ASU Scholarship Showcase

Permanent Link Feedback

Water availability is the major limiting factor of the functioning of deserts and grasslands and is going to be severely modified by climate change. Field manipulative experiments of precipitation represent the best way to explore cause-effect relationships between water availability and ecosystem functioning. However, there is a limited number of that type of studies because of logistic and cost limitations. Here, we report on a new system that alters precipitation for experimental plots from 80% reduction to 80% increase relative to ambient, that is low cost, and is fully solar powered. This two-part system consists of a rainout shelter that ...

Contributors
Gherardi Arbizu, Laureano, Sala, Osvaldo, College of Liberal Arts and Sciences, et al.
Created Date
2013-02

We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be ...

Contributors
Jorgensen, Peter Sogaard, Barraquand, Frederic, Bonhomme, Vincent, et al.
Created Date
2015-04-01

Advances in the acquisition and dissemination of knowledge over the last decade have dramatically reshaped the way that ecological research is conducted. The advent of large, technology-based resources such as iNaturalist, Genbank, or the Global Biodiversity Information Facility (GBIF) allow ecologists to work at spatio-temporal scales previously unimaginable. This has generated a new approach in ecological research: one that relies on large datasets and rapid synthesis for theory testing and development, and findings that provide specific recommendations to policymakers and managers. This new approach has been termed action ecology, and here we aim to expand on earlier definitions to delineate ...

Contributors
White, Rachel L., Sutton, Alexandra E., Salguero-Gomez, Roberto, et al.
Created Date
2015-08-01

Altered thermal regimes under climate change may influence host-parasite interactions and invasive species, both potentially impacting valuable ecosystem services. There is considerable interest in how parasite life cycle rates, growth, and impacts on hosts will change under altered environmental temperatures. Likewise, transformed thermal regimes may reduce natural resistance and barriers preventing establishment of invasive species or alter the range and impacts of established exotic species. The Laurentian Great Lakes are some of the most invaded ecosystems and have been profoundly shaped by exotic species. Invasion by the parasitic sea lamprey (Petromyzon marinus) contributed to major declines in many Great Lakes ...

Contributors
Cline, Timothy J., Kitchell, James F., Bennington, Val, et al.
Created Date
2014-06-01

High-resolution characterizations and predictions are a grand challenge for ecohydrology. Recent advances in flight control, robotics and miniaturized sensors using unmanned aerial vehicles (UAVs) provide an unprecedented opportunity for characterizing, monitoring and modeling ecohydrologic systems at high-resolution (<1 m) over a range of scales. How can the ecologic and hydrologic communities most effectively use UAVs for advancing the state of the art? This Innovative Viewpoints paper introduces the utility of two classes of UAVs for ecohydrologic investigations in two semiarid rangelands of the southwestern U.S. through two useful examples. We discuss the UAV deployments, the derived image, terrain and vegetation ...

Contributors
Vivoni, Enrique, Rango, Albert, Anderson, Cody, et al.
Created Date
2014-10-01