Skip to main content

Phoenix Regional Heat Mitigation, Planning, and Response Research

Date Range
2009 2016

This established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values.

Humberto, Silva R., Phelan, Patrick E., Golden, Jay S.
Created Date

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events. Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season. Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk ...

Pettiti, Diana B., Hondula, David M., Yang, Shuo, et al.
Created Date

This archives houses peer-reviewed literature, data sets, reports, and other materials generated by ASU researchers that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for students, faculty, and staff collaborating on research initiatives related to heat as well as for community, local, state, and regional partners and other interested parties contributing to heat planning, preparedness, and response activities.