Skip to main content

Barrett, The Honors College Thesis/Creative Project Collection


Barrett, the Honors College accepts high performing, academically engaged students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project, supervised and defended in front of a faculty committee. The thesis or creative project allows students to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is a student’s opportunity to explore areas of academic interest with greater intensity than is possible in a single course. It is also an opportunity to engage with professors, nationally recognized in their fields and specifically interested and committed to working with honors students. This work provides tangible evidence of a student’s research, writing and creative skills to graduate schools and/or prospective employers.


Date Range
2013 2018


Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 ...

Contributors
Boepple, Brandon Richard, Emady, Heather, Adepu, Manogna, et al.
Created Date
2018-05

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and ...

Contributors
Chabra, Rohin, Nielsen, David, Torres, Cesar, et al.
Created Date
2015-05

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce ...

Contributors
Brown Munoz, Francisco, Torres, Cesar, Rittmann, Bruce E., et al.
Created Date
2017-05

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer’s disease (AD) and Parkinson’s disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic ...

Contributors
Tindell, John, Card, Emma, Sierks, Michael, et al.
Created Date
2016-12

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because ...

Contributors
Thompson, Julia, Torres, Cesar, Popat, Sudeep, et al.
Created Date
2016-05

Alternative ion exchange membranes for implementation in a peroxide production microbial electrochemical cel (PP-MEC) are explored through membrane stability tests with NaCl electrolyte and stabilizer EDTA at varying operational pHs. PP-MEC performance parameters – H2O2 concentration, current density, coulombic efficiency and power input required – are optimized over a 7 month continuous operation period based on their response to changes in HRT, EDTA concentration, air flow rate and electrolyte. I found that EDTA was compatible for use with the membranes. I also determined that AMI membranes were preferable to CMI and FAA because it was consistently stable and maintained its ...

Contributors
Chowdhury, Nadratun Naeem, Torres, Cesar, Popat, Sudeep, et al.
Created Date
2016-05

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show ...

Contributors
Tropsa, Sean Michael, Torres, Cesar, Popat, Sudeep, et al.
Created Date
2014-05

Lithium-ion batteries are the predominant source of electrical energy storage for most portable electronics applications, including hybrid/electric vehicles, laptops, and cellular phones. However, these batteries pose safety concerns due to their flammability and tendency to violently ignite upon short circuiting or failing. Solid electrolytes are a current research development aimed at reducing the flammability and reactivity of lithium batteries. The compound Li7La3Zr2O12, or LLZO, exhibits satisfactory ionic conductivity in the cubic phase, which is normally synthesized via doping with Al. It has recently been discovered that synthesizing nanostructured LLZO can stabilize the cubic phase without the need for doping. Here ...

Contributors
Gordon, Zachary Daniel, Chan, Candace K., Lin, Jerry, et al.
Created Date
2015-05

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced ...

Contributors
King, Julia Ann, Lind, Mary Laura, Durgun, Pinar Cay, et al.
Created Date
2016-05

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of ...

Contributors
Nichols, Jessica Ellen, Forzani, Erica, Nielsen, David, et al.
Created Date
2013-05