Skip to main content

Center for Earth Systems Engineering and Management


A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).


Contributor
Date Range
2012 2014


Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However, not all populations are affected equally. Risk factors for heat mortality—including age, race, income level, and infrastructure characteristics—often vary by geospatial location. While traditional epidemiological studies sometimes account for social risk factors, they rarely account for intra-urban variability in meteorological characteristics, or for the interaction between social and meteorological risks. This study aims to develop estimates of EHEs at an intra-urban scale for two major metropolitan areas in the Southwest: …

Contributors
Bartos, Matthew, Chester, Mikhail
Created Date
2014-06-12

This document has been superseded by our peer-reviewed publication: Building Thermal Performance, Climate Change, and Urban Heat Vulnerability, Matthew Nahlik, Mikhail Chester, Stephanie Pincetl, David Eisenman, Deepak Sivaraman, and Paul English, 2017, ASCE Journal of Infrastructure Systems, 23(3), doi:10.1061/(ASCE)IS.1943-555X.0000349 The publication is available at: http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000349 The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings …

Contributors
Nahlik, Matthew, Chester, Mikhail, Pincetl, Stephanie, et al.

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure. The LCA framework takes a reductionist approach and tries to make the system …

Contributors
Natarajan, Mukunth, Chester, Mikhail

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided. Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing …

Contributors
Fraser, Andrew, Chester, Mikhail

Results are available at www.transportationlca.org The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is governed based on lowest cost marginal dispatch and reliability principles. Additionally, there are times when a public transit agency may purchase wholesale electricity from a particular service provider. Such is the case with electric rail modes in the San Francisco Bay Area. An environmental life cycle assessment of San Francisco Bay Area public transit systems was developed by Chester and Horvath …

Contributors
Chester, Mikhail

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a …

Contributors
Chester, Mikhail, Eisenstein, William, Pincetl, Stephanie, et al.

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles. This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip …

Contributors
Christopher, Hoehne, Chester, Mikhail

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials. In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced …

Contributors
Burillo, Daniel, Chester, Mikhail, Kaloush, Kamil, et al.

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experience once every 100 years, and there is evidence that these events are expected become more frequent. There are increasing efforts to better understand the impacts of climate change on transportation infrastructure. An abundance of new research is emerging to study various aspects of climate change on transportation systems. Much of this …

Contributors
Chester, Mikhail, Fraser, Andrew, Bartos, Matthew

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles) based on climate-related changes in electricity generation capacity. Planning reserve margins (PRM) are used to estimate the potential for blackouts and brownouts under future climate scenarios. Reductions in PRM occur in both cities in 2016 with the most significant reductions occurring in regions relying more heavily on hydropower.

Contributors
Sivaraman, Deepak, Bartos, Matthew, Chester, Mikhail, et al.