Skip to main content

Center for Earth Systems Engineering and Management


A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).


Contributor
Date Range
2012 2014


California high-speed rail will add a new long-distance transportation service and has the potential to reduce greenhouse gas emissions and damages to human health and the environment. A life-cycle assessment is performed and results reported for the California corridor in the 2030 to 2050 time period. Several future infrastructure and operating characteristics are evaluated to determine the critical characteristics that should be focused on when designing, constructing, and operating the system. This research provides results for and discussions of the possible futures of California long-distance transportation service with a focus on a multi-modal system that includes high-speed rail.

Contributors
Chester, Mikhail, Horvath, Arpad
Created Date
2012-04-11
Contributors
Ferrell, Janet, Spierre, Susan, Chester, Mikhail
Created Date
2012-05

The goal of this working paper is to provide the methodological background for several upcoming reports and peer-reviewed journal publications. This manuscript only provides background methodology and does not show or interpret any of the results that are being generated by the research team. The methodology is consistent with the transportation LCA approach developed by the author in previous research. The discussion in this working paper provides the detailed background data and steps used by the research team for their assessment of Los Angeles Metro transit lines and a competing automobile trip.

Contributors
Chester, Mikhail
Created Date
2012-07-30

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a …

Contributors
Chester, Mikhail, Eisenstein, William, Pincetl, Stephanie, et al.

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap. For urban systems, many …

Contributors
Ferrell, Janet, Chester, Mikhail

This policy brief has been superseded by publication of the results in the Journal of Planning Education and Research (JPER), Volume 33, No. 4. DOI: 10.1177/0739456X13507485 Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included …

Contributors
Kimball, Mindy, Chester, Mikhail, Gino, Christopher, et al.

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process. Results from the report are superseded by our publication in …

Contributors
Chester, Mikhail, Bosfield, Roberta, Celoza, Amelia, et al.
Created Date
2012-12

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run. A video of the growth of the network and additional information are available at www.transportationlca.org/losangelesroadways/

Contributors
Fraser, Andrew, Chester, Mikhail
Created Date
2013-04

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each …

Contributors
Chester, Mikhail, Pincetl, Stephanie, Elizabeth, Zoe, et al.

Building energy assessment often focuses on the use of electricity and natural gas during the use phase of a structure while ignoring the energy investments necessary to construct the facility. This research develops a methodology for quantifying the “embedded” energy and greenhouse gases (GHG) in the building infrastructure of an entire metropolitan region. “Embedded” energy and GHGs refer to the energy necessary to manufacture materials and construct the infrastructure. Using these methods, a case study is developed for Los Angeles County.

Contributors
Reyna, Janet, Chester, Mikhail