Resilient Infrastructure Systems

Permanent Link Feedback

Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that resilience is a desirable property for infrastructure systems – i.e., that more resilience is always better. Unfortunately, this view ignore that the fact that a single concept of resilience is insufficient to ensure effective performance under diverse and volatile stresses. Scholarship in resilience engineering has identified at least four irreducible resilience concepts, including: rebound, robustness, graceful extensibility, and sustained adaptability. ...

Contributors
Eisenberg, Daniel A., Seager, Thomas P., Hinrichs, Margaret M., et al.
Created Date
2017-07-17

The long-term reliability and functioning of the transportation system will increasingly need to consider and plan for climate change and extreme weather events. Transportation systems have largely been designed and operated for historical climate conditions that are now frequently exceeded. Emerging knowledge of how to plan for climate change largely embraces risk-based thinking favoring more robust infrastructure designs. However, there remain questions about whether this approach is sufficient given the uncertainty and non-stationarity of the climate, and many other driving factors affecting transportation systems (e.g., funding, rapid technological change, population and utilization shifts, etc.). This paper examines existing research and ...

Contributors
Markolf, Samuel A., Hoehne, Christopher, Fraser, Andrew, et al.
Created Date
2017-07-17
Contributors
Markolf, Samuel
Created Date
2017-07-15