Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with ...

Contributors
Han, Zhun, Smith, Hal, Armbruster, Dieter, et al.
Created Date
2012

The Kuramoto model is an archetypal model for studying synchronization in groups of nonidentical oscillators where oscillators are imbued with their own frequency and coupled with other oscillators though a network of interactions. As the coupling strength increases, there is a bifurcation to complete synchronization where all oscillators move with the same frequency and show a collective rhythm. Kuramoto-like dynamics are considered a relevant model for instabilities of the AC-power grid which operates in synchrony under standard conditions but exhibits, in a state of failure, segmentation of the grid into desynchronized clusters. In this dissertation the minimum coupling strength required ...

Contributors
Gilg, Brady, Armbruster, Dieter, Mittelmann, Hans, et al.
Created Date
2018