Barrett, The Honors College Thesis/Creative Project Collection

Permanent Link Feedback

Subject
Date Range
2012 2017

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within ...

Contributors
Ober-Reynolds, Benjamin John, LaBaer, Joshua, Borges, Chad, et al.
Created Date
2014-05

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel ...

Contributors
Helsell, Cole Vincent Maher, Van Horn, Wade, Wang, Xu, et al.
Created Date
2015-05

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied ...

Contributors
Paxton, Rebecca Joanne, Stephanopoulos, Nicholas, He, Ximin, et al.
Created Date
2016-12

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant ...

Contributors
Grewal, Harneet, Loo, Yi Jia Valerie, Anderson, Karen, et al.
Created Date
2016-12

The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically been difficult with GPCRs, in recent years many structures have been solved using lipidic cubic phase (LCP) crystallization techniques. Sample preparation for LCP crystallization typically requires optimization of genetic constructs, recombinant expression, and purification techniques in order to produce a sample with sufficient stability and homogeneity. This study compares several ...

Contributors
Erler, Maya Marie, Liu, Wei, He, Ximin, et al.
Created Date
2016-12

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated ...

Contributors
McDaniel, Matthew Cary, Nielsen, David, Lind, Mary Laura, et al.
Created Date
2013-05

Time spent alone is a topic that has been studied in great detail, particularly the manner in which it is spent and the effect it has during the adolescent stage of life. Similarly, stress levels in adolescents have always been a topic of interest because of the effects they could have on the individual later in adulthood. Oddly enough however, the two areas of study have never been looked at in relation to one another. This study will look at different types of alone time as possible stressors in a community sample (N=82) of adolescents transitioning to college. The data ...

Contributors
Vanderwerf, Jennifer, Doane, Leah, Knight, George, et al.
Created Date
2012-12

The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in vivo imaging was determined by the plasmid stability, growth rate, and growth phase dependence on fluorescent intensity. The end goal is to be able to use the asd plasmid in vaccine strains for the purpose of in vivo imaging of the recombinant attenuated Salmonella vaccine (RASV).

Contributors
Eudy, L. Adam, Curtiss, Roy, Roland, Kenneth, et al.
Created Date
2012-12

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity ...

Contributors
Lee, Fred, Meldrum, Deirdre R., Tian, Yanqing, et al.
Created Date
2014-12

Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found to contain one Cu2+ per subunit. For many years, it was thought that the B. subtilis quercetinase contained two Fe2+ ions per subunit; however, it has since been discovered that Mn2+ is a much more likely cofactor. Studies of overexpressed bacterial enzyme in E. coli indicated that this enzyme may ...

Contributors
Krojanker, Elan Daniel, Francisco, Wilson, Allen, James P., et al.
Created Date
2014-05

Barrett, the Honors College accepts high performing, academically engaged students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project, supervised and defended in front of a faculty committee. The thesis or creative project allows students to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is a student’s opportunity to explore areas of academic interest with greater intensity than is possible in a single course. It is also an opportunity to engage with professors, nationally recognized in their fields and specifically interested and committed to working with honors students. This work provides tangible evidence of a student’s research, writing and creative skills to graduate schools and/or prospective employers.