Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to …

Rezikyan, Aram, Treacy, Michael M.J., Smith, David J., et al.
Created Date

The research described in this dissertation has involved the use of transmission electron microcopy (TEM) to characterize the structural properties of II-VI and III-V compound semiconductor heterostructures and superlattices. The microstructure of thick ZnTe epilayers (~2.4 µm) grown by molecular beam epitaxy (MBE) under virtually identical conditions on GaSb, InAs, InP and GaAs (100) substrates were compared using TEM. High-resolution electron micrographs revealed a highly coherent interface for the ZnTe/GaSb sample, and showed extensive areas with well-separated interfacial misfit dislocations for the ZnTe/InAs sample. Lomer edge dislocations and 60o dislocations were commonly observed at the interfaces of the ZnTe/InP and …

Ouyang, Lu, Smith, David J, Mccartney, Martha, et al.
Created Date