Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified …

Contributors
Ganesan, Srisivapriya, Tao, Nongjian, Zhang, Yanchao, et al.
Created Date
2012

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness …

Contributors
Chen, Cheng, Tao, Nongjian, Chae, Junseok, et al.
Created Date
2011