ASU Scholarship Showcase

Permanent Link Feedback

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the ...

Contributors
Long, Andrew J., Vachaspati, Tanmay, College of Liberal Arts and Sciences, et al.
Created Date
2015-05-20

We derive the null energy condition, understood as a constraint on the Einstein-frame Ricci tensor, from world sheet string theory. For a closed bosonic string propagating in a curved geometry, the spacetime interpretation of the Virasoro constraint condition is precisely the null energy condition, to leading nontrivial order in the α′ expansion. Thus the deepest origin of the null energy condition lies in world sheet diffeomorphism invariance.

Contributors
Parikh, Maulik, van der Schaar, Jan Pieter, College of Liberal Arts and Sciences, et al.
Created Date
2015-04-03

The interaction induced chiral asymmetry is calculated in cold QED plasma beyond the weak-field approximation. By making use of the recently developed Landau-level representation for the fermion self-energy, the chiral shift and the parity-even chiral chemical potential function are obtained with the help of numerical methods. The results are used to quantify the chiral asymmetry of the Fermi surface in dense QED matter. Because of the weakness of the QED interactions, the value of the asymmetry appears to be rather small even in the strongest magnetic fields and at the highest stellar densities. However, the analogous asymmetry can be substantial ...

Contributors
Xia, Lifang, Gorbar, E. V., Miransky, V. A., et al.
Created Date
2014-10-10

We discuss the possibility that the IceCube neutrino telescope might be observing the Fermi bubbles. If the bubbles discovered in gamma rays originate from accelerated protons, they should be strong emitters of high energy (≳ GeV) neutrinos. These neutrinos are detectable as showerlike or tracklike events at a Km[superscript 3] neutrino observatory. For a primary cosmic ray flux with spectrum ∝ E[superscript −2.1] and cutoff energy at or above 10 PeV, the Fermi bubble flux substantially exceeds the atmospheric background, and could account for up to ∼4–5 of the 28 events detected above ∼30 TeV at IceCube. Running the detector ...

Contributors
Lunardini, Cecilia, Razzaque, Soebur, Theodoseau, Kristopher, et al.
Created Date
2014-07-21

We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense QED in a magnetic field. Contrary to the conventional wisdom suggesting that the axial current should be exactly fixed by the chiral anomaly relation and is described by the topological contribution on the lowest Landau level in the free theory, we find in fact that the axial current receives nontrivial radiative corrections. The direct calculations performed to the linear order in the external magnetic field show that the nontrivial radiative corrections to the axial current are provided by the Fermi surface singularity in ...

Contributors
Shovkovy, Igor, Gorbar, E. V., Miransky, V. A., et al.
Created Date
2013

We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative order in the coupling constant and to the linear order in an external magnetic field. We find that the chiral asymmetry of the normal ground state of the system is characterized by two new Dirac structures. One of them is the familiar chiral shift previously discussed in the Nambu-Jona-Lasinio model. The other structure is new. It formally looks like that of the chiral chemical potential but is an odd function of the longitudinal component of the momentum, directed along the magnetic field. The origin of this ...

Contributors
Shovkovy, Igor, Wang, Xinyang, Miransky, V. A., et al.
Created Date
2013

A single fluid approximation which treats perturbations in baryons and dark matter as equal has sometimes been used to calculate the growth of linear matter density perturbations in the Universe. We demonstrate that properly accounting for the separate growth of baryon and dark matter fluctuations can change some predictions of structure formation in the linear domain in a way that can alter conclusions about the consistency between predictions and observations for ΛCDM models vs modified gravity scenarios. Our results may also be useful for 21 cm tomography constraints on alternative cosmological models for the formation of large scale structure.

Contributors
Krauss, Lawrence, Dent, James, De, Soma, et al.
Created Date
2013-02