Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic curve. If $F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots F_\infty = \bigcup_{i=0}^\infty F_i$, one may be interested in properties like the ranks and torsion subgroups of the increasing family of curves $E(F_0) \subseteq E(F_1) \subseteq \cdots \subseteq E(F_\infty)$. The main technique for studying this sequence of curves when ...

Contributors
Franks, Chase Leroyce, Childress, Nancy, Barcelo, Helene, et al.
Created Date
2011

Borda's social choice method and Condorcet's social choice method are shown to satisfy different monotonicities and it is shown that it is impossible for any social choice method to satisfy them both. Results of a Monte Carlo simulation are presented which estimate the probability of each of the following social choice methods being manipulable: plurality (first past the post), Borda count, instant runoff, Kemeny-Young, Schulze, and majority Borda. The Kemeny-Young and Schulze methods exhibit the strongest resistance to random manipulability. Two variations of the majority judgment method, with different tie-breaking rules, are compared for continuity. A new variation is proposed ...

Contributors
Jennings, Andrew Blake, Hurlbert, Glenn, Barcelo, Helene, et al.
Created Date
2010

Let T be a tournament with edges colored with any number of colors. A rainbow triangle is a 3-colored 3-cycle. A monochromatic sink of T is a vertex which can be reached along a monochromatic path by every other vertex of T. In 1982, Sands, Sauer, and Woodrow asked if T has no rainbow triangles, then does T have a monochromatic sink? I answer yes in the following five scenarios: when all 4-cycles are monochromatic, all 4-semi-cycles are near-monochromatic, all 5-semi-cycles are near-monochromatic, all back-paths of an ordering of the vertices are vertex disjoint, and for any vertex in an ...

Contributors
Bland, Adam, Kierstead, Henry A, Czygrinow, Andrzej M, et al.
Created Date
2011