ASU Scholarship Showcase

Permanent Link Feedback

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex networks under game-based interactions from small amounts of data. The method is validated by using a variety of model networks and by conducting an actual experiment to reconstruct a social network. While most existing methods in this area assume oscillator networks that generate continuous-time data, our work successfully demonstrates that ...

Contributors
Wang, Wen-Xu, Lai, Ying-Cheng, Grebogi, Celso, et al.
Created Date
2011-12-21

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS[subscript 2] an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe[subscript 2] and WSe[subscript 2]. In this work, we show that encapsulation of ML MoS[subscript 2] in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity ...

Contributors
Cadiz, F., Courtade, E., Robert, C., et al.
Created Date
2017-05-18

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-established iterative phasing algorithms. Such a technique could have a significant impact on the field of biological structure determination since it avoids the need for a priori information from similar known structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative crystals, or atomic-resolution data. Here, we demonstrate this phasing ...

Contributors
Kirian, Richard, Bean, Richard J., Beyerlein, Kenneth R., et al.
Created Date
2015-02-12