Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of the current implementation at the Southern Nevada Health District (SNHD). The result of the system deployment at SNHD was considered as a basis for projecting the practical application and benefits of an enterprise architecture. This approach has resulted in a sustainable platform to enhance the practice of public health by …

Contributors
Kriseman, Jeffrey Michael, Dinu, Valentin, Greenes, Robert, et al.
Created Date
2012

Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations …

Contributors
Magge, Arjun, Scotch, Matthew, Gonzalez-Hernandez, Graciela, et al.
Created Date
2019