Skip to main content

ASU Electronic Theses and Dissertations


Contributor
Subject
Date Range
2011 2018

Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems. This dissertation develops Bayesian network models for system reliability analysis through the use of Bayesian inference techniques. Bayesian networks generalize fault trees by allowing components and subsystems to be related by conditional probabilities instead of deterministic relationships; thus, they provide analytical advantages to the situation when the failure structure is not well understood, especially during the product design stage. In order to tackle this problem, one needs to utilize auxiliary information such as the reliability information from similar products ...

Contributors
Yontay, Petek, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2016

Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis is a vital task in mission-critical communication networks (MCCNs), where providing a certain level of QoS is essential for national security, safety or economic vitality. In this thesis, the details of all aspects of a comprehensive computational framework for QoS analysis in MCCNs are provided. There are three main QoS ...

Contributors
Senturk, Muhammet Burhan, Li, Jing, Baydogan, Mustafa G, et al.
Created Date
2014

Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure, operation (including control and management), evolution over time, and that people are involved in their design and operation. Our understanding of such systems is limited because their behaviour cannot be characterized using traditional techniques of modelling and analysis. As a step in model development, statistically designed screening experiments may be used to identify the main effects and interactions most significant ...

Contributors
Aldaco-Gastelum, Abraham Netzahualcoyotl, Syrotiuk, Violet R., Colbourn, Charles J., et al.
Created Date
2015

Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research ...

Contributors
He, Miao, Wu, Teresa, Li, Jing, et al.
Created Date
2014

Modern intelligent transportation systems (ITS) make driving more efficient, easier, and safer. Knowledge of real-time traffic conditions is a critical input for operating ITS. Real-time freeway traffic state estimation approaches have been used to quantify traffic conditions given limited amount of data collected by traffic sensors. Currently, almost all real-time estimation methods have been developed for estimating laterally aggregated traffic conditions in a roadway segment using link-based models which assume homogeneous conditions across multiple lanes. However, with new advances and applications of ITS, knowledge of lane-based traffic conditions is becoming important, where the traffic condition differences among lanes are recognized. ...

Contributors
Zhou, Zhuoyang, Mirchandani, Pitu, Askin, Ronald, et al.
Created Date
2015

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application to large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker (DM), (2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive power of DMs. This dissertation proposes a PCM Framework ...

Contributors
Jalao, Eugene Rex Lazaro, Shunk, Dan L, Wu, Teresa, et al.
Created Date
2013

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, ...

Contributors
Zou, Na, Li, Jing, Baydogan, Mustafa, et al.
Created Date
2015

A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values are computed at each level within a sample. If at least one of the P-values is less than a pre-specified significance level, the chart signals out-of-control. The primary advantage of our approach is that only one control chart is required to monitor several parameters simultaneously: the intercept, slope(s), and the ...

Contributors
Adibi, Azadeh, Montgomery, Douglas, Borror, Connie, et al.
Created Date
2013

In the entire supply chain, demand planning is one of the crucial aspects of the production planning process. If the demand is not estimated accurately, then it causes revenue loss. Past research has shown forecasting can be used to help the demand planning process for production. However, accurate forecasting from historical data is difficult in today's complex volatile market. Also it is not the only factor that influences the demand planning. Factors, namely, Consumer's shifting interest and buying power also influence the future demand. Hence, this research study focuses on Just-In-Time (JIT) philosophy using a pull control strategy implemented with ...

Contributors
Sahu, Pranati, Askin, Ronald G., Shunk, Dan L., et al.
Created Date
2012

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually ...

Contributors
Kuitche, Joseph Mathurin, Pan, Rong, TamizhMani, Govindasamy, et al.
Created Date
2014

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.