Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2012 2019


As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do. The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, …

Contributors
Kim, Kangjin, Fainekos, Georgios, Baral, Chitta, et al.
Created Date
2019

Social networking sites like Twitter have provided people a platform to connect with each other, to discuss and share information and news or to entertain themselves. As the number of users continues to grow there has been explosive growth in the data generated by these users. Such a vast data source has provided researchers a way to study and monitor public health. Accurately analyzing tweets is a difficult task mainly because of their short length, the inventive spellings and creative language expressions. Instead of focusing at the topic level, identifying tweets that have personal health experience mentions would be more …

Contributors
Gondane, Shubham Bhagwan, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text. As part of …

Contributors
Bhattacharjee, Aurgho, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2019

Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi level reasoning and combining independent pieces of knowledge, for example, a question like "What adaptation is necessary in intertidal ecosystems but not in reef ecosystems?'', requires the system to consider qualities, behaviour or features of an organism living in an intertidal ecosystem and compare with that of an organism in …

Contributors
Batni, Vaishnavi, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

In this thesis, I present two new datasets and a modification to the existing models in the form of a novel attention mechanism for Natural Language Inference (NLI). The new datasets have been carefully synthesized from various existing corpora released for different tasks. The task of NLI is to determine the possibility of a sentence referred to as “Hypothesis” being true given that another sentence referred to as “Premise” is true. In other words, the task is to identify whether the “Premise” entails, contradicts or remains neutral with regards to the “Hypothesis”. NLI is a precursor to solving many Natural …

Contributors
Shrivastava, Ishan, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning. However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with …

Contributors
Wang, Yi, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2019

Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree of ease with which the virtual digital assistants such as Google Assistant and Amazon Alexa can be integrated into your application. These assistants make use of a Natural Language Understanding (NLU) system which acts as an interface to translate unstructured natural language data into a structured form. Such an NLU …

Contributors
Garg, Prashant, Baral, Chitta, Kumar, Hemanth, et al.
Created Date
2018

Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is to create new instruments to {\it predict}, {\it optimize} and {\it explain} teams' performance in the context of composite networks (i.e., social-cognitive-information networks). Understanding the dynamic mechanisms that drive the success of high-performing teams can provide the key insights into building the best teams and hence lift the productivity and …

Contributors
Li, Liangyue, Tong, Hanghang, Baral, Chitta, et al.
Created Date
2018

Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well …

Contributors
Nunes, Eric, Shakarian, Paulo, Ahn, Gail-Joon, et al.
Created Date
2018

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called …

Contributors
Pradhan, Anish, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2018