Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical measurements required to fully investigate the complex interactions known to exist between biology and the environment. Further, the techniques used to classify the taxonomic and functional composition of a microbial community are fragmented and unwieldy, resulting in unnecessarily complex and often non-consilient results. This dissertation integrates environmental metagenomes with extensive …

Contributors
Alsop, Eric Bennie, Raymond, Jason, Anbar, Ariel, et al.
Created Date
2014

The greatest barrier to understanding how life interacts with its environment is the complexity in which biology operates. In this work, I present experimental designs, analysis methods, and visualization techniques to overcome the challenges of deciphering complex biological datasets. First, I examine an iron limitation transcriptome of Synechocystis sp. PCC 6803 using a new methodology. Until now, iron limitation in experiments of Synechocystis sp. PCC 6803 gene expression has been achieved through media chelation. Notably, chelation also reduces the bioavailability of other metals, whereas naturally occurring low iron settings likely result from a lack of iron influx and not as …

Contributors
Kellom, Matthew, Raymond, Jason, Anbar, Ariel, et al.
Created Date
2017

The James Webb Space Telescope (JWST) is expected to revolutionize the current understanding of Jovian worlds over the coming decade. However, as the field pushes towards characterizing cooler, smaller, “terrestrial-like” planets, dedicated next-generation facilities will be required to tease out the small spectral signatures indicative of biological activity. Here, the feasibility of determining atmospheric properties, from near to mid-infrared transmission spectra, of transiting temperate terrestrial M-dwarf companions, has been evaluated. Specifically, atmospheric retrievals were utilized to explore the trade space between spectral resolution, wavelength coverage, and signal-to-noise on the ability to both detect molecular species and constrain their abundances. Increasing …

Contributors
Tremblay, Luke, Line, Michael R, Schkolnik, Evgenya, et al.
Created Date
2019