Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2011 2017


Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance Computing (HPC) resources, in the form of multi-core desktop computers, distributed geographic information processing systems, e.g. computational grids, and single site HPC clusters. In step with increases in computational resources, significant advancement in the capabilities to capture and store large quantities of spatially enabled data have been realized. A key …

Contributors
Laura, Jason R., Rey, Sergio J., Anselin, Luc, et al.
Created Date
2015

There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This research focuses on developing methods to address geographic data uncertainty in spatial optimization. An integrated approach that characterizes uncertainty …

Contributors
Wei, Ran, Murray, Alan T, Anselin, Luc, et al.
Created Date
2013

Researchers across a variety of fields are often interested in determining if data are of a random nature or if they exhibit patterning which may be the result of some alternative and potentially more interesting process. This dissertation explores a family of statistical methods, i.e. space-time interaction tests, designed to detect structure within three-dimensional event data. These tests, widely employed in the fields of spatial epidemiology, criminology, ecology and beyond, are used to identify synergistic interaction across the spatial and temporal dimensions of a series of events. Exploration is needed to better understand these methods and determine how their results …

Contributors
Malizia, Nicholas, Anselin, Luc, Murray, Alan, et al.
Created Date
2013

Regional differences of inventive activity and economic growth are important in economic geography. These differences are generally explained by the theory of localized knowledge spillovers, which argues that geographical proximity among economic actors fosters invention and innovation. However, knowledge production involves an increasing number of actors connecting to non-local partners. The space of knowledge flows is not tightly bounded in a given territory, but functions as a network-based system where knowledge flows circulate around alignments of actors in different and distant places. The purpose of this dissertation is to understand the dynamics of network aspects of knowledge flows in American …

Contributors
Lee, Der-Shiuan, Ó Huallacháin, Breandán, Ó Huallacháin, Breandán, et al.
Created Date
2011

Information technology (IT) outsourcing, including foreign or offshore outsourcing, has been steadily growing over the last two decades. This growth in IT outsourcing has led to the development of different hubs of services across nations, and has resulted in increased competition among service providers. Firms have been using IT outsourcing to not only leverage advanced technologies and services at lower costs, but also to maintain their competitive edge and grow. Furthermore, as prior studies have shown, there are systematic differences among industries in terms of the degree and impact of IT outsourcing. This dissertation uses a three-study approach to investigate …

Contributors
Mann, Arti, Kauffman, Robert J, Santanam, Raghu, et al.
Created Date
2012

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for …

Contributors
Kolak, Marynia Aniela, Anselin, Luc, Rey, Sergio, et al.
Created Date
2017

Gerrymandering is a central problem for many representative democracies. Formally, gerrymandering is the manipulation of spatial boundaries to provide political advantage to a particular group (Warf, 2006). The term often refers to political district design, where the boundaries of political districts are “unnaturally” manipulated by redistricting officials to generate durable advantages for one group or party. Since free and fair elections are possibly the critical part of representative democracy, it is important for this cresting tide to have scientifically validated tools. This dissertation supports a current wave of reform by developing a general inferential technique to “localize” inferential bias measures, …

Contributors
Wolf, Levi John, Rey, Sergio J, Anselin, Luc, et al.
Created Date
2017

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and …

Contributors
Li, Xun, Anselin, Luc, Koschinsky, Julia, et al.
Created Date
2012

Decades ago in the U.S., clear lines delineated which neighborhoods were acceptable for certain people and which were not. Techniques such as steering and biased mortgage practices continue to perpetuate a segregated outcome for many residents. In contrast, ethnic enclaves and age restricted communities are viewed as voluntary segregation based on cultural and social amenities. This diversity surrounding the causes of segregation are not just region-wide characteristics, but can vary within a region. Local segregation analysis aims to uncover this local variation, and hence open the door to policy solutions not visible at the global scale. The centralization index, originally …

Contributors
Folch, David Charles, Rey, Sergio J, Anselin, Luc, et al.
Created Date
2012

Choropleth maps are a common form of online cartographic visualization. They reveal patterns in spatial distributions of a variable by associating colors with data values measured at areal units. Although this capability of pattern revelation has popularized the use of choropleth maps, existing methods for their online delivery are limited in supporting dynamic map generation from large areal data. This limitation has become increasingly problematic in online choropleth mapping as access to small area statistics, such as high-resolution census data and real-time aggregates of geospatial data streams, has never been easier due to advances in geospatial web technologies. The current …

Contributors
Hwang, Myunghwa, Anselin, Luc, Rey, Sergio J., et al.
Created Date
2013