ASU Scholarship Showcase

Permanent Link Feedback

Background TDP-43 aggregates accumulate in individuals affected by amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, representing potential diagnostic and therapeutic targets. Using an atomic force microscopy based biopanning protocol developed in our lab, we previously isolated 23 TDP-43 reactive antibody fragments with preference for human ALS brain tissue relative to frontotemporal dementia, a related neurodegeneration, and healthy samples from phage-displayed single chain antibody fragment (scFv) libraries. Here we further characterize the binding specificity of these different scFvs and identify which ones have promise for detecting ALS biomarkers in human brain tissue and plasma samples. Results We developed a sensitive ...

Contributors
Williams, Stephanie, Khan, Galam, Harris, Brent T., et al.
Created Date
2017-01-25

Cervical spinal cord injury (SCI) causes loss or impairment of control of respiratory muscles. Life-sustaining ventilation can be provided by mechanical ventilators (which have numerous side effects) or open-loop electrical stimulation respiratory pacing systems.

Contributors
Hillen, Brian K., Abbas, James, Zbrzeski, Adeline, et al.
Created Date
2015-12-18

Background Overexpression and abnormal accumulation of aggregated α-synuclein (αS) have been linked to Parkinson's disease (PD) and other synucleinopathies. αS can misfold and adopt a variety of morphologies but recent studies implicate oligomeric forms as the most cytotoxic species. Both genetic mutations and chronic exposure to neurotoxins increase αS aggregation and intracellular reactive oxygen species (ROS), leading to mitochondrial dysfunction and oxidative damage in PD cell models. Results Here we show that curcumin can alleviate αS-induced toxicity, reduce ROS levels and protect cells against apoptosis. We also show that both intracellular overexpression of αS and extracellular addition of oligomeric αS ...

Contributors
Wang, Min, Boddapati, Shanta, Emadi, Sharareh, et al.
Created Date
2010-04-30

Background Rett syndrome (RTT), a common cause of mental retardation in girls, is associated with mutations in the MECP2 gene. Most human cases of MECP2 mutation in girls result in classical or variant forms of RTT. When these same mutations occur in males, they often present as severe neonatal encephalopathy. However, some MECP2 mutations can also lead to diseases characterized as mental retardation syndromes, particularly in boys. One of these mutations, A140V, is a common, recurring missense mutation accounting for about 0.6% of all MeCP2 mutations and ranking 21st by frequency. It has been described in familial X-linked mental retardation ...

Contributors
Jentarra, Garilyn M., Olfers, Shannon L., Rice, Stephen G., et al.
Created Date
2010-02-17