ASU Electronic Theses and Dissertations

Permanent Link Feedback

Contributor
Subject
Date Range
2010 2017

To ensure system integrity, robots need to proactively avoid any unwanted physical perturbation that may cause damage to the underlying hardware. In this thesis work, we investigate a machine learning approach that allows robots to anticipate impending physical perturbations from perceptual cues. In contrast to other approaches that require knowledge about sources of perturbation to be encoded before deployment, our method is based on experiential learning. Robots learn to associate visual cues with subsequent physical perturbations and contacts. In turn, these extracted visual cues are then used to predict potential future perturbations acting on the robot. To this end, we ...

Contributors
Sur, Indranil, Amor, Heni B, Fainekos, Georgios, et al.
Created Date
2017

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although ...

Contributors
Kamasamudram, Anurag, Saripalli, Srikanth, Fainekos, Georgios, et al.
Created Date
2013

Sports activities have been a cornerstone in the evolution of humankind through the ages from the ancient Roman empire to the Olympics in the 21st century. These activities have been used as a benchmark to evaluate the how humans have progressed through the sands of time. In the 21st century, machines along with the help of powerful computing and relatively new computing paradigms have made a good case for taking up the mantle. Even though machines have been able to perform complex tasks and maneuvers, they have struggled to match the dexterity, coordination, manipulability and acuteness displayed by humans. Bi-manual ...

Contributors
Kalige, Nikhil, Amor, Heni Ben, Shrivastava, Aviral, et al.
Created Date
2016

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as ...

Contributors
Vemprala, Sai Hemachandra, Saripalli, Srikanth, Fainekos, Georgios, et al.
Created Date
2013

Fisheye cameras are special cameras that have a much larger field of view compared to conventional cameras. The large field of view comes at a price of non-linear distortions introduced near the boundaries of the images captured by such cameras. Despite this drawback, they are being used increasingly in many applications of computer vision, robotics, reconnaissance, astrophotography, surveillance and automotive applications. The images captured from such cameras can be corrected for their distortion if the cameras are calibrated and the distortion function is determined. Calibration also allows fisheye cameras to be used in tasks involving metric scene measurement, metric scene ...

Contributors
Kashyap Takmul Purushothama Raju, Vinay, Karam, Lina, Turaga, Pavan, et al.
Created Date
2014

It is well known that the geckos can cling to almost any surface using highly dense micro/nano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition. This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range ...

Contributors
Mate, Sunil Munjaji, Marvi, Hamidreza, Rykaczewski, Konrad, et al.
Created Date
2016

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture ...

Contributors
Krishnan, Aravindhan K., Saripalli, Srikanth, Klesh, Andrew, et al.
Created Date
2016

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the ...

Contributors
Lin, Yucong, Saripalli, Srikanth, Scowen, Paul, et al.
Created Date
2015

Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact with and manipulate the world diminish their usefulness. In order to advance robot end effectors, specifically artificial hands, rich multimodal tactile sensing is needed. In this work, a multi-articulating, anthropomorphic robot testbed was developed for investigating tactile sensory stimuli during finger-object interactions. The artificial finger is controlled by a tendon-driven remote actuation system that allows for modular control of ...

Contributors
Hellman, Randall Blake, Santos, Veronica J, Artemiadis, Panagiotis K, et al.
Created Date
2016

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design, control objectives for rear-wheel drive ground vehicles. Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform that can be used for conducting FAME research. A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities. The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability of commercially available vehicles costing over $2000. ...

Contributors
Lu, Xianglong, Rodriguez, Armando Antonio, Berman, Spring, et al.
Created Date
2016

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.