Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2010 2018


It is well known that the geckos can cling to almost any surface using highly dense micro/nano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition. This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range ...

Contributors
Mate, Sunil Munjaji, Marvi, Hamidreza, Rykaczewski, Konrad, et al.
Created Date
2016

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined ...

Contributors
Srinivas, Shashank, Fainekos, Georgios, Baral, Chitta, et al.
Created Date
2013

Wittgenstein’s claim: anytime something is seen, it is necessarily seen as something, forms the philosophical foundation of this research. I synthesize theories and philosophies from Simondon, Maturana, Varela, Wittgenstein, Pye, Sennett, and Reddy in a research process I identify as a paradigm construction project. My personal studio practice of inventing experiential media systems is a key part of this research and illustrates, with practical examples, my philosophical arguments from a range of points of observation. I see media systems as technical objects, and see technical objects as structurally determined systems, in which the structure of the system determines its organization. ...

Contributors
Lahey, Byron Robert, Burleson, Winslow, Xin Wei, Sha, et al.
Created Date
2015

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish ...

Contributors
Mian, Sami, Panchanathan, Sethuraman, Berman, Spring, et al.
Created Date
2018

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies ...

Contributors
Barkan, Andrew Robert, Artemiadis, Panagiotis, Lee, Hyunglae, et al.
Created Date
2016

Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait ...

Contributors
Holgate, Robert, Sugar, Thomas, Artemiades, Panagiotis, et al.
Created Date
2017

This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, ...

Contributors
Singh, Kanishka Raj, Yong, Sze Zheng, Artemiadis, Panagiotis, et al.
Created Date
2018

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due ...

Contributors
CHUKEWAD, YOGESH MADHAVRAO, SODEMANN, ANGELA A, DAVIDSON, JOSEPH K, et al.
Created Date
2014

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact ...

Contributors
Muralidhar, Ashwini, Saripalli, Srikanth, Papandreou-Suppappola, Antonia, et al.
Created Date
2011

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top ...

Contributors
Ravishankar, Nikhilesh, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2018