Skip to main content

Center for Earth Systems Engineering and Management


A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).


Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess i) how historical floods changed roadway designs, ii) precipitation forecasts to mid-century, iii) the vulnerability of roadways to more frequent precipitation, iv) adaptation strategies focusing on safe-to-fail thinking, and v) strategies for overcoming institutional barriers to enable transitions. The students designed an EPA Storm Water Management Model for the City of …

Contributors
Al Rasbi, Omar, Archer, Harold, Azizi, Tariq Aziz, et al.

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then …

Contributors
Bondank, Emily, Chester, Mikhail