Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov Model is developed to consider the temporal dependency of the high-resolution AE data. Furthermore, the posterior classification probability and the negative likelihood score for microstructure classification and discovery are computed. Subsequently, a diagnostic procedure to identify the dominant AE frequencies that were used to track the microstructural characteristics is presented. …

Contributors
Sun, Huifeng, Yan, Hao, Fricks, John, et al.
Created Date
2020

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster analysis to create product profiles based on which customer profiles are derived. Phase-2 then delves deep into each of the customer profiles and investigates causality behind their preference using Bayesian networks. This thesis illustrates the working of the framework using the case of Intel Corporation, world’s largest semiconductor manufacturing company. …

Contributors
Ram, Sudarshan Venkat, Kempf, Karl G, Wu, Teresa, et al.
Created Date
2017

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for …

Contributors
Thulasiram, Ramesh L., Ye, Jieping, Xue, Guoliang, et al.
Created Date
2011

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively …

Contributors
Venkatesan, Ashok, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2011