Skip to main content

Phoenix Regional Heat Mitigation, Planning, and Response Research


This archives houses peer-reviewed literature, data sets, reports, and other materials generated by ASU researchers that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for students, faculty, and staff collaborating on research initiatives related to heat as well as for community, local, state, and regional partners and other interested parties contributing to heat planning, preparedness, and response activities.


Date Range
1987 2017


The impacts of land-cover composition on urban temperatures, including temperature extremes, are well documented. Much less attention has been devoted to the consequences of land-cover configuration, most of which addresses land surface temperatures. This study explores the role of both composition and configuration—or land system architecture—of residential neighborhoods in the Phoenix metropolitan area, on near-surface air temperature. It addresses two-dimensional, spatial attributes of buildings, impervious surfaces, bare soil/rock, vegetation and the “urbanscape” at large, from 50 m to 550 m at 100 m increments, for a representative 30-day high sun period. Linear mixed-effects models evaluate the significance of land system ...

Contributors
Kamarianakis, Yiannis, Li, Xiaoxiao, Turner II, B. L., et al.
Created Date
2017-12-05

ASU faculty and students share research at Phoenix City Hall regarding urban heat, including causes, consequences, and potential solutions. Video accessible at: https://youtu.be/8B-OkgioQ4E

Contributors
ASU
Created Date
2017-09-29

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

Contributors
Sailor, David
Created Date
2017-09-07

The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Contributors
Kuras, Evan R., Richardson, Molly B., Calkins, Mirian M., et al.
Created Date
2017-08

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits is a challenge, especially considering the diurnal variations of urban heat island effects. Surprisingly, methods that support the strategic placement of green space in the context of urban heat island are lacking. Integrating geographic information systems, remote sensing, spatial statistics and spatial optimization, we developed a framework to identify the ...

Contributors
Zhang, Yujia, Murray, Alan T., Turner, II, B.L.
Created Date
2017-07-31

The growing urban heat island (UHI) phenomenon is having detrimental effects on urban populations and must be addressed in planning. The purpose of this research is to investigate the effectiveness of urban heat island effect reduction factors for Metropolitan Phoenix. Current strategies, case studies, and the ENVI-Met modeling software were used to finalize conclusions and suggestions to further progress Phoenix’s goals in combating urban heat islands. Results from the studies found that the implementation of green walls and roofs, the integration of wind towers into existing and new construction, improving building energy efficiency, and an establishment of a task force ...

Contributors
Shqalsi, Ema, Middel, Ariane, Pijawka, David
Created Date
2017-04-12

We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation.

Contributors
Middel, Ariane, Lukasczyk, Jonas, Maciejewski, Ross, et al.
Created Date
2017-03-17

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes of land-cover composition and pattern at the neighborhood or larger level using regression models. This study explores the effects of land system architecture—composition and configuration, both pattern and shape, of fine-grain land-cover classes—on LST of single family residential parcels in the Phoenix, Arizona (southwestern USA) metropolitan area. A 1 m ...

Contributors
Li, Xiaoxiao, Kamarianakis, Yiannis, Ouyang, Yun, et al.
Created Date
2017-02-14

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals ...

Contributors
Berisha, Vjollca, Hondula, David, Roach, Matthew, et al.
Created Date
2016-09-23

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the ...

Contributors
Yang, Jiachuan, Wang, Zhi-Hua, Kaloush, Kamil E., et al.
Created Date
2016-08-22