Barrett, The Honors College Thesis/Creative Project Collection

Permanent Link Feedback

Contributor
Date Range
2013 2017

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine ...

Contributors
Votroubek, Edward Daniel, Solanki, Kiran, Oswald, Jay, et al.
Created Date
2016-05

Balloon-borne telescopes are an economic alternative to scientists seeking to study light compared to other ground- and space-based alternatives, such as the Keck Observatory and the Hubble Space Telescope. One such balloon-borne telescope is the Balloon-borne Large Aperture Submillimeter Telescope, or simply BLAST. Arizona State University was tasked with assembling one of the primary optics plates for the telescope’s next mission. This plate, detailed in the following paragraphs, is designed to detect and capture submillimeter wavelength light. This will help scientists understand the formation and early life of stars. Due to its highly sensitive nature detecting light, the optics plate ...

Contributors
Dombrowski, Shane Matthew, Groppi, Christopher, Mauskopf, Philip, et al.
Created Date
2016-05

In recent years, networked systems have become prevalent in communications, computing, sensing, and many other areas. In a network composed of spatially distributed agents, network-wide synchronization of information about the physical environment and the network configuration must be maintained using measurements collected locally by the agents. Registration is a process for connecting the coordinate frames of multiple sets of data. This poses numerous challenges, particularly due to availability of direct communication only between neighboring agents in the network. These are exacerbated by uncertainty in the measurements and also by imperfect communication links. This research explored statistically based registration in a ...

Contributors
Phuong, Shih-Ling, Cochran, Douglas, Berman, Spring, et al.
Created Date
2014-05

The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to understand where the flaws might arise in their design method. 2. I then describe the key aspects of systems engineering design. This is the backbone of the method I am proposing, and it is important to understand the key concepts so that they can be applied to the FSAE design ...

Contributors
Pickrell, Trevor Charles, Trimble, Steven, Middleton, James, et al.
Created Date
2015-05

The purpose of this project focuses on analyzing how a typically brittle material, such as PLA, can be manipulated to become deformable, through the development of an origami structure, in this case—the Yoshimuri pattern. The experimental methodology focused on creating a base Solidworks model, with varying hinge depths, and 3D printing these various models. A cylindrical shell was also developed with comparable dimensions to the Yoshimuri dimensions. These samples were then tested through compression testing, with the load-displacement, and thus the stress-strain curves are analyzed. From the results, it was found that generally, the Yoshimuri samples had a higher level ...

Contributors
Sundar, Vaasavi, Hanqing, Jiang, Dallas, Kingsbury, et al.
Created Date
2016-12

This paper presents the methods used to fabricate carbon fiber tubes with different geometries that impact their critical failure modes. Two types of carbon fiber were used in the manufacturing process: seamless sleeve carbon fiber and stitched bonded sheet carbon fiber (PRI 2000-1-C). A manufacturing process for the tubes was developed for both geometries. Different epoxy systems were used for each fiber type. After curing, the surfaces of the tubes were inspected using flash thermography to characterize surface defects. The tube samples were placed in a three-point bending setup with an induced crack. The crack propagation was documented using a ...

Contributors
Padilla, Michael David, Chattopadhyay, Aditi, Yekani Fard, Masoud, et al.
Created Date
2016-12

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull. A concussion causes temporary loss of brain function leading to cognitive, physical, and emotional symptoms, such as confusion, vomiting,headache, nausea,depression, disturbed sleep, moodiness, and amnesia. Although the short-term effects of concussions are limited, the long-term effects of concussions, if untreated, can be devastating and even life-threatening. Concussions are having detrimental ...

Contributors
Laughlin, Riley James, Squires, Kyle, Shrake, Scott, et al.
Created Date
2015-05

This thesis focuses on the effects of an engine’s induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems outside the engine, as finding substantial gains via this method negates the need to alter engine architectures, potentially saving manufacturers research and development costs. The ultimate goal was to determine the feasibility of modifying induction and exhaust systems to increase fuel efficiency via reduction of engine pumping losses and increase ...

Contributors
Curl, Samuel Levi, Trimble, Steven, Takahashi, Timothy, et al.
Created Date
2016-12

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. ...

Contributors
Simaie, Salar, Chen, Tingyon, Alizadeh, Iman, et al.
Created Date
2015-05

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although ...

Contributors
Winsryg, Benjamin Rolf, White, Daniel, Brunacini, Lauren, et al.
Created Date
2017-05

Barrett, the Honors College accepts high performing, academically engaged students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project, supervised and defended in front of a faculty committee. The thesis or creative project allows students to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is a student’s opportunity to explore areas of academic interest with greater intensity than is possible in a single course. It is also an opportunity to engage with professors, nationally recognized in their fields and specifically interested and committed to working with honors students. This work provides tangible evidence of a student’s research, writing and creative skills to graduate schools and/or prospective employers.