Skip to main content

Center for Earth Systems Engineering and Management

A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).

Mime Type
  • application/pdf
Date Range
2012 2014

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided. Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing …

Fraser, Andrew, Chester, Mikhail

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess i) how historical floods changed roadway designs, ii) precipitation forecasts to mid-century, iii) the vulnerability of roadways to more frequent precipitation, iv) adaptation strategies focusing on safe-to-fail thinking, and v) strategies for overcoming institutional barriers to enable transitions. The students designed an EPA Storm Water Management Model for the City of …

Al Rasbi, Omar, Archer, Harold, Azizi, Tariq Aziz, et al.

This report updates Supplementary Information section (Recirculating Cooling) of Bartos and Chester (2015). Extraneous derivations have been removed and an error corrected. Impacts of Climate Change on Electric Power Supply in the Western U.S., Matthew Bartos and Mikhail Chester, Nature Climate Change, 2015, 4(8), pp. 748-752, doi: 10.1038/nclimate2648,

Bartos, Matthew, Chester, Mikhail

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles. This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip …

Christopher, Hoehne, Chester, Mikhail