Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage ...

Contributors
Krishnan, Kapil, Peralta, Pedro, Mignolet, Marc, et al.
Created Date
2013

Soft magnetic materials have been studied extensively in the recent past due to their applications in micro-transformers, micro-inductors, spin dependent memories etc. The unique features of these materials are the high frequency operability and high magnetic anisotropy. High uniaxial anisotropy is one of the most important properties for these materials. There are many methods to achieve high anisotropy energy (Hk) which include sputtering with presence of magnetic field, exchange bias and oblique angle sputtering. This research project focuses on analyzing different growth techniques of thin films of Cobalt, Zirconium Tantalum Boron (CZTB) and the quality of the films resulted. The ...

Contributors
Tummalapalli, Sridutt, Yu, Hongbin, Jiang, Hanqing, et al.
Created Date
2015

A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are ...

Contributors
Wei, Haoyang, Liu, Yongming, Jiang, Hanqing, et al.
Created Date
2016

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the ...

Contributors
Liang, Mengbing, Yu, Hongyu, Jiang, Hanqing, et al.
Created Date
2013

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell ...

Contributors
Koo, Bonsung, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2017

This research work demonstrates the process feasibility of Ultrasonic Filament Modeling process as a metal additive manufacturing process. Additive manufacturing (or 3d printing) is the method to manufacture 3d objects layer by layer. Current direct or indirect metal additive manufacturing processes either require a high power heat source like a laser or an electron beam, or require some kind of a post processing operation to produce net-shape fully-dense 3D components. The novel process of Ultrasonic Filament Modeling uses ultrasonic energy to achieve voxel deformation and inter-layer and intra-layer mass transport between voxels causing metallurgical bonding between the voxels. This enables ...

Contributors
Deshpande, Anagh, Hsu, Keng H, Parsey, John, et al.
Created Date
2016

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the ...

Contributors
Veeresh, Pawan Manjunath, Oswald, Jay, Jiang, Hanqing, et al.
Created Date
2016

The field of Structural Health Monitoring (SHM) has grown significantly over the past few years due to safety and performance enhancing benefits as well as potential life saving capabilities offered by technology. Current advances in SHM systems have lead to a variety of techniques capable of identifying damage. However, few strategies exist for using this information to quickly react to environmental or material conditions needed to repair or protect the system. Rather, current systems simply relay this information to a central processor or human operator who then decides on a course of action, such as altering the mission or scheduling ...

Contributors
Garcia, Michael, Sodano, Henry A, Jiang, Hanqing, et al.
Created Date
2010

Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS ...

Contributors
Fan, Yiling, Jiang, Hanqing, Hildreth, Owen, et al.
Created Date
2015

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization ...

Contributors
Sanyal, Sriya, Dai, Lenore L., Jiang, Hanqing, et al.
Created Date
2012