Skip to main content

Phoenix Regional Heat Mitigation, Planning, and Response Research

Date Range
2016 2016

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the ...

Yang, Jiachuan, Wang, Zhi-Hua, Kaloush, Kamil E., et al.
Created Date

This archives houses peer-reviewed literature, data sets, reports, and other materials generated by ASU researchers that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for students, faculty, and staff collaborating on research initiatives related to heat as well as for community, local, state, and regional partners and other interested parties contributing to heat planning, preparedness, and response activities.