Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Mime Type
  • application/pdf
Subject
Date Range
2015 2020


Single-layer pentagonal materials have received limited attention compared with their counterparts with hexagonal structures. They are two-dimensional (2D) materials with pentagonal structures, that exhibit novel electronic, optical, or magnetic properties. There are 15 types of pentagonal tessellations which allow plenty of options for constructing 2D pentagonal lattices. Few of them have been explored theoretically or experimentally. Studying this new type of 2D materials with density functional theory (DFT) will inspire the discovery of new 2D materials and open up applications of these materials in electronic and magnetic devices.In this dissertation, DFT is applied to discover novel 2D materials with pentagonal …

Contributors
Liu, Lei, Zhuang, Houlong, Singh, Arunima, et al.
Created Date
2020

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic …

Contributors
Kolari, Pranvera, Tongay, Sefaattin, Jiao, Yang, et al.
Created Date
2020

Energy return in footwear is associated with the damping behavior of midsole foams, which stems from the combination of cellular structure and polymeric material behavior. Recently, traditional ethyl vinyl acetate (EVA) foams have been replaced by BOOST(TM) foams, thereby reducing the energetic cost of running. These are bead foams made from expanded thermoplastic polyurethane (eTPU), which have a multi-scale structure consisting of fused porous beads, at the meso-scale, and thousands of small closed cells within the beads at the micro-scale. Existing predictive models coarsely describe the macroscopic behavior but do not take into account strain localizations and microstructural heterogeneities. Thus, …

Contributors
Sundaram Singaravelu, Arun Sundar, Chawla, Nikhilesh, Emady, Heather, et al.
Created Date
2020

Single drop impact of liquid on a static powder bed was studied to investigate the granule formation mechanism, droplet penetration time, the characterization of granules (morphology, surface structure and internal structure), as well as the formation regime map. Water was used as the liquid and two pharmaceutical powders, microcrystalline cellulose (MCC) and acetaminophen (APAP), were mixed to make heterogeneous powder beds. The complete drop impact and penetration was recorded by a high-speed camera. Two granule formation mechanisms identified previously occurred: Spreading and Tunneling. Spreading occurred for mixtures of large particle sizes, while Tunneling started to occur when the particle sizes …

Contributors
Gao, Tianxiang, Emady, Heather N, Chawla, Nikhilesh, et al.
Created Date
2020

Precursors of carbon fibers include rayon, pitch, and polyacrylonitrile fibers that can be heat-treated for high-strength or high-modulus carbon fibers. Among them, polyacrylonitrile has been used most frequently due to its low viscosity for easy processing and excellent performance for high-end applications. To further explore polyacrylonitrile-based fibers for better precursors, in this study, carbon nanofillers were introduced in the polymer matrix to examine their reinforcement effects and influences on carbon fiber performance. Two-dimensional graphene nanoplatelets were mainly used for the polymer reinforcement and one-dimensional carbon nanotubes were also incorporated in polyacrylonitrile as a comparison. Dry-jet wet spinning was used to …

Contributors
Franklin, Rahul Joseph, Song, Kenan, Jiao, Yang, et al.
Created Date
2020

Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation. Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an …

Contributors
Wu, Han-Chun, Lin, Jerry Y.S., Deng, Shuguang, et al.
Created Date
2020

Nanomaterials that exhibit enzyme-like catalytic activity or nanozymes have many advantages compared to biological enzymes such as low cost of production and high stability. There is a substantial interest in studying two-dimensional materials due to their exceptional properties. Hafnium diboride is a type of two-dimensional material and belongs to the metal diborides family made of hexagonal layers of boron atoms separated by metal layers. In this work, the peroxidase-like activity of hafnium diboride nanoflakes dispersed in the block copolymer F77 was discovered for the first time. The kinetics, mechanisms and catalytic performance towards the oxidation of the chromogenic substrate 3,3,5,5-tetramethylbenzidine …

Contributors
Matar Abed, Mahmoud, Wang, Qing Hua, Green, Alexander, et al.
Created Date
2019

Niobium is the primary material for fabricating superconducting radio-frequency (SRF) cavities. However, presence of impurities and defects degrade the superconducting behavior of niobium twofold, first by nucleating non-superconducting phases and second by increasing the residual surface resistance of cavities. In particular, niobium absorbs hydrogen during cavity fabrication and promotes precipitation of non-superconducting niobium hydride phases. Additionally, magnetic flux trapping at defects leads to a normal conducting (non-superconducting) core which increases surface resistance and negatively affects niobium performance for superconducting applications. However, undelaying mechanisms related to hydride formation and dissolution along with defect interaction with magnetic fields is still unclear. Therefore, …

Contributors
Garg, Pulkit, Solanki, Kiran N, Jiao, Yang, et al.
Created Date
2019

Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular, MoS2 which is the most widely studied TMDC material, have attracted significant attention in recent years due to their unique physical, electronic, optical, and chemical properties that depend on the number of layers. Due to their high aspect ratios and extreme thinness, 2D materials are sensitive to modifications via chemistry on their surfaces. For instance, covalent functionalization can be used …

Contributors
Li, Duo, Wang, Qing Hua, Green, Alexander A., et al.
Created Date
2019

Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently remodel the local ECM (e.g., by re-orienting the collagen fibers, forming fiber bundles and increasing the local stiffness of ECM), leading to a dynamically evolving force network in the system that in turn regulates the collective migration of cells. In this work, this novel mechanotaxis mechanism is investigated, i.e., the …

Contributors
Nan, Hanqing, Jiao, Yang, Alford, Terry, et al.
Created Date
2019