Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2019


Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on a community, and developing a decision-making system based on the information available. With the growing popularity of social networking sites, people can freely express their opinions and feelings which results in a tremendous amount of user-generated data. The rich amount of social media data has opened the path for researchers to study and understand the users’ behaviors and mental health …

Contributors
Kamarudin, Nur Shazwani, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2019

Social media has become a primary platform for real-time information sharing among users. News on social media spreads faster than traditional outlets and millions of users turn to this platform to receive the latest updates on major events especially disasters. Social media bridges the gap between the people who are affected by disasters, volunteers who offer contributions, and first responders. On the other hand, social media is a fertile ground for malicious users who purposefully disturb the relief processes facilitated on social media. These malicious users take advantage of social bots to overrun social media posts with fake images, rumors, …

Contributors
Hossein Nazer, Tahora, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2019

Graph is a ubiquitous data structure, which appears in a broad range of real-world scenarios. Accordingly, there has been a surge of research to represent and learn from graphs in order to accomplish various machine learning and graph analysis tasks. However, most of these efforts only utilize the graph structure while nodes in real-world graphs usually come with a rich set of attributes. Typical examples of such nodes and their attributes are users and their profiles in social networks, scientific articles and their content in citation networks, protein molecules and their gene sets in biological networks as well as web …

Contributors
Salehi, Amin, Davulcu, Hasan, Liu, Huan, et al.
Created Date
2019

Millions of users leave digital traces of their political engagements on social media platforms every day. Users form networks of interactions, produce textual content, like and share each others' content. This creates an invaluable opportunity to better understand the political engagements of internet users. In this proposal, I present three algorithmic solutions to three facets of online political networks; namely, detection of communities, antagonisms and the impact of certain types of accounts on political polarization. First, I develop a multi-view community detection algorithm to find politically pure communities. I find that word usage among other content types (i.e. hashtags, URLs) …

Contributors
Ozer, Mert, Davulcu, Hasan, Liu, Huan, et al.
Created Date
2019

Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ …

Contributors
Copenhaver Heath, Corey D, Panchanathan, Sethuraman, McDaniel, Troy, et al.
Created Date
2019

Causality analysis is the process of identifying cause-effect relationships among variables. This process is challenging because causal relationships cannot be tested solely based on statistical indicators as additional information is always needed to reduce the ambiguity caused by factors beyond those covered by the statistical test. Traditionally, controlled experiments are carried out to identify causal relationships, but recently there is a growing interest in causality analysis with observational data due to the increasing availability of data and tools. This type of analysis will often involve automatic algorithms that extract causal relations from large amounts of data and rely on expert …

Contributors
Wang, Hong Xiang, Maciejewski, Ross, He, Jingrui, et al.
Created Date
2019

Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could predict the trends in the NYSE and NASDAQ stock markets for ten different companies, nine of which are part of the Dow Jones Industrial Average (DJIA). A novel deep learning model which uses a Generative Adversarial Network (GAN) is used to predict future data and the results are compared with …

Contributors
Thomas, Kevin, Sen, Arunabha, Davulcu, Hasan, et al.
Created Date
2019

With the development of modern technological infrastructures, such as social networks or the Internet of Things (IoT), data is being generated at a speed that is never before seen. Analyzing the content of this data helps us further understand underlying patterns and discover relationships among different subsets of data, enabling intelligent decision making. In this thesis, I first introduce the Low-rank, Win-dowed, Incremental Singular Value Decomposition (SVD) framework to inclemently maintain SVD factors over streaming data. Then, I present the Group Incremental Non-Negative Matrix Factorization framework to leverage redundancies in the data to speed up incremental processing. They primarily tackle …

Contributors
Chen, Xilun, Candan, K. Selcuk, Davulcu, Hasan, et al.
Created Date
2019

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions …

Contributors
Yildirim, Mehmet Yigit, Davulcu, Hasan, Bakkaloglu, Bertan, et al.
Created Date
2019

Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each other, forming a more complex network model called multi-layered networks. Among the various aspects of network studies, network connectivity plays an important role in a myriad of applications. The diversified application areas have spurred numerous connectivity measures, each designed for some specific tasks. Although effective in their own fields, none of …

Contributors
Chen, Chen, Tong, Hanghang, Davulcu, Hasan, et al.
Created Date
2019