Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Reverse osmosis (RO) membranes are considered the most effective treatment to remove salt from water. Specifically, thin film composite (TFC) membranes are considered the gold standard for RO. Despite TFC membranes good performance, there are drawbacks to consider including: permeability-selectivity tradeoff, chlorine damage, and biofouling potential. In order to counter these drawbacks, polyamide matrixes were embedded with various nanomaterials called mixed matrix membranes (MMMs) or thin film nanocomposites (TFNs). This research investigates the use of graphene oxide (GO) and reduced graphene oxide (RGO) into the polyamide matrix of a TFC membrane. GO and RGO have the potential to alter the …

Inurria, Adam, Perreault, Francois, Fox, Peter, et al.
Created Date

This dissertation investigates the mechanisms that lead to fouling, as well as how an understanding of how these mechanisms can be leveraged to mitigate fouling. To limit fouling on feed spacers, various coatings were applied. The results showed silver-coated biocidal spacers outperformed other spacers by all measures. The control polypropylene spacers performed in-line with, or better than, the other coatings. Polypropylene’s relative anti-adhesiveness is due to its surface free energy (SFE; 30.0 +/- 2.8 mN/m), which, according to previously generated models, is near the ideal SFE for resisting adhesion of bacteria and organics (~25 mN/m). Previous research has indicated that …

Rice, Douglas, Perreault, Francois, Abbaszadegan, Morteza, et al.
Created Date