in spin-on-deposited porous silica (0.71 eV) [231].

![Figure 5.7: Plot of ln (D) vs 1/T. Red line is the linear fit to the data.](image)

5.2.2 SIMS

In order to take a closer look at the interfaces and to investigate how much copper is present in our samples, secondary ion mass spectroscopy (SIMS) was utilized. The samples were Si$_3$N$_4$/Si and WO$_3$/Si$_3$N$_4$/Si (shown in Figure 5.8), and the samples with Cu, shown in Figure 5.9, pre- and post-annealing. The annealing was done for 30 minutes at 135 °C in air.
Figure 5.8: Si$_3$N$_4$/Si sample on the left and WO$_3$/Si$_3$N$_4$/Si sample on the right.

Figure 5.9: Blanket films of Cu/WO$_3$/Si$_3$N$_4$/Si. Control sample (left) and annealed (right).

The SIMS instrument was Cameca IMS 6f. The primary beam was comprised of O$_2^+$ ions with 7.6 keV energy while 28Si, 63Cu and 184W were being detected. The total raster area of the beam was 250 μm \times 250 μm and the secondary ions were sampled from an area of 35 μm \times 35 μm. This was done to avoid signals coming from the edge of the crater. Figures 5.10-13 show the SIMS profiles of the samples mentioned above.
Figure 5.10: SIMS profile of Si$_3$N$_4$/Si sample.

Figure 5.11: SIMS profile of WO$_3$/Si$_3$N$_4$/Si sample.
Figure 5.12: SIMS profile of unannealed Cu/WO$_3$/Si$_3$N$_4$/Si sample.

Figure 5.13: SIMS profile of annealed Cu/WO$_3$/Si$_3$N$_4$/Si sample.
SIMS profiles were obtained on all these samples rather than just the last two because a level of baseline for “contamination” wanted to be established. It is clear by looking at Figures 5.10-13, 10^3-10^4 counts/s seems to be that baseline. Furthermore, Figure 5.12 reveals that inter-diffusion of Cu atoms starts even pre-annealing. This is either due to the interaction of matrix atoms and the beam, and/or inter-diffusion during copper film deposition. However, since the deposition technique was low impact e-beam evaporation [90], the former is thought to be the case here. Pre-annealing profile, Figure 5.12, also shows that W intensity signal at the Cu/WO$_3$ interface is pretty sharp as expected compared to post-annealing profile. It also shows that Cu count follows a complementary error function (erfc) profile due to “constant source” (thick-enough) of metallic Cu being present. It is clear that annealing the sample results (Figure 5.13) in a Gaussian-like distribution of Cu atoms near the interface (t=80 seconds) which suggests that there was no metallic Cu left post-annealing. This was also later confirmed by the Matlab model (Chapter 6). Figure 5.13 also indicates that there is another interface/layer being formed during annealing on the surface. Sudden change of the sign of the slope at around t= 80 seconds is attributed to this layer forming on top of the Cu-WO$_3$ layer. This is probably due to Cu being oxidized from the top and forming Cu$_2$O film. It is clearly seen in Figure 5.13 that, Cu count increases as we move away from the surface and at around t= 80 seconds, there is a peak. This behavior can be due to various reasons. One is the impact of the beam causing the matrix atoms to get pushed into the sample, hence causing a false count. Secondly, it can be due to the self-limiting nature of the relatively short low temperature oxidation. All of the copper may not reach to the surface to oxidize hence, the stoichiometry of the Cu$_2$O film may vary through its thickness.
5.2.3 TEM

In order to have a better understanding of the morphology, layer thicknesses, and diffusion of Cu in WO₃, TEM imaging and EELS were carried out using JEOL ARM200F. Blanket films, shown in Figure 5.14, with different deposited Cu thicknesses were fabricated. Then, these films were annealed at different annealing conditions in air. These different fabrication parameters and annealing conditions are given in Table 5.3.

Table 5.3: Fabrication/Annealing Conditions of the Blanket Films for TEM & XRD

<table>
<thead>
<tr>
<th>TEM Sample #</th>
<th>Annealing Temperature (°C)</th>
<th>Annealing Time (minutes)</th>
<th>Deposited Cu thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>135</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Sample 2</td>
<td>155</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Sample 3</td>
<td>155</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

Cross-section of the TEM Sample 1 and the higher magnification image along with the EELS (copper map) analysis are shown in Figure 5.15 and 5.16 respectively.
Figure 5.15: Cross-section TEM image of the Sample 1, Cu$_2$O/Cu-WO$_3$/Si$_3$N$_4$/Si.

Figure 5.16: TEM image (left), and the EELS (Cu mapping) of the box (right). The dimensions of the EELS map are 19 nm wide x 88 nm tall.
EELS analysis in Figure 5.16 clearly shows that there is a Cu-rich layer on top of the WO$_3$ which is attributed to the Cu$_2$O, and the WO$_3$ layer is doped with Cu. Further zoomed-in TEM image of the cross-section is displayed in Figure 5.17. It appears that annealing results in Cu cluster formation in the electrolyte. This behavior of Cu has been shown in other oxides such as Al$_2$O$_3$ [248], [249], GeO$_x$ [250] and SiO$_2$ [251] before. In order to further prove that these clusters are Cu, high-resolution TEM (HR-TEM) images shown in Figure 5.18 (b) and (c) were analyzed by fast Fourier transform (FFT) analysis. Due to the small crystals or surrounding amorphous WO$_3$, the FFT is not clear. Calculated d-spacings are 2.134 Å (Figure 5.19) and 2.187 Å (Figure 5.20) which are close to the crystal d-spacing of pure face centered cubic Cu (111) (d~ 2.08 Å [252]). Slight increase of d-spacing can be attributed to the oxygen-rich environment in the host and its interaction with the copper. However, the very similar d-spacing suggests that Cu-Cu bonds make up most of the nanocrystals. The size of the clusters varies between 5.97 nm and 12.62 nm, where the size of the clusters in Figure 5.18 (b) and (c) is ~8.71 nm and ~7.15 nm respectively. The difference in calculated d-spacing is most likely due to the difference in cluster sizes. As the cluster size increases, d-spacing approaches the value of pure fcc Cu (111) owing to more Cu-Cu bonds.
Figure 5.17: HR-TEM image of the cross-section of Sample 1.

Figure 5.18: TEM analysis of the Sample 1. (a) HR-TEM image of the Sample 1, (b,c) HRTEM images of the spots indicated by red circles in (a), (d,e) FFT of (b) and (c) respectively showing Cu (111).
Figure 5.19: \(d\)-spacing calculation of the cluster in Figure 5.18b, \(d \approx 2.134\ \text{Å}\).

Figure 5.20: \(d\)-spacing calculation of the cluster in Figure 5.18c, \(d \approx 2.187\ \text{Å}\).
5.2.4 XRD

Same samples made for TEM analysis were also analyzed by XRD using Cu-Kα beam on Bruker D8 Specialized Powder X-ray Diffractometer with detector scan configuration. The incident beam angle was set to \(\omega = 3^\circ \) with the 0.6 mm slit while the detector was scanned from 10° to 80°. The scan rate was 7°/min where the x-rays were collected for 23 runs to improve the signal-to-noise ratio due to amorphous nature of WO₃. The XRD results are shown in Figure 5.21. WO₃ looks to be amorphous which is why it is labeled as WOₓ as it could not be identified if it was WO₂ (PDF-00-032-1393) or WO₃ (PDF-00-032-1395). Strong crystalline Cu₂O peaks (PDF-04-007-9767) along with some crystalline Cu peaks (PDF-04-009-2090) are also present in the pattern. Increasing the annealing temperature and/or time not only results in increased Cu₂O (111) peak strength, but interestingly in increased Cu (111) peak too. Assuming that the penetration depth of the incident x-rays was comparable between the samples, Sample 3 has more metallic Cu than Sample 2, whereas metallic Cu in Sample 1 does not exist. This results in significant resistivity/conductivity changes in our samples (shown in Chapter 7) which affects the behavior of lateral PMC devices using the bilayer of Cu₂O/Cu-WO₃.
Figure 5.21: XRD patterns of TEM samples shown in Table 5.3.
CHAPTER 6
MODELING THE OXIDATION & DIFFUSION OF Cu/WO₃

6.1 Building the Model

After characterizing the oxidation kinetics of Cu and its diffusion into the solid electrolyte, a 1-D Matlab model was built. Along with the combined model of oxidation and diffusion, an oxidation model was also built due to the need. Table 6.1 shows the variables used in the model which are combination of experimentally extracted values and reported values in the literature (solid solubility of Cu in WO₃, density of Cu₂O). Complete code of oxidation and diffusion model can be found in Appendix B (Cu-WO₃ system).

Table 6.1: Variables Used in the Model for Cu-WO₃ System.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>What It Is</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EaWO3 (eV)</td>
<td>Activation energy of diffusion of Cu in WO₃</td>
<td>0.742</td>
</tr>
<tr>
<td>Eacuox (eV)</td>
<td>Activation energy of diffusion of Cu in Cu₂O</td>
<td>0.697</td>
</tr>
<tr>
<td>D0 (cm²/s)</td>
<td>Diffusion constant of Cu in WO₃</td>
<td>2.7333e-6</td>
</tr>
<tr>
<td>k0 (cm.s⁻¹/²)</td>
<td>Constant in the rate constant equation for oxidation</td>
<td>20.6972</td>
</tr>
<tr>
<td>R (eV/°K)</td>
<td>Boltzmann constant / Gas constant</td>
<td>8.617e−5</td>
</tr>
<tr>
<td>NAvog (/cm³)</td>
<td>Avogadro’s number</td>
<td>6.022e23</td>
</tr>
<tr>
<td>CuDens (g/cm³)</td>
<td>Density of e-beam evaporated Cu</td>
<td>8.85</td>
</tr>
<tr>
<td>CuMolMass (g)</td>
<td>Molar mass of Cu</td>
<td>63.5 [187]</td>
</tr>
<tr>
<td>Cu2oDens (g/cm³)</td>
<td>Density of Cu₂O</td>
<td>6 [253]</td>
</tr>
<tr>
<td>Cu2oMolMass (g)</td>
<td>Molar mass of Cu₂O</td>
<td>143 [187]</td>
</tr>
<tr>
<td>CuSSwo3 (at%)</td>
<td>Solid solubility of Cu in WO₃</td>
<td>0.56 [78]</td>
</tr>
</tbody>
</table>
The inputs of the model are deposited thickness of Cu \((d_{\text{Cu}}) \), annealing temperature \((T_{\text{ann}}) \) and annealing time \((t) \) whereas oxygen partial pressure and WO\(_3\) thickness are also optional inputs. The outputs of the model are the dose \((Q \text{ in atoms/cm}^2) \) of the diffused Cu and the semilog plot of concentration \((\text{atoms/cm}^3) \) vs. depth \((\text{cm}) \). As it is stated in the previous chapters, annealing Cu-WO\(_3\) devices in air results in the oxidation of copper from the top and diffusion of copper at the Cu/WO\(_3\) interface. As long as there is metallic copper left in the system, oxidation continues, and the diffusion can be modeled by the solution of the Fick’s second law for the ‘constant source’ equation (5.5). Once there is no more metallic copper left, oxidation stops, and the diffusion can be modeled by the solution of the Fick’s second law for the ‘limited-source’ equation (5.6). The model solves and plots the concentration vs. depth starting with time= 1 minute for each 1-minute increments until the input ‘annealing time’ is achieved.

6.2 Copper Oxidation Model

Oxidation model is relatively simple and straightforward. The inputs of the function \((d_{\text{Cu2O}}.m) \) are temperature (in Celcius) and time (in minutes); and the outputs are the final Cu\(_2\)O thickness in nm and the minimum thickness of deposited Cu needed in nm. For example, \(d_{\text{Cu2O}}(155,50) \) returns 70.2834 and 42.596 which means that if the control sample had thick enough copper deposited (about 42.6 nm) and if it is annealed at 155 °C for 50 minutes, it will yield about 70.3 nm of Cu\(_2\)O. The code utilizes the parabolic law of oxidation along with equation (4.3) and the Cu\(_2\)O oxygen incorporation factor 1.65. The oxidation Matlab function \(d_{\text{Cu2O}}.m \) is given below.
function [dox,minCu] = dCu2o(temp,time)
R=8.617e-5;
Eacuox=0.697; %Activation energy of Cu in Cu20
k0=20.6972;
annT=273+temp; % conversion to Kelvin
t=time*60; % annealing time in seconds
k=k0*exp(-Eacuox/R/annT);
doxfinal=k*sqrt(t); %parabolic law
dox=doxfinal*1e7;
minCu=dox/1.65
end

6.3 Simulations of the Oxidation and Diffusion Model of Cu/WO3

Inputs: \(d_{Cu} = 23 \text{ nm}, T_{ann} = 140 \degree C, t = 40 \text{ minutes} \)

Outputs: \(Q = 9.4467e16 \)

Figure 6.1: Cu concentration vs. depth for case 1. \(d_{Cu} = 23 \text{ nm}, T_{ann} = 140 \degree C, t = 40 \text{ minutes} \).
Inputs: $d_{Cu} = 20$ nm, $T_{ann} = 125$ °C, $t = 60$ minutes

Outputs: $Q = 9.5885e16$

Figure 6.2: Cu concentration vs. depth for case 2. $d_{Cu} = 20$ nm, $T_{ann} = 125$ °C, $t = 60$ minutes.
Inputs: $d_{\text{Cu}} = 30 \text{ nm}$, $T_{\text{ann}} = 155 \degree \text{C}$, $t = 60 \text{ minutes}$

Outputs: $Q = 1.0011 \times 10^{17}$

Figure 6.3: Cu concentration vs. depth for case 3. $d_{\text{Cu}} = 30 \text{ nm}$, $T_{\text{ann}} = 155 \degree \text{C}$, $t = 60 \text{ minutes}$.
Inputs: $d_{Cu} = 25 \text{ nm}, \ T_{ann} = 135 \ ^\circ \text{C}, \ t = 30 \ \text{minutes}$

Outputs: $Q= 1.0389e17$

Figure 6.4: Cu concentration vs. depth for case 4. $d_{Cu} = 25 \text{ nm}, \ T_{ann} = 135 \ ^\circ \text{C}, \ t = 30 \ \text{minutes}$.

Cu$_2$O is 20.8263 nm
Time elapsed: 30 min
Inputs: $d_{Cu} = 25 \text{ nm}, T_{ann} = 135 ^\circ C, t = 15 \text{ minutes}$

Outputs: Q= N/A due to still existing metallic Cu

Figure 6.5: Cu concentration vs. depth for case 5. $d_{Cu} = 25 \text{ nm}, T_{ann} = 135 ^\circ C, t = 15 \text{ minutes}$.

Cu$_2$O is 15.2433 nm
Time elapsed: 15 min
7.1 Fabrication of Lateral PMC Devices

Three sets of lateral devices were fabricated to determine the capability of the bilayer for electrodeposition. Starting with a 4-inch Si wafer, 200 nm of Si$_3$N$_4$ was deposited by low pressure chemical vapor deposition (LPCVD) on the wafer. All layers were patterned using a photolithography – e-beam evaporation – lift-off sequence. First, the electrolyte pattern was exposed in a bilayer of OCG825 and AZ3312 photoresists spun on the Si$_3$N$_4$/Si using OAI 808 aligner. Next, a Cu/WO$_3$ stack with three different thicknesses of Cu was e-beam evaporated on the patterned resist using a Lesker PVD75 deposition system. This was done to provide different amounts of the metal for the oxidation/diffusion process. The WO$_3$ thickness was 80 nm in all cases. 10 nm of Cu was deposited for “device 1”, 20 nm of Cu was deposited for “device 2” and 30 nm of Cu was deposited for “device 3”. The Cu/WO$_3$ stack was then patterned by acetone liftoff to produce an electrolyte channel width of 50 µm. Subsequently, device 1 was annealed in air at 135 °C for 13 minutes, device 2 was annealed in air at 155 °C for 25 minutes and device 3 was annealed in air at 155 °C for 60 minutes. These times and temperatures were determined by using the Matlab model (Chapter 6 & Appendix B) based on the material analysis work to ensure complete Cu oxidation/diffusion so that no continuous metallic Cu film remained in the stack and thereby prevent electrodeposition. Moreover, the annealing conditions were chosen to have similar Cu concentrations at the WO$_3$ interface for all cases post-annealing. To complete the device structures, the Ni cathode and Cu anode and their
probe pads for external connections were deposited on top of the electrolyte layer using e-beam evaporation in the Lesker PVD75 and patterned by the sequence described above to produce an electrolyte channel length of 14 µm in both devices.

![Idealized cross-section of the devices after annealing.](image)

Figure 7.1: Idealized cross-section of the devices after annealing.

7.2 Characteristics of the Bilayer

Few parameters such as Cu concentration at the Cu$_2$O/Cu-WO$_3$ interface ($C_{Cu,i}$), total amount of Cu in the Cu-WO$_3$, the point where the Cu concentration reaches 5×10^{21} /cm3 in Cu-WO$_3$, Cu$_2$O thickness, the time for all the metallic Cu to oxidize/diffuse (t_d) were extracted from the Matlab model. $C_{Cu,i}$ was determined to be 1.7×10^{22} /cm3, 1.2×10^{22} /cm3, and 1.2×10^{22} /cm3 for device 1, device 2 and device 3 respectively. As expected, $C_{Cu,i}$ was very similar for all devices as the annealing conditions were chosen to achieve this case. The total amount of Cu in the 80 nm thick WO$_3$ was 5.5×10^{21} atoms in device 1, 8.3×10^{21} atoms in device 2 and 1.3×10^{22} atoms in device 3, and the point below the surface of the WO$_3$ at which the Cu concentration reached 5×10^{21} /cm3 is approximately
18 nm in device 1, 34 nm in device 2 and 53 nm in device 3. These results suggest that the amount of Cu in the first few tens of nm of the WO$_3$ is quite similar for all samples, indicating that any significant differences in electrodeposition rate between the two devices would not be due to the Cu-WO$_3$ electrolyte. Concerning the overlying Cu$_2$O layer, the model showed that the copper oxide layer was 7.8 nm thick in device 1, 19.8 nm thick in device 2 and 29.9 nm thick in device 3. It was also determined that t_d was about 5 minutes for device 1 and device 2, and 10 minutes for device 3. This means that the bilayer was further annealed for 8 minutes, 20 minutes and 50 minutes for device 1, device 2 and device 3 respectively after getting rid of the deposited metallic Cu layer.

7.3 Results and Discussion

Electrical characterization was accomplished by applying constant voltage bias using an Agilent 4155C parameter analyzer connected via tungsten probes on a MicroZoom probe station to the probe pads and the current was measured over time. The high resistance state (HRS), starting resistance, for device 1 was 15 GΩ and for device 3 was 25 MΩ. Using these resistance values and device dimensions, and assuming that the copper oxide layer has a lower resistance than the Cu-doped WO$_3$ [76], [178], the copper oxide resistivity in device 1 is around 43 kΩ.cm which implies that we have “pure” Cu$_2$O and the layer resistivity in device 3 is around 270 Ω.cm which implies a Cu$_2$O + Cu mix [178]. Presence of Cu$_2$O + Cu in the bilayer of device 2 and device 3 was also verified by XRD post-annealing (Chapter 5, Figure 5.21). This behavior of partial oxidation of Cu into Cu + Cu$_2$O at low temperatures was also previously reported where presence of Cu disappears around 200 °C [178]. The lower resistance layer in device 2 and device 3 allows
a much greater electron supply for Cu ion reduction and this should result in faster electrodeposition at the anode.

Because the bilayer of device 2 and device 3 showed similar resistivity, current-time characteristics of device 1 compared to device 3 was investigated. Constant voltage of 5 V was applied to the anode of device 3 while the cathode was grounded. The electrodeposits bridged the channel in 29 seconds, as determined by the point where the current suddenly reached the compliance limit as shown in Figure 7.2. The same bias (5 V) for device 1 resulted in no noticeable change in resistance during testing over tens of hours, so the bias was increased to 60 V. The electrodeposits, with the increased bias, bridged the channel in around 3.5 hours, also shown in Figure 7.2. The average electrodeposition rates for these bias conditions were 0.0011 µm/s and 0.48 µm/s for device 1 and device 3 respectively. The low resistance state (LRS) in both devices was determined by the current compliance, which is typical for PMC devices [50].

Figure 7.2: Current-time plots of device 1 and device 3.
Optical micrographs of device 1 and device 3 following the electrodeposition bridging the channel are given in Figure 7.3. The darker color of the electrodeposit is due to its roughness.

The activation energy of conduction ($E_{\sigma,a}$) obtained from high temperature measurements in HRS was found to be 0.64 eV, 0.20 eV and 0.30 eV for device 1, device 2 and device 3 respectively [254]. The calculated $E_{\sigma,a}$ values for device 2 and device 3 are comparable to previously reported values in Cu$_x$O where $x = 1, 2$ [255]–[259] and the calculated $E_{\sigma,a}$ value for device 1 is comparable to previously reported value in amorphous WO$_3$ [260]. Disparity in values of $E_{\sigma,a}$ between device 1 and device 3 can be explained by the lower resistivity of the Cu$_2$O layer due to partial oxidation (Cu + Cu$_2$O mix) in device 3. The Cu$_2$O thickness of ~8 nm for device 1 indicates that the Cu$_2$O was formed by the surface diffusion of oxidation [202], [203] leading to a uniform Cu$_2$O layer. This dramatic reduction in the activation energy of conduction eventually causes the electrodeposit to form much quicker at lower applied voltages. The huge difference also suggests that Cu ions in device 3 are most likely reduced near the anode where electrons are supplied by the Cu$_2$O layer, whereas Cu ions in device 1 need to migrate all the way to the cathode and are
reduced by the electrons near the cathode. As revealed by the XRD patterns of the bilayers of device 2 and device 3 (Figure 5.21), Cu was present in both cases as mentioned earlier. Therefore, the difference in $E_{\sigma,a}$ for device 2 and device 3 was most likely due to the difference in grain sizes of the Cu$_2$O. The annealing temperature was the same for device 2 and device 3, however calculated t_d values were 20 minutes and 50 minutes respectively. The grain growth kinetics follow,

$$D^n - D_0^n = kt$$

where t is the annealing time, D is the grain size at time t, D_0 is the initial grain size, n is the grain growth exponent (where n is expected to be ~3 [261, 262]) and k is the temperature-dependent kinetic coefficient. Because the bilayer in device 3 was annealed 30 minutes longer than device 2 at the same temperature post-oxidation/diffusion of the deposited Cu layer, the average grain size of Cu$_2$O in device 3 is expected to be larger. This means that the number of grain boundaries (GBs) per area in device 2 is expected to be greater. Having higher number of GBs per area in device 2 facilitates the mass transport in the copper-oxide layer [263, 264] thus leading to lower $E_{\sigma,a}$.

Next, grown electrodeposit on another device was investigated. This device (referred to as TEM device) had a very similar structure to device 3 where the only difference was the bridge channel was 40 µm. The device was fabricated and biased for the TEM analysis because longer channel facilitated TEM sample preparation. A constant voltage of 20 V was applied to the anode while the cathode was grounded until electrodeposits were formed. TEM imaging along with EELS was done to examine where the electrodeposit grew in the TEM device. TEM sample was prepared by focused ion beam (FIB) using Nova 200 NanoLab, which is a SEM tool equipped with FIB, and
HRTEM analysis was performed using JEOL ARM 200F. Before the FIB cut, the device was coated with carbon so that the surface was conductive all around to enable imaging in SEM. Then, a thick layer of Pt was deposited to allow the FIB cut to performed with minimal damage to the device. The optical micrograph of the bridged device before TEM sample preparation and the SEM image pre-FIB-cut are given in Figure 7.4.

![Figure 7.4: (a) Optical micrograph of the device post-bridging, (b) SEM image of the same device. Red highlighted rectangle in b shows where the FIB cut was made.](image)

The electrodeposit growth was found to be at the interface of Cu$_2$O/Cu-WO$_3$ as displayed in Figure 7.5. Electrodeposition of the Cu growth is supplied by the Cu-WO$_3$ layer and this is suggested by the wider base of the electrodeposit.
Current – time plots of device 1 and device 3 given in Figure 7.2 provide insightful information on how each device is bridged. Fairly constant current over time for device 3 suggests that the current is due to the low-resistive Cu$_2$O layer that supplies electrons to the ionized Cu. These electrons rapidly reduce the Cu ions near the anode which was also observed during testing. The fast electrodeposition is not believed to change the overall resistance of the cell until the channel is almost bridged. Right before the electrodeposit shorts the electrodes, resistance of the cell begins to be dominated by the filament and the final stages of the electrodeposit growth, and bridging makes the current to increase suddenly until it reaches the compliance. However, in device 1, ionized Cu has to migrate all the way to the cathode first where the electrons are abundant resulting in Cu ion reduction at the cathode site. During the electrodeposition growth, the slow growth enables the filament to gather Cu from the surrounding host (Cu-WO$_3$) which leads to gradual increase in resistance of the cell. This effect can clearly be seen for device 1 after \sim 100
seconds in Figure 7.2. This allows for a bilayer resistance model (Figure 7.6) to be used for device 1 where some parameters about the material system can be extracted using the Mott-Gurney model [3], [4] along with the resistance model.

Figure 7.6: Bilayer resistance model. $R_{Cu_2O}(t)$ is the resistance of the Cu$_2$O layer, $R_{Cu,WO_3}(t)$ is the resistance of the solid electrolyte $R_{fil}(t)$ is the resistance of the filament, $R_{int}(t)$ is the resistance of the interface where the electrodeposition grows, R_c is the resistance between the anode/cathode and the interface.

The resistance between the anode (also cathode) and the interface, R_c, may have an impact on the switching due to supplied ions needing to travel through the thin Cu$_2$O layer and get to the interface where the electrodeposition occurs. Assuming a square area for the electrode (50 µm x 50 µm) and ~ 40 kΩ.cm for the resistivity of the Cu$_2$O layer, R_c is calculated to be ~ 1.3 kΩ. Because this value is relatively very low, the model can be simplified further as shown in Figure 7.7.

Figure 7.7: Simplified bilayer resistance model.
Electrodeposit growth rate in a PMC can be expressed as,

\[
\frac{dh}{dt} = \frac{2N_f u_{th}}{N_f} \exp\left(-\frac{E_0}{kT}\right) \sinh \left(\frac{azqV_c}{2kT(L - h(t))}\right)
\]

(7.1)

where \(h \) is the filament length, \(t \) is the time, \(N_i \) is the cation concentration \((5.5 \times 10^{21}/\text{cm}^3)\), \(u_{th} \) is the thermal velocity \((2.8 \times 10^4 \text{cm/s for Cu}^{2+} [50])\), \(N_f \) is the Cu filament metal density \((8.4 \times 10^{22}/\text{cm}^3)\), \(E_0 \) is the barrier height (assumed to be 0.6 eV due to large applied bias), \(kT \) is the thermal energy, \(a \) is the mean ionic hopping distance, \(z \) is the charge of the ions \((2 \text{ for Cu}^{2+})\), \(q \) is the electron charge, \(V_c \) is the cell bias \((60 \text{ V})\) and \(L \) is the channel length \((14 \mu\text{m})\). The only unknown in this equation is the mean ionic hopping distance. By using time-to-bridge \((t_s = 3.5 \text{ hours})\), and simulating the filament length over time (Figure 7.8) with the following equation derived from equation 7.1,

\[
t_s = \left[\frac{2N_f u_{th}}{N_f} \exp\left(-\frac{E_0}{kT}\right)\right]^{-1} \left[\int_0^L \sinh \left(\frac{azqV_c}{2kT(L - h(t))}\right) dh\right]^{-1}
\]

(7.2)

the mean ionic hopping distance is obtained to be 1.1 nm.
Obtained $a = 1.1$ nm for Cu in WO$_3$ is very similar to the values used in simulations or other extracted values of hopping distance of Cu in sputtered SiO$_2$ \sim 1.3 nm [265], Cu in thermal SiO$_2$ \sim 2.2 nm [266], Cu in SiCOH \sim 1.5 nm [147]. After obtaining the mean hopping distance, the vibrational frequency (v) can be calculated by $\nu_{th} = av$, where v is 2.5×10^{11} Hz which is similar to the value used in the literature [50]. The slow electrodeposition/low ion mobility can also be seen by the half-way point where the time it takes the filament to reach 7 µm is \sim 3.3 hours. After this point, due to the enhanced electric field, it only takes the filament \sim 12 minutes to bridge the channel. Also, filament length at half-time point (half of the time it takes to bridge) is about 2 µm. Both half-way and half-time point is in fact, similar to the behavior seen during testing. It takes a very
long time for the electrodeposition to grow at first, and then when the filament reaches about the half-way point, the growth rate increases rapidly. In order to achieve such growth rate, the cation concentration had to be varying over time. During the initial stages of the electrodeposition, the filament consumes large amount of the cations in the solid electrolyte, creating a region depleted of cations. In the meantime, Cu anode is supplying Cu ions to the solid electrolyte, however due to long channel length and low diffusivity/mobility of Cu, it takes a long time for the supplied ions to reach near the filament. This behavior is simulated (in Figure 7.9) as such that Cu cation concentration, at first, dips to a certain value and then increases back up. The conductivity increasing during switching hints on that the cation concentration actually increases to a value higher than its original value.

Figure 7.9: Simulated cation concentration vs filament length.
Next, using the resistance model where the ionic current (Mott-Gurney) should be the same as the current passing through the $R_{\text{Cu-WO}_3(t)}$ and $R_{\text{fil}(t)}$, resistivity of the solid electrolyte $\rho_{\text{Cu-WO}_3}$ can be obtained. The resistance of the cell will be,

$$ R(h) = \frac{\rho_{\text{Cu}} h}{A_{\text{fil}}} + \frac{\rho_{\text{Cu-WO}_3}(L - h)}{A_{\text{Cu-WO}_3}} $$ (7.3)

where ρ_{Cu} is the resistivity of the copper filament (1.7 μΩ.cm [134]), A_{fil} is the cross-sectional area of the filament, $A_{\text{Cu-WO}_3}$ is the cross-sectional area of the solid electrolyte. A_{fil} is assumed to have a circular shape with ~ 50 nm in diameter (see Figure 7.5) and $A_{\text{Cu-WO}_3} = 4 \times 10^{-8}$ cm2. Plotting both the current density over filament length from the Mott-Gurney model and the current density going through the resistance in equation 7.3 indicates $\rho_{\text{Cu-WO}_3} \approx 30$ MΩ.cm (see Figure 7.10) which is similar to the previously reported values of Cu-WO$_3$ resistivity [76].

![Figure 7.10: Current density vs filament length.](image-url)
The semiconductor current \(I_{\text{Cu}_2\text{O}} \) is simply calculated by the following equation,

\[
I_{\text{Cu}_2\text{O}} = \sigma E A_{\text{Cu}_2\text{O}} = \frac{V_e W_e t_{\text{Cu}_2\text{O}}}{\rho_{\text{Cu}_2\text{O}} (L - h)}
\] \hspace{1cm} (7.4)

where \(\sigma \) is the conductivity of the \(\text{Cu}_2\text{O} \) layer, \(E \) is the electric field, \(A_{\text{Cu}_2\text{O}} \) is the cross-sectional area, \(W_e \) is the width of the electrode, \(t_{\text{Cu}_2\text{O}} \) is the thickness of the \(\text{Cu}_2\text{O} \), \(\rho_{\text{Cu}_2\text{O}} \) is the resistivity of the \(\text{Cu}_2\text{O} \) layer.

Finally, the resistance of the interface, \(R_{\text{int}} (t) \), is simulated. Due to the small ionic current, even with the adjusted cation concentration, and the behavior of the \(I-t \) curve showing increase in conductivity, it is believed that the \(R_{\text{int}} \) was changing with time. Therefore, a time-dependent interface current \((I_{\text{int}}) \) is fitted to the total current where the fitting showed a \(\sim \rho_{\text{Cu-WO}_3}/t^{0.8} \) dependence and it is shown in Figure 7.11.

![Graph showing simulated current through the entire resistance model](image_url)

Figure 7.11: Simulated current through the entire resistance model
CHAPTER 8
CONCLUSION

In this dissertation, analysis and modeling of foundry-compatible PMC materials is presented. The main contribution of this dissertation was the fact that by changing fabrication parameters and processing conditions, materials with different properties could be obtained. These different material properties were shown to have a dramatic impact on the PMC device characteristics. Study on the performance of Cu-SiO\(_x\) vertical devices showed that forming voltage (\(V_F\)) and initial resistance (\(R_i\)) of a cell was greatly influenced by the annealing conditions and the cathode material. Using W instead of Ni resulted in devices with much lower \(V_F\) and \(R_i\) values. This was believed to be due to rougher interface created at the cathode/solid-electrolyte interface by the higher melting temperature of W which also possibly led to more columnar structures in the SiO\(_x\) which facilitated easier transport of Cu ions. Also, it was found that the effects of the densification of the SiO\(_x\) layer was more pronounced up to 500 °C which at first led to increase in \(V_F\), but doping of Cu into the SiO\(_x\) was more dominating at 550 °C which drastically reduced the \(V_F\) by forming Cu islands at the Cu/SiO\(_x\) interface for the W-based devices. Moreover, analysis of thin-film Cu oxidation in air at low temperatures (125 °C – 170 °C) revealed that Cu oxidized into Cu\(_2\)O with the activation energy (\(E_a\)) of 0.70 eV. The calculated \(E_a\) suggested that the diffusion mechanism is mostly defect-related grain boundary diffusion. The feature sizes on the surface of Cu\(_2\)O was analyzed by image processing and it showed an increase in size with both annealing time and temperature. Furthermore, diffusion investigation of Cu into WO\(_3\) showed that Cu formed clusters in the WO\(_3\) host matrix, and the activation
energy of diffusion was found to be 0.74 eV in the temperature range of 125 °C – 155 °C. Analysis of Cu oxidation and diffusion of Cu into WO$_3$ enabled for a Matlab model to be built that assisted the formation of Cu$_2$O/Cu-WO$_3$ bilayers that were used in lateral PMC devices. The bilayer was formed by thermal processing of deposited Cu/WO$_3$ stack at low temperatures in air which caused the oxidation of Cu from the top and a simultaneous diffusion at the Cu/WO$_3$ interface. Bilayers with different electrical characteristics were established by controlling the deposited Cu thickness and annealing conditions. Low temperature annealing of the deposited stack with Cu thicknesses larger than 20 nm led to a Cu$_2$O layer that exhibited Cu + Cu$_2$O mix that reduced the resistivity. This low resistive characteristic of the formed Cu$_2$O layer resulted in a higher electron supply to the Cu ions that were reduced closer to the anode which enhanced the electrodeposition rate ($E_{\sigma,a}$ ~ 0.20 – 0.30 eV). On the other hand, annealing the stack with the 10 nm of deposited Cu resulted in a very thin Cu$_2$O layer with higher resistivity that showed reduction of Cu ions closer to the cathode with slower electrodeposition rate ($E_{\sigma,a}$ ~ 0.64 eV). This wide range of electrodeposition rate proved that devices with different time-to-bridge values could be obtained for lateral PMC devices by optimizing the annealing conditions and deposited Cu thicknesses.

This dissertation presents a comprehensive study on analysis and modeling of foundry compatible programmable metallization cell materials and devices and provides a solid foundation for interesting future work. First of all, a detailed study on the electrical performance and modeling of the Cu$_2$O/Cu-WO$_3$ bilayer lateral PMC devices must be performed. Furthermore, because SiO$_x$ is also a widely used BEOL-compatible PMC material, similar Cu diffusion study into SiO$_x$ along with potential Cu$_2$O/Cu-SiO$_x$ bilayer
lateral PMC devices should be investigated. Moreover, fine tuning of the interesting behavior of Cu$_2$O (low and high resistivity) for lateral PMC device applications should be explored.
REFERENCES

APPENDIX A

IMAGEJ SCRIPT FOR PARTICLE SIZE ANALYSIS OF AFM IMAGES
// SET SCALE FIRST
run("Duplicate..."," ");
setBatchMode(true);
run("Convolve...", "text1=[-1 -1 -1 -1\n-1 -1 -1 -1\n-1 -1 -1 -1\n-1 -1 -1 -1\n25 -1 -1\n-1 -1 25 -1\n-1 -1 25 -1\n-1 -1 -1\n] normalize");
// filter coefficient is mostly 25, 30 for sample 23
run("Enhance Contrast", "saturated=0.3")
run("8-bit");
run("Smooth");
run("Auto Local Threshold", "method=Mean radius=15 parameter_1=0 parameter_2=0 white");
// radius can be 26 or 30; 15 for sample 5
run("Median...", "radius=2");
run("Median...", "radius=2");
run("Median...", "radius=2");
//run("Median...", "radius=2");
//run("Median...", "radius=2");
//The number of median filters used depends on how good the
// post-processed image is.
run("Analyze Particles...", "size=500-\Infinity display exclude clear add");
run("Summarize");
MeanArea=getResult("Area",nResults-4);
MeanDiameter=sqrt(MeanArea*4/PI);
print("Average grain area is "+MeanArea+"nm2");
print("Assuming circular grain, then");
print("Average grain size is "+MeanDiameter+"nm.");
APPENDIX B

MATLAB CODE OF OXIDATION AND DIFFUSION MODEL FOR Cu-WO₃ SYSTEM
function CuWO3(deposited,temp,time,W03th,pO2)

%% If no pO2 input
if ~exist('pO2','var')
pO2=760*0.21;
end

%% If no WO3 thickness input
if ~exist('WO3th','var')
 WO3th=80;
end

%% Initiate variables
EaWO3=0.742;
D0=2.7333e-6;
R=8.617e-5;
Eacuox=0.697; %Activation energy of Cu in Cu2O
k0=20.6972;
p0=760*0.21;
NAvog=6.022e23; %atoms/mole
CuDens=8.85; %g/cm3
CuMolMass=63.5; %g/mole
Cu2oDens=6; %g/cm3
Cu2oMolMass=143.0; %g/mole
CuConv=NAvog*CuDens/CuMolMass;
Cu2oConv=NAvog*Cu2oDens/Cu2oMolMass;
CuS8wo3=0.56;
annT=273+temp; % conversion to Kelvin
time=60; % annealing time in seconds
y=deposited*le-7; % conversion to cm
k=k0*(pO2/p0)^0.5*exp(-Eacuox/R/annT);
D=D0*exp(-EaWO3/R/annT);
doxfinal=k*sqrt(t); %parabolic law
doxnmm=doxnnm*le7; %CuOx thickness in nm if no diffusion
xx=0:1e-7:(deposited+WO3th)*1e-7;
n=1;
C=ones(1,length(xx)).*CuConv;
C(deposited+1:length(xx))=0;
C1=ones(1,length(xx));
C1(deposited+1:length(xx))=0;
CuinCu2o=0.67; %Cu at% in Cu2O
flag=0;

%% If time is zero
if time<=0
 plot(xx,C,'LineWidth',6)
 return
end

%% Start time for Diffusion and Oxidation
for tt=1:time
 if tt<=1
 dox=k*sqrt(tt*60);
doxnmm=dox*le7;
 usedCu=dox/1.65;
 z=round(doxnmm);
z=round(usedCu*le7);
 for x=0:1e-7:xx(length(xx))
 if x<=usedCu
 C(n)=CuinCu2o*Cu2oConv;
 C1(n)=CuinCu2o;
 n=n+1;
 end
 end
 end
end
end
if x>usedCu && x<y
 C(n)=1*CuConv;
 C1(n)=1;
 n=n+1;
end
if x>usedCu && x>=y
 C1(n)=CuSSwo3*(1-erf((x-y)/sqrt(4*D*tt*60)));
 C(n)=CuSSwo3*CuConv*(1-erf((x-y)/sqrt(4*D*tt*60)));
 n=n+1;
end
diffused=round(sum(C1(deposited+1:length(C1))));
C1(1:diffused+zz+1)=0;
if diffused+zz+1-z<1
 mm=0-(diffused+zz+1-z);
 C1(1:z-mm)=CuinCu2o;
 C(1:z-mm)=CuinCu2o*Cu2oConv;
else
 C1(diffused+zz+1-z:diffused+zz+1)=CuinCu2o;
 C(diffused+zz+1-z:diffused+zz+1)=CuinCu2o*Cu2oConv;
 if z<deposited && diffused+zz>0
 C1(1:diffused+zz-z)=0;
 C(1:diffused+zz-z)=1;
 end
end
else
 if C1(deposited)==CuinCu2o
 if flag==0
 %Q1=diffused*1e-7*CuConv
 Q=((deposited*1e-7)-usedCu)*CuConv
 diffCu=(((deposited*1e-7)-usedCu)*1e7;
 tt;
 oxiCu=usedCu*1e7;
 CuConcEq=Q/WO3th/1e-7;
 ttime=tt*60;
 flag=1;
 end
 for v=deposited+1:length(xx)
 r=v*1e-7;
 C(v)=Q/sqrt(pi*D*tt*60)*exp(-r^2/(4*D*tt*60));
 end
 else
 dox=k*sqrt(tt*60);
 doxnm=dox*1e7;
 usedCu=dox/1.65;
 z=round(doxnm);
 zz=round(usedCu*1e7);
 do x=0:1e-7:xx(length(xx))
 if x<=usedCu
 C1(n)=CuinCu2o;
 C(n)=CuinCu2o*Cu2oConv;
 n=n+1;
 end
 if x>usedCu && x<y
 C1(n)=1;
 end
 end
end
C(n)=1*CuConv;
n=n+1;
end
if x>usedCu && x>=y
 C1(n)=CuSSwo3*(1-erf((x-y)/sqrt(4*D*tt*60)));
 C(n)=CuSSwo3*CuConv*(1-erf((x-y)/sqrt(4*D*tt*60)));
 n=n+1;
end
diffused=round(sum(C1(deposited+1:length(C1))));
C1(1:diffused+zz+1)=0;
if diffused+zz+1-z<1
 mm=0-(diffused+zz+1-z);
 C1(l:z-mm)=CuinCu2o;
 C(l:mm)=CuinCu2o*Cu2oConv;
else
 C1(diffused+zz+1-z:diffused+zz+1)=CuinCu2o;
 C(diffused+zz+1-z:diffused+zz+1)=CuinCu2o*Cu2oConv;
 if z<deposited && diffused+zz-z>0
 C1(l:diffused+zz-z)=0;
 C(l:diffused+zz-z)=1;
end
end
end
n=1;
semilogy(xx,C,'LineWidth',6)
axis([0 (deposited+WO3th)*1e-7 1e20 1e23])
set(gca,'FontSize',16)
xlabel('Depth (cm)','FontSize',16)
ylabel('Cu concentration (atoms/cm^3)','FontSize',16)
title('Depth Profile of Cu (atoms/cm^3)','FontSize',16)
box=annotation('textbox', [0.6, 0.7, 0.3, 0.2], 'String', "Cu_2O is " + doxnmm + " nm Time elapsed: " + tt + " min")
box.FontSize = 16;
M(tt)=getframe;
hold off
delete(findall(gcf,'type','annotation'))
end
%% Movie plot of the concentration
if time>0
 movie(M,1,5)
end
%% Interactive Cu Concentration Plot
CuConcAtWO3Surface=C(deposited+1);
semilogy(xx,C,'LineWidth',6)
axis([0 (deposited+WO3th)*1e-7 1e20 1e23])
set(gca,'FontSize',16)
xlabel('Depth (cm)','FontSize',16)
ylabel('Cu concentration (atoms/cm^3)','FontSize',16)
title('Depth Profile of Cu (atoms/cm^3)','FontSize',16)
title('Depth Profile of Cu (atoms/cm^3)','FontSize',16)
box=annotation('textbox', [0.6, 0.7, 0.3, 0.2], 'String', "Cu_2O is " + doxnmm + " nm Time elapsed: " + tt + " min")
box.FontSize = 16;
end
APPENDIX C

MATLAB CODE OF LATERAL PMC DEVICE SIMULATION
function play(number,L,V,Ni)
if ~exist('V','var')
 V=60; %applied bias
end
if ~exist('Ni','var')
 Ni=5.5e21; %cation concentration
end
if ~exist('L','var')
 L=14e-4; %channel length
end
E0=0.6;
D=1e-12;
CuDens=8.85;
NAvog=6.022e23;
CuMolMass=63.5;
Nf=NAvog*CuDens/CuMolMass;
a=1.12e-7; %2.4e-7
v=1e12;
uth=2.8e4;
kT=0.0259;
z=2;
g=1.6e-19;
We=50e-4;
tox=80e-7;
Aox=tox*We;
resCu=1.7e-6;
resox=3e7;
resSemi=10e4;
tSemi=8e-7;
Dfil=50e-7;
Afil=pi*Dfil*Dfil/4;
tt=0:1:3e4;
dh=1e-7;
h=0:dh:L;
Start=Ni*Aox*L*1.25;
Cmin=1e18;
%resox*(L)/Aox
if number==1
 f=1;
 for ii=1:L/dh
 cons(ii)=1/2*Dfil*We/1*h(ii)+1*Nf;
 x0(ii)=cons(ii)/(Ni-Cmin)/Aox;
 if x0(ii)+h(ii)<=L
 min(ii)=Cmin*Aox*x0(ii);
 added(ii)=cons(ii);
 left(ii)=Ni*Aox*1.2*(L-h(ii)-x0(ii))-cons(ii);
 x0f=x0(ii);
 else
 x0(ii)=x0f-f*dh;
 min(ii)=Cmin*Aox*x0(ii);
 added(ii)=cons(ii);
 left(ii)=Ni*Aox*1.2*(L-h(ii)-x0(ii))-cons(ii);
 f=f+1;
 end
 if left(ii)>cons(ii)
 tot(ii)=left(ii)+min(ii);
 meh=left(ii);
```matlab
else
    tot(ii)=added(ii)+min(ii);
end
Nif(ii)=tot(ii)/Aox/(L)/1.2;
end
for n=1:L/dh
    rate(n)=(2*Nif(n)*uth/Nf*exp(-E0/kT))*sinh((a*z*V/2/kT)/(L-h(n))));
    invrate(n)=1/rate(n);
    ts(n)=invrate(n)*dh;
end
time(1)=ts(1);
for i=2:length(ts)
    time(i)=ts(i)+time(i-1);
end
for n=1:L/dh
    Jmg(n)=2*z*Nif(n)*q*uth*exp(-E0/kT)*sinh((a*z*V/2/kT)/(L-h(n))));
    Img(n)=Jmg(n)*Aox;
    Rion(n)=resCu*h(n)/Afil+resox/(time(n)^0.8)*(L-h(n))/Aox;
    Iion(n)=V/Rion(n);/%Aox;
    Isemi(n)=1/resSemi*V/(L-h(n))*tSemi*We;
    Iint(n)=1/(resox/time(n)^0.8)*V/(L-h(n))*Aox;
    Itot(n)=Isemi(n)+Img(n)+Iint(n);
end
semilogy(time,Jmg*Aox,'LineWidth',2)
hold on
semilogy(time,Isemi,'LineWidth',2)
hold on
semilogy(time,Iint,'LineWidth',2)
hold on
semilogy(time,Itot,'LineWidth',2)
plot(x0*1e4,h(1:length(h)-1)*1e4,'LineWidth',2)
hold on
plot(time,x0(1:length(x0)-1))
plot(time,h(1:length(h)-1)*1e4)
semilogy(h(1:length(h)-1)*1e4,cons,'LineWidth',2)
hold on
semilogy(h(1:length(h)-1)*1e4,left,'LineWidth',2)
hold on
semilogy(h(1:length(h)-1)*1e4,tot,'LineWidth',2)
semilogy(h(1:length(h)-1)*1e4,Nif,'LineWidth',2)
semilogy(time,Nif,'LineWidth',2)
t=sum(ts)
set(gca,'FontSize',18)
set(gca,'FontName','Times New Roman')
set(gca,'fontweight','bold')
ylabel('I (A)')
xlabel('Time (s)')
ylim([0 1e-4])
end
```