Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping. In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed …

Contributors
YANG, YUE, Wang, Liping, Phelan, Patrick, et al.
Created Date
2016

Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum. An economic method is always desired to fabricate spectrally selective surfaces with improved energy conversion efficiency. Colloidal lithography is a recently emerged way of nanofabrication, which has advantages of low-cost and easy operation. In this thesis, aluminum metasurface structures are proposed based on colloidal lithography method. High Frequency Structure Simulator …

Contributors
Guan, Chuyun, Wang, Liping, Azeredo, Bruno, et al.
Created Date
2019

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers. This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide …

Contributors
Alshehri, Hassan, Wang, Liping, Phelan, Patrick, et al.
Created Date
2018

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion. In this dissertation, two types of devices are demonstrated: …

Contributors
Fu, Houqiang, Zhao, Yuji, Vasileska, Dragica, et al.
Created Date
2019