Skip to main content

ASU Scholarship Showcase


This growing collection consists of scholarly works authored by ASU-affiliated faculty, students and community members, and contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in the ASU Digital Repository.




A tetradentate Pd(II) complex, Pd3O3, which exhibits highly efficient excimer emission is synthesized and characterized. Pd3O3 can achieve blue emission despite using phenyl-pyridine emissive ligands which have been a mainstay of stable green and red phosphorescent emitter designs, making Pd3O3 a good candidate for stable blue or white OLEDs. Pd3O3 exhibits strong and efficient phosphorescent excimer emission expanding the excimer based white OLEDs beyond the sole class of Pt complexes. Devices of Pd3O3 demonstrate peak external quantum efficiencies as high as 24.2% and power efficiencies of 67.9 Lm per W for warm white devices. Furthermore, Pd3O3 devices in a carefully …

Contributors
Fleetham, Tyler, Ji, Yunlong, Huang, Liang, et al.
Created Date
2017-09-11

Design of novel infrastructure materials requires a proper understanding of the influence of microstructure on the desired performance. The priority is to seek new and innovative ways to develop sustainable infrastructure materials using natural resources and industrial solid wastes in a manner that is ecologically sustainable and yet economically viable. Structural materials are invariably designed based on mechanical performance. Accurate prediction of effective constitutive behavior of highly heterogeneous novel structural materials with multiple microstructural phases is a challenging task. This necessitates reliable classification and characterization of constituent phases in terms of their volume fractions, size distributions and intrinsic elastic properties, …

Contributors
Das, Sumanta, Xiao, Xianghui, Chawla, Nikhilesh, et al.
Created Date
2017-02-22

We used a novel diffraction-based method to extract the local, atomic-level elastic strain in nanoscale amorphous TiAl films during in situ transmission electron microscopy deformation, while simultaneously measuring the macroscopic strain. The complementary strain measurements revealed significant anelastic deformation, which was independently confirmed by strain rate experiments. Furthermore, the distribution of first nearest-neighbor distances became narrower during loading and permanent changes were observed in the atomic structure upon unloading, even in the absence of macroscopic plasticity. The results demonstrate the capability of in situ electron diffraction to probe structural rearrangements and decouple elastic and anelastic deformation in metallic glasses.

Contributors
Sarkar, Rohit, Ebner, Christian, Izadi, Ehsan, et al.
Created Date
2016-09-22

Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that …

Contributors
Liu, Minglu, Wang, Robert, Ira A. Fulton Schools of Engineering, et al.
Created Date
2015-11-17

Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, …

Contributors
Tian, Jianxiang, Xu, Yaopengxiao, Jiao, Yang, et al.
Created Date
2015-11-16

Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a comprehensive understanding of cancer dormancy and the “switch” from a dormant to a proliferative state still needs to be strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper is to devise such a predictive computational model of dormancy with an …

Contributors
Chen, Duyu, Jiao, Yang, Torquato, Salvatore, et al.
Created Date
2014-10-16

Porous carbon nanospheres prepared using spray pyrolysis were evaluated as adsorbents for removal of arsenate and selenate in de-ionized (DI), canal, and well waters. The carbon nanospheres displayed good binding to both metals in DI water and outperformed commercial activated carbons for arsenate removal in pH > 8, likely due to the presence of basic surface functional groups, high surface-to-volume ratio, and suitable micropores formed during the synthesis.

Contributors
Li, Man, Wang, Chengwei, O'Connell, Michael, et al.
Created Date
2015-03-14

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50–100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature …

Contributors
Liu, Minglu, Ma, Yuanyu, Wu, Hsinwei, et al.
Created Date
2015-02-01

Cancer cell invasion is a major component of metastasis and is responsible for extensive cell diffusion into and major destruction of tissues. Cells exhibit complex invasion modes, including a variety of collective behaviors. This phenomenon results in the structural heterogeneity of the extracellular matrix (ECM) in tissues. Here, we systematically investigated the environmental heterogeneity facilitating tumor cell invasion via a combination of in vitro cell migration experiments and computer simulations. Specifically, we constructed an ECM microenvironment in a microfabricated biochip and successfully created a three-dimensional (3D) funnel-like matrigel interface inside. Scanning electron microscopy demonstrated that the interface was at the …

Contributors
Zhu, Jiangrui, Liang, Long, Jiao, Yang, et al.
Created Date
2015-02-23

In order to develop organic light-emitting diodes with improved optical properties, a series of phosphorescent complexes exhibiting narrow-band emission spectra are prepared and color tuned to emit efficiently across the whole visible spectrum through a judicious molecular design. Devices employing a green narrow-band phosphorescent emitter are fabricated and demonstrate an internal quantum efficiency of close to unity and impressive device operational lifetimes, estimate at over 70 000 h at a practical luminance of 100 cd m[superscript -2]. Additionally, a deep blue narrow-band emitter is incorporated into a device setting that demonstrates a peak external quantum efficiency of 17.6% and CIE …

Contributors
Li, Guijie, Fleetham, Tyler, Turner, Eric, et al.
Created Date
2015-03-01