Skip to main content

ASU Scholarship Showcase


This growing collection consists of scholarly works authored by ASU-affiliated faculty, students and community members, and contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in the ASU Digital Repository.


Contributor
Date Range
2010 2017


Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell epitope mapping approaches have been widely pursued, though success has not been consistent. Antibody mixtures in immune sera have been used as handles for biologically relevant antigens, but these and other experimental approaches have proven resource intensive and time consuming. In addition, these methods are often tailored to individual diseases …

Contributors
Whittemore, Kurt, Johnston, Stephen, Sykes, Kathryn, et al.
Created Date
2016-06-14

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale …

Contributors
Johnston, Stephen, Domenyuk, Valeriy, Gupta, Nidhi, et al.
Created Date
2017-12-14

The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination …

Contributors
Domenyuk, Valeriy, Loskutov, Andrey, Johnston, Stephen, et al.
Created Date
2013-01-23

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host …

Contributors
Lina Nascimento Fabris Maeda, Denicar, Tavares Batista, Milene, Ramos Pereira, Lennon, et al.
Created Date
2017-09-25

Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed …

Contributors
Kukreja, Muskan, Johnston, Stephen, Stafford, Phillip, et al.
Created Date
2012-06-21

Background An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and …

Contributors
Williams, Stephanie, Stafford, Phillip, Hoffman, Steven, et al.
Created Date
2014-06-07

Background Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. Results The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The …

Contributors
Daskalova, Sasha, Radder, Josiah, Cichacz, Zbigniew, et al.
Created Date
2010-08-24

We have previously shown that the diversity of antibodies in an individual can be displayed on chips on which 130,000 peptides chosen from random sequence space have been synthesized. This immunosignature technology is unbiased in displaying antibody diversity relative to natural sequence space, and has been shown to have diagnostic and prognostic potential for a wide variety of diseases and vaccines. Here we show that a global measure such as Shannon’s entropy can be calculated for each immunosignature. The immune entropy was measured across a diverse set of 800 people and in 5 individuals over 3 months. The immune entropy …

Contributors
Wang, Lu, Whittemore, K., Johnston, Stephen, et al.
Created Date
2017-12-22

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors. Blood samples from patients undergoing craniotomies for therapeutically naïve brain tumors with diagnoses of astrocytoma (23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendroglioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior to adjuvant therapy, they are unlikely to …

Contributors
Hughes, Alexa, Cichacz, Zbigniew, Scheck, Adrienne, et al.
Created Date
2012-07-16

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein–DNA assemblies have been …

Contributors
Fu, Jinglin, Yang, Yuhe, Johnson-Buck, Alexander, et al.
Created Date
2014-07-01