Skip to main content

ASU Scholarship Showcase


This growing collection consists of scholarly works authored by ASU-affiliated faculty, students and community members, and contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in the ASU Digital Repository.


Date Range
2017 2017


Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6C[superscript low] and Ly6C[superscript high]) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E[subscript 2] is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6C[superscript low] Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion …

Contributors
Tang, Juan, Shen, Yujun, Chen, Guilin, et al.
Created Date
2017-03-03

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison …

Contributors
Yan, Bin, Guan, Daogang, Wang, Chao, et al.
Created Date
2017-10-19

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association …

Contributors
Li, Mulin Jun, Li, Miaoxin, Liu, Zipeng, et al.
Created Date
2017-03-16

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining liquid at the Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, from March 2013 to November 2014. An outbreak of A. baumannii emerging after DCD renal transplantation was tracked to understand the transmission of the pathogen. PFGE displayed similar DNA patterns between isolates from the same …

Contributors
Jiang, Hong, Cao, Luxi, Qu, Lihui, et al.
Created Date
2017-05-16

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or ‘cerQTL’, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have …

Contributors
Li, Mulin Jun, Zhang, Jian, Liang, Qian, et al.
Created Date
2017-05-02

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the …

Contributors
Wang, Yuchuan, Hu, Ligang, Xu, Feng, et al.
Created Date
2017-04-19

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, …

Contributors
Yip, Shun H., Wang, Panwen, Kocher, Jean-Pierre A., et al.
Created Date
2017-09-18

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located in the intron of the long noncoding RNA (lncRNA) LINC00305 by searching the GWAS database. Although the function of LINC00305 is unknown, we found that LINC00305 expression is enriched in atherosclerotic plaques and monocytes. Overexpression of LINC00305 promoted the expression of inflammation-associated genes in THP-1 cells and reduced the expression of contractile markers in co-cultured human aortic smooth muscle cells (HASMCs). We showed that overexpression of LINC00305 activated nuclear factor-kappa …

Contributors
Zhang, Dan-Dan, Wang, Wen-Tian, Xiong, Jian, et al.
Created Date
2017-04-10

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, …

Contributors
Li, Miaoxin, Li, Jiang, Li, Mulin Jun, et al.
Created Date
2017-01-23