Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit model. Then it describes the process of creating a new battery circuit model which is referred to as the kinetic battery model. During this process, a new general equation is derived. The original equation in the kinetic battery model is only valid at a constant current rate, while the new equation can be used for not only constant current but also linear or nonlinear current. Following the new equation, a circuit representation is built based ...

Contributors
Kong, Dexinghui, Holbert, Keith, Karady, George G, et al.
Created Date
2012

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface ...

Contributors
Liu, Yuan, Vittal, Vijay, Undrill, John, et al.
Created Date
2016

Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans or conservative operating limits. Furthermore, with increased penetration of converter-based renewable generation in the electric grid, the dynamics of the grid are changing. In addition, the variability and intermittency associated with the renewable energy sources introduce uncertainty in the electricity grid. Since security margins have direct economic impact on the ...

Contributors
Datta, Sohom, Vittal, Vijay, Undrill, John, et al.
Created Date
2017

In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 ...

Contributors
Yao, Tong, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration. This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line ...

Contributors
Korad, Akshay Shashikumar, Hedman, Kory W, Ayyanar, Raja, et al.
Created Date
2015

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and ...

Contributors
Ranganathan Sathyanarayana, Bharadwaj, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

With increased usage of green energy, the number of photovoltaic arrays used in power generation is increasing rapidly. Many of the arrays are located at remote locations where faults that occur within the array often go unnoticed and unattended for large periods of time. Technicians sent to rectify the faults have to spend a large amount of time determining the location of the fault manually. Automated monitoring systems are needed to obtain the information about the performance of the array and detect faults. Such systems must monitor the DC side of the array in addition to the AC side to ...

Contributors
Krishnan, Venkatachalam, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2012

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is ...

Contributors
Ma, Yan, Karady, George G, Vittal, Vijay, et al.
Created Date
2012

This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) ...

Contributors
Kulasekaran, Siddharth, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

The demand for cleaner energy technology is increasing very rapidly. Hence it is important to increase the eciency and reliability of this emerging clean energy technologies. This thesis focuses on modeling and reliability of solar micro inverters. In order to make photovoltaics (PV) cost competitive with traditional energy sources, the economies of scale have been guiding inverter design in two directions: large, centralized, utility-scale (500 kW) inverters vs. small, modular, module level (300 W) power electronics (MLPE). MLPE, such as microinverters and DC power optimizers, oer advantages in safety, system operations and maintenance, energy yield, and component lifetime due to ...

Contributors
Manchanahalli Ranganatha, Arkanatha Sastry, Ayyanar, Raja, Karady, George, et al.
Created Date
2015