ASU Scholarship Showcase

Permanent Link Feedback

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour, we do not know if and how they jointly affect collective outcomes. Here, we use a detailed computational model to examine the joint impact of colony-level distribution among tasks and behavioural persistence of individuals, specifically their fidelity to particular resource sites, on the collective trade-off between exploring for new resources ...

Contributors
Mosqueiro, Thiago, Cook, Chelsea, Huerta, Ramon, et al.
Created Date
2017-08-30

In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees (Pan troglodytes) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, ...

Contributors
Stevens, Jeffrey R., Marewski, Julian N., Schooler, Lael J., et al.
Created Date
2016-08-03

In many social mammals, females who form close, differentiated bonds with others experience greater offspring survival and longevity. We still know little, however, about how females' relationships are structured within the social group, or whether connections beyond the level of the dyad have any adaptive value. Here, we apply social network analysis to wild baboons in order to evaluate the comparative benefits of dyadic bonds against several network measures. Results suggest that females with strong dyadic bonds also showed high eigenvector centrality, a measure of the extent to which an individual's partners are connected to others in the network. Eigenvector ...

Contributors
Cheney, Dorothy L., Silk, Joan, Seyfarth, Robert M., et al.
Created Date
2016-07-27

Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a ...

Contributors
Chen, Yu-Zhong, Wang, Le-Zhi, Wang, Wen-Xu, et al.
Created Date
2016-04-20

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by ...

Contributors
Huang, Liang, Ni, Xuan, Ditto, William L., et al.
Created Date
2017-01-18

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of ...

Contributors
Su, Riqi, Wang, Wen-Xu, Wang, Xiao, et al.
Created Date
2016-01-06

Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both ‘ecosystem metrics' underscore how ...

Contributors
Douglas, M. R., Davis, M. A., Amarello, Melissa, et al.
Created Date
2016-04-27

In several group-living species, individuals' social preferences are thought to be influenced by cooperation. For some societies with fission–fusion dynamics, sex-specific association patterns reflect sex differences in cooperation in within- and between-group contexts. In our study, we investigated this hypothesis further by comparing sex-specific association patterns in two closely related species, chimpanzees and bonobos, which differ in the level of between-group competition and in the degree to which sex and kinship influence dyadic cooperation. Here, we used long-term party composition data collected on five chimpanzee and two bonobo communities and assessed, for each individual of 10 years and older, the ...

Contributors
Surbeck, Martin, Girard-Buttoz, Cedric, Boesch, Christophe, et al.
Created Date
2017-05-03

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are ...

Contributors
Hu, Zhao-Long, Han, Xiao, Lai, Ying-Cheng, et al.
Created Date
2017-04-12