Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2020


The mobile crowdsensing (MCS) applications leverage the user data to derive useful information by data-driven evaluation of innovative user contexts and gathering of information at a high data rate. Such access to context-rich data can potentially enable computationally intensive crowd-sourcing applications such as tracking a missing person or capturing a highlight video of an event. Using snippets and pictures captured from multiple mobile phone cameras with specific contexts can improve the data acquired in such applications. These MCS applications require efficient processing and analysis to generate results in real time. A human user, mobile device and their interactions cause a …

Contributors
Pore, Madhurima, GUPTA, SANDEEP K. S., GUPTA, SANDEEP K. S., et al.
Created Date
2019

The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have access to their data once they are appended to the chain. In these scenarios, the data owner actually loses control of the data once they are uploaded to the outside storage. Encryption-before-uploading is the way to solve this issue, however traditional encryption schemes such as AES, RSA, ECC, bring about …

Contributors
Dong, Qiuxiang, Huang, Dijiang, Sen, Arunabha, et al.
Created Date
2020

The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components to planetary explo- ration by highlighting the expected trend and patterns in the data. However, the complexity of these patterns from local to global scales, coupled with the volume of this ever-growing repository necessitates advanced techniques to sequentially process the datasets to determine the underlying trends. Such techniques essentially model …

Contributors
Chakraborty, Srija, Papandreou-Suppappola, Antonia, Christensen, Philip, et al.
Created Date
2019

Component simulation models, such as agent-based models, may depend on spatial data associated with geographic locations. Composition of such models can be achieved using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-temporal data transformation functions, each of which is responsible for a set of interactions between two independent models. The use of autonomous interaction models allows model composition without alteration of the composed component models. An interaction model must handle differences in the spatial resolutions between models, in addition to differences in their temporal input/output data types and resolutions. A generalized GeoKIB was designed that regulates unidirectional spatially-based interactions …

Contributors
Boyd, William Angelo, Sarjoughian, Hessam S, Maciejewski, Ross, et al.
Created Date
2019

Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations …

Contributors
Magge, Arjun, Scotch, Matthew, Gonzalez-Hernandez, Graciela, et al.
Created Date
2019

As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do. The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, …

Contributors
Kim, Kangjin, Fainekos, Georgios, Baral, Chitta, et al.
Created Date
2019

Deep neural networks (DNNs) have had tremendous success in a variety of statistical learning applications due to their vast expressive power. Most applications run DNNs on the cloud on parallelized architectures. There is a need for for efficient DNN inference on edge with low precision hardware and analog accelerators. To make trained models more robust for this setting, quantization and analog compute noise are modeled as weight space perturbations to DNNs and an information theoretic regularization scheme is used to penalize the KL-divergence between perturbed and unperturbed models. This regularizer has similarities to both natural gradient descent and knowledge distillation, …

Contributors
Kadambi, Pradyumna, Berisha, Visar, Dasarathy, Gautam, et al.
Created Date
2019

Signal compressed using classical compression methods can be acquired using brute force (i.e. searching for non-zero entries in component-wise). However, sparse solutions require combinatorial searches of high computations. In this thesis, instead, two Bayesian approaches are considered to recover a sparse vector from underdetermined noisy measurements. The first is constructed using a Bernoulli-Gaussian (BG) prior distribution and is assumed to be the true generative model. The second is constructed using a Gamma-Normal (GN) prior distribution and is, therefore, a different (i.e. misspecified) model. To estimate the posterior distribution for the correctly specified scenario, an algorithm based on generalized approximated message …

Contributors
Alhowaish, Abdulhakim, Richmond, Christ D, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off smaller sub-projects that informed the development with an understanding of the detector array, the time streams for astronomical mapping, and the science behind Lumped Element Kinetic Inductance Detectors (LEKIDs). Additionally, key aspects of software development processes were integrated into the scientific development process to streamline collaboration across multiple universities and …

Contributors
Horton, Paul, Mauskopf, Philip, Bansal, Ajay, et al.
Created Date
2019

Social networking sites like Twitter have provided people a platform to connect with each other, to discuss and share information and news or to entertain themselves. As the number of users continues to grow there has been explosive growth in the data generated by these users. Such a vast data source has provided researchers a way to study and monitor public health. Accurately analyzing tweets is a difficult task mainly because of their short length, the inventive spellings and creative language expressions. Instead of focusing at the topic level, identifying tweets that have personal health experience mentions would be more …

Contributors
Gondane, Shubham Bhagwan, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

Machine learning (ML) and deep neural networks (DNNs) have achieved great success in a variety of application domains, however, despite significant effort to make these networks robust, they remain vulnerable to adversarial attacks in which input that is perceptually indistinguishable from natural data can be erroneously classified with high prediction confidence. Works on defending against adversarial examples can be broadly classified as correcting or detecting, which aim, respectively at negating the effects of the attack and correctly classifying the input, or detecting and rejecting the input as adversarial. In this work, a new approach for detecting adversarial examples is proposed. …

Contributors
Sun, Lin, Bazzi, Rida, Li, Baoxin, et al.
Created Date
2019

With the steady advancement of neural network research, new applications are continuously emerging. As a tool for test time reduction, neural networks provide a reliable method of identifying and applying correlations in datasets to speed data processing. By leveraging the power of a deep neural net, it is possible to record the motion of an accelerometer in response to an electrical stimulus and correlate the response with a trim code to reduce the total test time for such sensors. This reduction can be achieved by replacing traditional trimming methods such as physical shaking or mathematical models with a neural net …

Contributors
Debeurre, Nicholas, Ozev, Sule, Vrudhula, Sarma, et al.
Created Date
2019

Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the system difficult to tamper with due to a distributed consensus algorithm. In this research, the potential of blockchain technology to manage energy transactions is examined. The energy production landscape is being reshaped by distributed energy resources (DERs): photo-voltaic panels, electric vehicles, smart appliances, and battery storage. Distributed energy sources such as microgrids, household solar installations, community solar installations, and plug-in …

Contributors
Sadaye, Raj Anil, Candan, Kasim S, Boscovic, Dragan, et al.
Created Date
2019

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major …

Contributors
De Luca, Gennaro, Chen, Yinong, Liu, Huan, et al.
Created Date
2020

Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the high costs of remediation incentivizes avoidance over response. Yet, avoidance implies the ability to predict - a notoriously difficult task due to high rates of false positives, difficulty in finding data that is indicative of future events, and the unexplainable results from machine learning algorithms. In this dissertation, these challenges are addressed by presenting three artificial intelligence (AI) approaches to …

Contributors
Almukaynizi, Mohammed, Shakarian, Paulo, Huang, Dijiang, et al.
Created Date
2019

Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on a community, and developing a decision-making system based on the information available. With the growing popularity of social networking sites, people can freely express their opinions and feelings which results in a tremendous amount of user-generated data. The rich amount of social media data has opened the path for researchers to study and understand the users’ behaviors and mental health …

Contributors
Kamarudin, Nur Shazwani, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2019

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2019

Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to live streaming, and specifically the live streaming of video games, Twitch. This social network is unique for a number of reasons, not least because of its hyper-focus on live content and this uniqueness has challenges for social media researchers. Despite this uniqueness, almost no scientific work has been performed on this public social network. Thus, it is unclear what user …

Contributors
Jones, Isaac, Liu, Huan, Maciejewski, Ross, et al.
Created Date
2019

Social media has become a primary platform for real-time information sharing among users. News on social media spreads faster than traditional outlets and millions of users turn to this platform to receive the latest updates on major events especially disasters. Social media bridges the gap between the people who are affected by disasters, volunteers who offer contributions, and first responders. On the other hand, social media is a fertile ground for malicious users who purposefully disturb the relief processes facilitated on social media. These malicious users take advantage of social bots to overrun social media posts with fake images, rumors, …

Contributors
Hossein Nazer, Tahora, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2019

Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion on these networks, and the social media platforms to remove these accounts. Despite this acknowledged issue, bot presence continues to remain on social media networks. So, it has now become necessary to monitor different bots over time to identify changes in their activities or domain. Since monitoring individual accounts is not feasible, because the bots may get suspended or deleted, …

Contributors
Davis, Matthew William, Liu, Huan, Xue, Guoliang, et al.
Created Date
2019