Skip to main content

Center for Earth Systems Engineering and Management


A collection of scholarly work published by and supporting the Center for Earth Systems Engineering and Management (CESEM) at Arizona State University.

CESEM focuses on "earth systems engineering and management," providing a basis for understanding, designing, and managing the complex integrated built/human/natural systems that increasingly characterize our planet.

Works in this collection are particularly important in linking engineering, technology, and sustainability, and are increasingly intertwined with the work of ASU's Global Institute of Sustainability (GIOS).


This document has been superseded by our peer-reviewed publication: Building Thermal Performance, Climate Change, and Urban Heat Vulnerability, Matthew Nahlik, Mikhail Chester, Stephanie Pincetl, David Eisenman, Deepak Sivaraman, and Paul English, 2017, ASCE Journal of Infrastructure Systems, 23(3), doi:10.1061/(ASCE)IS.1943-555X.0000349 The publication is available at: http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000349 The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings ...

Contributors
Nahlik, Matthew, Chester, Mikhail, Pincetl, Stephanie, et al.

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a ...

Contributors
Chester, Mikhail, Eisenstein, William, Pincetl, Stephanie, et al.

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles) based on climate-related changes in electricity generation capacity. Planning reserve margins (PRM) are used to estimate the potential for blackouts and brownouts under future climate scenarios. Reductions in PRM occur in both cities in 2016 with the most significant reductions occurring in regions relying more heavily on hydropower.

Contributors
Sivaraman, Deepak, Bartos, Matthew, Chester, Mikhail, et al.

This document has been superseded by our peer-reviewed publication: Household Accessibility to Heat Refuges: Residential Air Conditioning, Public Cooled Space, and Walkability, Preprint Online 2016 (Final Publication Expected 2017), Andrew Fraser, Mikhail Chester, David Eisenman, David Hondula, Stephanie Pincetl, Paul English, and Emily Bondank, Environment and Planning B, Volume and Issue Forthcoming, doi: 10.1177/0265813516657342. The publication is available at: http://dx.doi.org/10.1177/0265813516657342 Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) ...

Contributors
Fraser, Andrew, Chester, Mikhail, Eisenman, David, et al.

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each ...

Contributors
Chester, Mikhail, Pincetl, Stephanie, Elizabeth, Zoe, et al.