Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to …

Contributors
Aditya, Somak, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2018

Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints …

Contributors
Yang, Zhun, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2017