ASU Scholarship Showcase

Permanent Link Feedback

We study the power- and bi-spectrum of vacuum fluctuations in a hyperbolic section of de Sitter space, comparing two states of physical interest: the Bunch-Davies and hyperbolic vacuum. We introduce a one-parameter family of de Sitter hyperbolic sections and their natural vacua, and identify a limit in which it reduces to the planar section and the corresponding Bunch-Davies vacuum state. Selecting the Bunch-Davies vacuum for a massless scalar field implies a mixed reduced density matrix in a hyperbolic section of de Sitter space. We stress that in the Bunch-Davies state the hyperbolic de Sitter n-point correlation functions have to match ...

Contributors
Dimitrakopoulos, Fotios V., Kabir, Laurens, Mosk, Benjamin, et al.
Created Date
2015-06-16

It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by “internal”, possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of entwinement, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the entanglement shadow — the region of spacetime not ...

Contributors
Balasubramanian, Vijay, Chowdhury, Borun, Czech, Bartlomiej, et al.
Created Date
2015-01-12

In this work we complete a model independent analysis of dark matter constraining its mass and interaction strengths with data from astro- and particle physics experiments. We use the effective field theory framework to describe interactions of thermal dark matter particles of the following types: real and complex scalars, Dirac and Majorana fermions, and vector bosons. Using Bayesian inference we calculate posterior probability distributions for the mass and interaction strengths for the various spin particles. The observationally favoured dark matter particle mass region is 10-100 GeV with effective interactions that have a cut-off at 0.1-1 TeV. This mostly comes from ...

Contributors
Balazs, Csaba, Li, Tong, Newstead, Jayden, et al.
Created Date
2014-08-11