ASU Electronic Theses and Dissertations

Permanent Link Feedback

Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and reference digitizing Analog-to-Digital Converters (ADC) are based on a single-bit, first order Sigma-Delta frequency to digital converter, running at 32MHz over-sampling rate. The ADSM regulator achieves 1% settling time in less than 5uSec for a load variation of 600mA. The sliding-mode controller utilizes a high-bandwidth hysteretic differentiator and an integrator ...

Contributors
Dashtestani, Ahmad, Bakkaloglu, Bertan, Thornton, Trevor, et al.
Created Date
2013

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of ...

Contributors
Chen, Bo, Thornton, Trevor, Bakkaloglu, Bertan, et al.
Created Date
2013

The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer curves of amplifiers show good agreement with the simulated ones with extracted models from the same process. The accuracy of the current mirror showing inverse operation is within ±15% for the current from 0 to 1.5mA with the power supply from 2.5 to 5.5V. The second part presents a low-power ...

Contributors
Kim, Sung Ho, Bakkaloglu, Bertan, Christen, Jennifer Blain, et al.
Created Date
2011

Power management plays a very important role in the current electronics industry. Battery powered and handheld applications require novel power management techniques to extend the battery life. Most systems have multiple voltage regulators to provide power sources to the different circuit blocks and/or sub-systems. Some of these voltage regulators are low dropout regulators (LDOs) which typically require output capacitors in the range of 1's to 10's of µF. The necessity of output capacitors occupies valuable board space and can add additional integrated circuit (IC) pin count. A high IC pin count can restrict LDOs for system-on-chip (SoC) solutions. The presented ...

Contributors
Topp, Matthew, Bakkaloglu, Bertan, Thornton, Trevor, et al.
Created Date
2012

The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis ...

Contributors
Ghajar, Mohammad Reza, Thornton, Trevor, Aberle, James, et al.
Created Date
2012

This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor ...

Contributors
Kim, Hyuntae, Bakkaloglu, Bertan, Vermeire, Bert, et al.
Created Date
2011

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This ...

Contributors
Lepkowski, William, Thornton, Trevor, Bakkaloglu, Bertan, et al.
Created Date
2010

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.